
CERTORA
Move fast and break nothing

2 0 2 2

Formal Verification of Smart
Contracts with The Certora Prover

Jaroslav Bendík
April 2022

Blockchain and Smart Contracts
Blockchain

• A distributed database

• Chronologically ordered data

• Decentralized

• Cryptographic security measures

• Immutable

• Usual use: digital ledger

Blockchain and Smart Contracts
Smart Contract

• A set of functions running on Ethereum
blockchain

• A user can invoke some of the functions

• Successful function invocations are irreversible

• Unsuccessful function invocations revert

• A maximum size of 24KB

• Cannot be deleted/changed once deployed

Blockchain

• A distributed database

• Chronologically ordered data

• Decentralized

• Cryptographic security measures

• Immutable

• Usual use: digital ledger

CODE

CERTORA
PROVER

SPEC

Proof of all behaviors
meeting the spec

A rare behavior which
violates the spec

Formal Verification with Certora Prover

Example Smart Contract
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

Example Smart Contract
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

Example Smart Contract
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

Example Smart Contract
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

Example Smart Contract
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

Example Smart Contract
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

How do we know that deposit increases funds by amount?

Writing the Specification
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

How do we know that deposit increases funds by amount?

Need to first write “deposit increases funds by amount”
more formally so that we can automatically check it!

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e, e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e, e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e, e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e, e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Not executable but looks like Solidity!

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e, e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e, e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e, e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e, e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e, e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e, e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e, e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e, e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e, e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e, e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Inline from contract

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e, e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e, e.msg.sender);
assert (after_deposit == before_deposit + amount);

}

Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit = getFunds (e, e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e, e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Must hold for ALL values of amount!

Certora Verification Language Overview

• Assumptions + assertions
• Invariants
• Ghost functions + Hooks (ghost solidity functions)
• Summary functions (replace solidity functions)
• CVL functions (to avoid repeated code in .spec files)
• Quantifiers

Certora Verification Language Overview

• Assumptions + assertions
• Invariants
• Ghost functions + Hooks (ghost solidity functions)
• Summary functions (replace solidity functions)
• CVL functions (to avoid repeated code in .spec files)
• Quantifiers

require forall address i. forall address j. funds(i) + funds(j) <= totalFunds();

Certora Verification Language Overview

• Assumptions + assertions
• Invariants
• Ghost functions + Hooks (ghost solidity functions)
• Summary functions (replace solidity functions)
• CVL functions (to avoid repeated code in .spec files)
• Quantifiers

require forall address i. forall address j. funds(i) + funds(j) <= totalFunds();

Certora Verification Language Overview

• Assumptions + assertions
• Invariants
• Ghost functions + Hooks (ghost solidity functions)
• Summary functions (replace solidity functions)
• CVL functions (to avoid repeated code in .spec files)
• Quantifiers

require forall address i. forall address j. funds(i) + funds(j) <= totalFunds();

Formal Verification with Certora Prover

CODE

CERTORA
PROVER

SPEC

Proof of all behaviors
meeting the spec

A rare behavior which
violates the spec

???

Formal Verification with Certora Prover

CODE

SPEC

Proof of all behaviors
meeting the spec

A rare behavior which
violates the spec

Code + Spec

Logic

SOLVERS

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Static
analyzer

TAC

VC
Generator

TAC

Certora Prover Architecture

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Static
analyzer

TAC

VC
Generator

TAC

Certora Prover Works on Bytecode

Compile Solidity to get EVM Bytecode

Can support other EVM languages (Vyper)

Helps find compiler bugs!

Compiler Bugs Found by Certora Prover

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Static
analyzer

VC
Generator

TAC

Bytecode to Three-Address Code

Decompiler

EVM Bytecode

TAC

Break down code into small simple steps

One operation per TAC instruction

Only a small number of instructions in TAC

Easier to analyze

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Static
analyzer

VC
Generator

TAC

Bytecode to Three-Address Code

Decompiler

EVM Bytecode

TAC

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

VC
Generator

TAC

Static Analysis on TAC

Static
analyzer

TAC

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Lower burden on subsequent steps in the pipeline

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

VC
Generator

TAC

Static Analysis on TAC

Static
analyzer

TAC

MyStruct memory x = { f: 1 };
MyStruct memory y = { f: 2 };
y.f = 3;
assert(x.f == 1);

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Lower burden on subsequent steps in the pipeline

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

VC
Generator

TAC

Static Analysis on TAC

Static
analyzer

TAC

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Lower burden on subsequent steps in the pipeline

MyStruct memory x = { f: 1 };
MyStruct memory y = { f: 2 };
y.f = 3;
assert(x.f == 1);

does not affect x

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

VC
Generator

TAC

Static Analysis on TAC

Static
analyzer

TAC

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Lower burden on subsequent steps in the pipeline

MyStruct memory x = { f: 1 };
MyStruct memory y = { f: 2 };
y.f = 3;
assert(x.f == 1);

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

VC
Generator

TAC

Static Analysis on TAC

Static
analyzer

TAC

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Lower burden on subsequent steps in the pipeline

MyStruct memory x = { f: 1 };
assert(x.f == 1);

Static Analysis on TAC Cont.
Analysis Type
Points-to analysis -->
….

Value range analysis -->
.…

Control-flow analysis -->

Example Application
reveals connections between TAC
variables

allows us to simplify SMT axioms
……….

split the original program into
several smaller programs

Static
analyzer

TAC

Decompiler

EVM Bytecode

Compiler

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

TAC

Logical
formula

VC
Generator

Generate Verification Conditions

Hoare Triples
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that after executing S Q holds
{WP (S, Q)} S {Q}

Then to prove the triple, “just” show that P ⇒WP(S, Q)

Thus, if P ⇒ WP (S, Q) then {P} S {Q}

Hoare Triples
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that after executing S Q holds
{WP (S, Q)} S {Q}

Then to prove the triple, “just” show that P ⇒WP(S, Q)

Thus, if P ⇒ WP (S, Q) then {P} S {Q}

Weakest Precondition
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP(S, Q): weakest predicate such that Q holds after executing S
{WP(S, Q)} S {Q}

Then to prove the triple, “just” show that P ⇒WP(S, Q)

Thus, if P ⇒ WP (S, Q) then {P} S {Q}

Weakest Precondition
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP(S, Q): weakest predicate such that Q holds after executing S
{WP(S, Q)} S {Q}

Then to prove the triple, just show that P ⇒WP(S, Q) is valid

Thus, if P ⇒ WP(S, Q) is valid then {P} S {Q}

Weakest Precondition Computation
Basic instructions:

• Assertions: WP(assert A, B) = A ∧ B
• Assumptions: WP(assume A, B) = A ⟹ B
• Assignments = assumptions!
• Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
• Choice statements: WP(S[]T, B) = WP(S, B) ∧ WP(T, B)

Weakest Precondition Computation
Basic instructions:

• Assertions: WP(assert A, B) = A ∧ B
• Assumptions: WP(assume A, B) = A ⟹ B
• Assignments = assumptions!
• Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
• Choice statements: WP(S[]T, B) = WP(S, B) ∧ WP(T, B)

Weakest Precondition Computation
Basic instructions:

• Assertions: WP(assert A, B) = A ∧ B
• Assumptions: WP(assume A, B) = A ⟹ B
• Assignments = assumptions!
• Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
• Choice statements: WP(S[]T, B) = WP(S, B) ∧ WP(T, B)

Weakest Precondition Computation
Basic instructions:

• Assertions: WP(assert A, B) = A ∧ B
• Assumptions: WP(assume A, B) = A ⟹ B
• Assignments = assumptions!
• Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
• Choice statements: WP(S[]T, B) = WP(S, B) ∧ WP(T, B)

Weakest Precondition Computation
Basic instructions:

• Assertions: WP(assert A, B) = A ∧ B
• Assumptions: WP(assume A, B) = A ⟹ B
• Assignments = assumptions!
• Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
• Choice statements: WP(S[]T, B) = WP(S, B) ∧ WP(T, B)

Weakest Precondition Computation
Basic instructions:

• Assertions: WP(assert A, B) = A ∧ B
• Assumptions: WP(assume A, B) = A ⟹ B
• Assignments = assumptions!
• Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
• Choice statements: WP(S[]T, B) = WP(S, B) ∧ WP(T, B)

Weakest Precondition Computation
Basic instructions:

• Assertions: WP(assert A, B) = A ∧ B
• Assumptions: WP(assume A, B) = A ⟹ B
• Assignments = assumptions!
• Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
• Choice statements: WP(S[]T, B) = WP(S, B) ∧ WP(T, B)

Loops
Unroll specific number of iterations +

1. Either assume loop termination condition, or
2. Assert loop termination condition

Verification Condition
If P ⇒ WP(S, Q) is valid formula then the program satisfies the specification

Verification Condition
If P ⇒ WP(S, Q) is valid formula then the program satisfies the specification

We check P ∧ ¬ WP(S, Q) for satisfiability (not validity!).

• If P ∧ ¬ WP(S, Q) is unsatisfiable then the program satisfies the spec.

• Else, if P ∧ ¬ WP(S, Q) is satisfiable, then the program might violate the spec.

Static
analyzer

TAC

Decompiler

EVM Bytecode

Compiler

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Generate Verification Conditions

TAC

Logical
formula

VC
Generator

P ∧ ¬ WP(S, Q)

Turning the program + spec to logic is done!

VC
Generator

TAC

Static
analyzer

TAC

Decompiler

EVM Bytecode

Compiler

Using Constraint Solvers

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

CounterexamplesContract violated spec!

Contract meets spec!

P ∧ ¬ WP(S, Q)

SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

NIA

SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

LIA

NIA

SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

LIA

NIA
LIA model

SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

LIA

NIA
LIA model

LIA Multiplication Axiomatization
a*b modelled with an unintepreted function a$b

LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0 à a$b > 0
• a > 0, b < 0 à a$b < 0
• a < 0, b > 0 à a$b < 0
• a < 0, b < 0 à a$b > 0
• a > 0, b > 0 à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2 à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b

LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0 à a$b > 0
• a > 0, b < 0 à a$b < 0
• a < 0, b > 0 à a$b < 0
• a < 0, b < 0 à a$b > 0
• a > 0, b > 0 à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2 à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b

LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0 à a$b > 0
• a > 0, b < 0 à a$b < 0
• a < 0, b > 0 à a$b < 0
• a < 0, b < 0 à a$b > 0
• a > 0, b > 0 à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2 à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b

LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0 à a$b > 0
• a > 0, b < 0 à a$b < 0
• a < 0, b > 0 à a$b < 0
• a < 0, b < 0 à a$b > 0
• a > 0, b > 0 à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2 à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b

LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0 à a$b > 0
• a > 0, b < 0 à a$b < 0
• a < 0, b > 0 à a$b < 0
• a < 0, b < 0 à a$b > 0
• a > 0, b > 0 à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2 à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b

LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0 à a$b > 0
• a > 0, b < 0 à a$b < 0
• a < 0, b > 0 à a$b < 0
• a < 0, b < 0 à a$b > 0
• a > 0, b > 0 à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2 à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b

Learned Literals
Given a formula F, an SMT solver says:

• F is SAT, or

• F is UNSAT, or

• timeout

Learned Literals
Given a formula F, an SMT solver says:

• F is SAT, or

• F is UNSAT, or

• timeout, but learned F => L for some L

Learned Literals
Given a formula F, an SMT solver says:

• F is SAT, or

• F is UNSAT, or

• timeout, but learned F => L for some L

Example
L ≡ (x = 5) ∧

(y <= 10 ∨ y > 20)∧
(y < 100) ∧
(z = x ∨ z > 10)

Learned Literals
Given a formula F, an SMT solver says:

• F is SAT, or

• F is UNSAT, or

• timeout, but learned F => L for some L

Example
L ≡ (x = 5) ∧

(y <= 10 ∨ y > 20)∧
(y < 100) ∧
(z = x ∨ z > 10)

Z3
Yices

CVC5
CVC5 learning

Learned Literals
Given a formula F, an SMT solver says:

• F is SAT, or

• F is UNSAT, or

• timeout, but learned F => L for some L

Example
L ≡ (x = 5) ∧

(y <= 10 ∨ y > 20)∧
(y < 100) ∧
(z = x ∨ z > 10)

Z3
Yices

CVC5
CVC5 learning Adjust

F Z3

Decompiler

EVM Bytecode

Compiler

Logical
formula

Constraint
Solver

Z3, CVC5,
Yices,

Vampire

Counterexamples

Static
analyzer

TAC

VC
Generator

TAC

The Certora Prover Pipeline

Putting It All Together

https://demo.certora.com

CERTORA
PROVER

Overflow!

https://demo.certora.com/

Certora Inc.
- Founded in 2019
- 60 software engineers including 13 PhDs
- Offices in Tel Aviv and Seattle
- Teams:

- Static analysis
- SMT
- Frontend
- Rulewriters
- Fuzzing and mutation testing
- Security Engineers (white hat hackers)

Certora Inc.
- Founded in 2019
- 60 software engineers including 13 PhDs
- Offices in Tel Aviv and Seattle
- Teams:

- Static analysis
- SMT
- Frontend
- Rulewriters
- Fuzzing and mutation testing
- Security Engineers (white hat hackers)

WE ARE HIRING
full time, part time, internship

(contact me, jaroslav@certora.com,
or see https://www.certora.com)

