Exercise 1 Prove that the set of even numbers is not first-order definable in (\mathbb{Z}, \leq) .

Exercise 2 We consider structures with the empty signature. Use a back-and-forth argument to show that

$$\mathfrak{A} \equiv_m \mathfrak{B}$$
 iff $|A| = |B|$ or $|A|, |B| \ge m$.

Exercise 3 Prove that the set of all complete finite binary trees whose number of vertices is divisible by 3 is not first-order definable.

Exercise 4 Which of the following languages (over $\{a, b\}$) are first-order definable?

- (a) $a^*(bb)^*$
- (b) (ab)*
- (c) $\{a^{n^2} \mid n \in \mathbb{N}\}$
- (d) $\{a^nb^ma^n \mid m, n \in \mathbb{N}\}$
- (e) The set of all palindromes.

Exercise 5 Which of the languages in Exercise 4 are monadic second-order definable?

Exercise 6 Which of the following graph classes are first-order definable? (We assume that all graphs are finite and undirected.)

- (a) graphs of degree at most 3
- (b) trees
- (c) paths
- (d) graphs of diameter at most 3
- (e) graphs of even diameter
- (f) graphs with a Hamiltonian cycle