

CERTORA

Move fast and break nothing

Formal Verification of Smart Contracts with The Certora Prover

Jaroslav Bendík April 2022

Blockchain and Smart Contracts

Blockchain

- A distributed database
- Chronologically ordered data
- Decentralized
- Cryptographic security measures
- Immutable
- Usual use: digital ledger

Blockchain and Smart Contracts

Blockchain

- A distributed database
- Chronologically ordered data
- Decentralized
- Cryptographic security measures
- Immutable
- Usual use: digital ledger

Smart Contract

- A set of functions running on Ethereum blockchain
- A user can invoke some of the functions
- Successful function invocations are irreversible
- Unsuccessful function invocations revert
- A maximum size of 24KB
- Cannot be deleted/changed once deployed

Formal Verification with Certora Prover


```
contract Bank {
    mapping (address => uint256) public funds;
```

```
function deposit (uint256 amount) public payable {
   funds[msg.sender] += amount;
}
```


contract Bank {
 mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
 funds[msg.sender] += amount;
}


```
contract Bank {
    mapping (address => uint256) public funds;
```

```
function deposit (uint256 amount) public payable {
    funds[msg.sender] += amount;
```


contract Bank {
 mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
 funds[msg.sender] += amount;


```
contract Bank {
    mapping (address => uint256) public funds;
```

```
function deposit (uint256 amount) public payable {
   funds[msg.sender] += amount;
}
```


How do we know that **deposit** increases **funds** by **amount**?

function deposit (uint256 amount) public payable {
 funds[msg.sender] += amount;

Writing the Specification

How do we know that **deposit** increases **funds** by **amount**?

function deposit (uint256 amount) public payable {
 funds[msg.sender] += amount;

Need to first write "deposit increases funds by amount" more formally so that we can automatically check it!

rule deposit_ok (uint256 amount) {
 env e;
 uint256 before_deposit = getFunds (e, e.msg.sender);
 deposit (e, amount);
 uint256 after_deposit = getFunds (e, e.msg.sender);
 assert (after_deposit == before_deposit + amount);

rule deposit_ok (uint256 amount) {
 env e;
 uint256 before_deposit = getFunds (e, e.msg.sender);
 deposit (e, amount);
 uint256 after_deposit = getFunds (e, e.msg.sender);
 assert (after_deposit == before_deposit + amount);

Not executable but looks like Solidity!

rule deposit_ok (uint256 amount) {

env e; uint256 before_deposit = getFunds (e, e.msg.sender); deposit (e, amount); uint256 after_deposit = getFunds (e, e.msg.sender); assert (after_deposit == before_deposit + amount);

rule deposit_ok (uint256 amount) {
 env e;
 uint256 before_deposit = getFunds (e, e.msg.sender);
 deposit (e, amount);
 uint256 after_deposit = getFunds (e, e.msg.sender);
 assert (after_deposit == before_deposit + amount);

rule deposit_ok (uint256 amount) {

enve;

uint256 before_deposit = getFunds (e, e.msg.sender); deposit (e, amount); uint256 after_deposit = getFunds (e, e.msg.sender); assert (after_deposit == before_deposit + amount);

rule deposit_ok (uint256 amount) {

env e;

uint256 before_deposit = getFunds (e, e.msg.sender); deposit (e, amount); uint256 after_deposit = getFunds (e, e.msg.sender); assert (after_deposit == before_deposit + amount);

rule deposit_ok (uint256 amount) {
 env e;
 uint256 before_deposit = getFunds (e, e.msg.sender);
 deposit (e, amount);
 uint256 after_deposit = getFunds (e, e.msg.sender);
 assert (after_deposit == before_deposit + amount);

Inline from contract

rule deposit_ok (uint256 amount) {
 env e;
 uint256 before_deposit = getFunds (e, e.msg.sender);
 deposit (e, amount);
 uint256 after_deposit = getFunds (e, e.msg.sender);
 assert (after_deposit == before_deposit + amount);

rule deposit_ok (uint256 amount) {
 env e;
 uint256 before_deposit = getFunds (e, e.msg.sender);
 deposit (e, amount);
 uint256 after_deposit = getFunds (e, e.msg.sender);
 assert (after_deposit == before_deposit + amount);

Must hold for ALL values of amount!

- Assumptions + assertions
- Invariants
- Ghost functions + Hooks (ghost solidity functions)
- Summary functions (replace solidity functions)
- CVL functions (to avoid repeated code in .spec files)
- Quantifiers

- Assumptions + assertions
- Invariants
- Ghost functions + Hooks (ghost solidity functions)
- Summary functions (replace solidity functions)
- CVL functions (to avoid repeated code in .spec files)
- Quantifiers

require forall address i. forall address j. funds(i) + funds(j) <= totalFunds();

- Assumptions + assertions
- Invariants
- Ghost functions + Hooks (ghost solidity functions)
- Summary functions (replace solidity functions)
- CVL functions (to avoid repeated code in .spec files)
- Quantifiers

require forall address i. forall address j. funds(i) + funds(j) <= totalFunds();

- Assumptions + assertions
- Invariants
- Ghost functions + Hooks (ghost solidity functions)
- Summary functions (replace solidity functions)
- CVL functions (to avoid repeated code in .spec files)
- Quantifiers

require forall address i. forall address j. funds(i) + funds(j) <= totalFunds();

Formal Verification with Certora Prover

Formal Verification with Certora Prover

Certora Prover Architecture

Certora Prover Works on Bytecode

Compile Solidity to get EVM Bytecode

Can support other EVM languages (Vyper)

Helps find compiler bugs!

Compiler Bugs Found by Certora Prover

Non-deterministic Solidity Transactions — Certora Bug Disclosure

The Solidity Compiler Silently Corrupts Storage — Certora Bug Disclosure

Memory Isolation Violation in Deserialization Code — Certora Bug Disclosure

Bug Disclosure — Solidity Code Generation Bug Can Cause Memory Corruption

Break down code into small simple steps

One operation per TAC instruction

Only a small number of instructions in TAC

Easier to analyze

Bytecode to Three-Address Code

Bytecode to Three-Address Code

Break down code into small simple steps

One operation per TAC instruction

Only a small number of instructions in TAC

Easier to analyze

Generator

contract Bank {
 mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
 funds[msg.sender] += amount;

function getFunds (address account) public view returns (uint256) {
 return funds[account];

Counterexamples

Block 0 0 0 0 0 0 0 0: lastHasThrown = false lastReverted = false R0 = tacExtcodesize[tacAddress] B1 = R0 > 0x0TRANSIENT::MetaKey(name=internal.func.finder.info, typ=class analysis.jp.InternalFunctionFinderReport)=InternalFunctionFinderReport(unresolvedFunctions=[]):: $tac\dot{M}0x4\dot{0} = 0x80$ R2 = tacCalldatasizeB4 = R2 < 0x4sume !B4 R15 = tacSighash B19 = 0xb6b55f25 == R15JUMPDEST 57 1024 0 0 0 0 0 0 R21 = tacCalldatasizeR22 = R21 - 0x4B25 = R22 < 0x20if B25:bool goto 75 1021 0 0 0 0 0 0 else goto 79 1021 0 0 0 0 0 0

Block 75_1021_0_0_0_0_0_0 lastHasThrown = false lastReverted = true TRANSIENT::MetaKey(name=tac.revert.path, typ=class java.lang.Boolean)=true:: revert and return M@0[0x0:0x0+0x0]

Block 79 1021 0 0 0 0 0: JUMPDEST 79 1021 0 0 0 0 0 R35 = tacCalldatabuf!4TRANSIENT::MetaKey(name=internal.func.start, typ=class analysis.ip.InternalFuncStartAnnotation)=InternalFuncStartAnnotation(id=2, startPc=208, exitPc=[86], args=[InternalFuncArg(s=R35:bv256, offset=1, sort=SCALAR)], unctionId=ParseableName(exp=deposit(uint256)), stackOffsetToArgPos={1=0}):: JUMPDEST 208_1022_0_0_0_0_0 TRANSIENT::MetaKey(name=tac.internal.function.hint, typ=class analysis.ip.InternalFunctionHint)=InternalFunctionHint(id=0, flag=0, sym=0xf196e50000):: TRANSIENT::MetaKey(name=tac.internal.function.hint, typ=class analysis.ip.InternalFunctionHint)=InternalFunctionHint(id=0, flag=1, sym=0x1):: TRANSIENT::MetaKey(name=tac.internal.function.hint, typ=class analysis.ip.InternalFunctionHint)=InternalFunctionHint(id=0, flag=4096, sym=R35:by256):: R53 = tacCaller tacM0x0 = R53tacM0x20 = 0x0R65 = keccak256simple(tacM0x0,tacM0x20) R68 = tacS!ce4604a00000000000000000000000001[R65] R76 = R35 + R68TRANSIENT::MetaKey(name=internal.func.end, typ=class analysis.ip.InternalFuncExitAnnotation)=InternalFuncExitAnnotation(id=2, rets=[]):: JUMPDEST 86 1024 0 0 0 0 0 0 TRANSIENT::MetaKey(name=tac.return.path, typ=class java.lang.Boolean)=true:: return M@0[0x0:0x0+0x0]

TAC

.

.

Decompiler

EVM Bytecode

<

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Lower burden on subsequent steps in the pipeline

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Lower burden on subsequent steps in the pipeline

MyStruct memory x = { f: 1 }; MyStruct memory y = { f: 2 }; y.f = 3; assert(x.f == 1);

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Lower burden on subsequent steps in the pipeline

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Lower burden on subsequent steps in the pipeline

Static Analysis on TAC

Even in TAC, instructions can have subtle dependencies

Gather facts at various program points (e.g., points-to relation)

Lower burden on subsequent steps in the pipeline

Static Analysis on TAC Cont.

Example Application

reveals connections between TAC variables

allows us to simplify SMT axioms

split the original program into several smaller programs

Hoare Triples

Hoare Triple: {P} S {Q}

Hoare Triples

Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

Weakest Precondition

Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP(S, Q): weakest predicate such that Q holds after executing S {WP(S, Q)} S {Q}

Weakest Precondition

Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP(S, Q): weakest predicate such that Q holds after executing S {WP(S, Q)} S {Q}

Then to prove the triple, just show that $P \Rightarrow WP(S, Q)$ is valid

Thus, if $P \Rightarrow WP(S, Q)$ is valid then {P} S {Q}

- Assertions: WP(assert A, B) = $A \wedge B$
- Assumptions: WP(assume A, B) = $A \implies B$
- Assignments = assumptions!
- Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
- Choice statements: $WP(S[]T, B) = WP(S, B) \land WP(T, B)$

- Assertions: WP(assert A, B) = A Λ B
- Assumptions: WP(assume A, B) = $A \implies B$
- Assignments = assumptions!
- Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
- Choice statements: $WP(S[]T, B) = WP(S, B) \land WP(T, B)$

- Assertions: WP(assert A, B) = $A \wedge B$
- Assumptions: WP(assume A, B) = A \implies B
- Assignments = assumptions!
- Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
- Choice statements: $WP(S[]T, B) = WP(S, B) \land WP(T, B)$

- Assertions: WP(assert A, B) = $A \wedge B$
- Assumptions: WP(assume A, B) = $A \implies B$
- Assignments = assumptions!
- Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
- Choice statements: $WP(S[]T, B) = WP(S, B) \land WP(T, B)$

- Assertions: WP(assert A, B) = $A \wedge B$
- Assumptions: WP(assume A, B) = $A \implies B$
- Assignments = assumptions!
- Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
- Choice statements: $WP(S[]T, B) = WP(S, B) \land WP(T, B)$

- Assertions: WP(assert A, B) = $A \wedge B$
- Assumptions: WP(assume A, B) = $A \implies B$
- Assignments = assumptions!
- Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
- Choice statements: WP(S[]T, B) = WP(S, B) \wedge WP(T, B)

Basic instructions:

- Assertions: WP(assert A, B) = $A \wedge B$
- Assumptions: WP(assume A, B) = $A \implies B$
- Assignments = assumptions!
- Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
- Choice statements: $WP(S[]T, B) = WP(S, B) \land WP(T, B)$

Loops

Unroll specific number of iterations +

- 1. Either assume loop termination condition, or
- 2. Assert loop termination condition

Verification Condition

If $P \Rightarrow WP(S, Q)$ is valid formula then the program satisfies the specification

Verification Condition

If $P \Rightarrow WP(S, Q)$ is valid formula then the program satisfies the specification

We check $P \land \neg WP(S, Q)$ for satisfiability (not validity!).

- If $P \land \neg WP(S, Q)$ is unsatisfiable then the program satisfies the spec.
- Else, if $P \land \neg WP(S, Q)$ is satisfiable, then the program might violate the spec.

SMT Machinery Encodings of $P \land \neg WP(S, Q)$

Encodings of $P \land \neg WP(S, Q)$

- Precise NIA
- LIA Overraproximation

Encodings of $P \land \neg WP(S, Q)$

- Precise NIA
- LIA Overraproximation

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

Encodings of $P \land \neg WP(S, Q)$

- Precise NIA
- LIA Overraproximation

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

NIA

Encodings of $P \land \neg WP(S, Q)$

- Precise NIA
- LIA Overraproximation

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

Encodings of $P \land \neg WP(S, Q)$

- Precise NIA
- LIA Overraproximation

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

Encodings of $P \land \neg WP(S, Q)$

- Precise NIA
- LIA Overraproximation

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

Encodings of $P \land \neg WP(S, Q)$

- Precise NIA
- LIA Overraproximation

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

- a•0 = 0
- $a \cdot b = b \cdot a$
- $a > 0, b > 0 \rightarrow a \cdot b > 0$
- $a > 0, b < 0 \rightarrow a \cdot b < 0$
- $a < 0, b > 0 \rightarrow a \cdot b < 0$
- $a < 0, b < 0 \rightarrow a \cdot b > 0$
- $a > 0, b > 0 \rightarrow a \cdot b >= a, a \cdot b >= b$
- $0 \le a1 \le a2, 0 \le b1 \le b2 \rightarrow a1 \cdot b1 \le a2 \cdot b2$

- $a \cdot 0 = 0$
- $a \cdot b = b \cdot a$
- $a > 0, b > 0 \rightarrow a \cdot b > 0$
- $a > 0, b < 0 \rightarrow a \cdot b < 0$
- $a < 0, b > 0 \rightarrow a \cdot b < 0$
- $a < 0, b < 0 \rightarrow a \cdot b > 0$
- $a > 0, b > 0 \rightarrow a \cdot b >= a, a \cdot b >= b$
- $0 \le a1 \le a2, 0 \le b1 \le b2 \rightarrow a1 \cdot b1 \le a2 \cdot b2$

- <u>a·0 = 0</u>
- $a \cdot b = b \cdot a$
- $a > 0, b > 0 \rightarrow a \cdot b > 0$
- $a > 0, b < 0 \rightarrow a \cdot b < 0$
- $a < 0, b > 0 \rightarrow a \cdot b < 0$
- $a < 0, b < 0 \rightarrow a \cdot b > 0$
- $a > 0, b > 0 \rightarrow a \cdot b >= a, a \cdot b >= b$
- $0 \le a1 \le a2, 0 \le b1 \le b2 \rightarrow a1 \cdot b1 \le a2 \cdot b2$

- a•0 = 0
- $a \cdot b = b \cdot a$
- $a > 0, b > 0 \rightarrow a \cdot b > 0$
- $a > 0, b < 0 \rightarrow a \cdot b < 0$
- $a < 0, b > 0 \rightarrow a \cdot b < 0$
- $a < 0, b < 0 \rightarrow a \cdot b > 0$
- $a > 0, b > 0 \rightarrow a \cdot b >= a, a \cdot b >= b$
- $0 \le a1 \le a2, 0 \le b1 \le b2 \rightarrow a1 \cdot b1 \le a2 \cdot b2$

- a•0 = 0
- $a \cdot b = b \cdot a$
- $a > 0, b > 0 \rightarrow a \cdot b > 0$
- $a > 0, b < 0 \rightarrow a \cdot b < 0$
- $a < 0, b > 0 \rightarrow a \cdot b < 0$
- $a < 0, b < 0 \rightarrow a \cdot b > 0$
- $a > 0, b > 0 \rightarrow a \cdot b >= a, a \cdot b >= b$
- $0 \le a1 \le a2, 0 \le b1 \le b2 \rightarrow a1.b1 \le a2.b2$

- a•0 = 0
- $a \cdot b = b \cdot a$
- $a > 0, b > 0 \rightarrow a \cdot b > 0$
- $a > 0, b < 0 \rightarrow a \cdot b < 0$
- $a < 0, b > 0 \rightarrow a \cdot b < 0$
- $a < 0, b < 0 \rightarrow a \cdot b > 0$
- $a > 0, b > 0 \rightarrow a \cdot b >= a, a \cdot b >= b$
- 0 <= a1 <= a2, 0 <= b1 <= b2 → a1·b1 <= a2·b2

Learned Literals

Given a formula F, an SMT solver says:

- F is SAT, or
- F is UNSAT, or
- timeout

Learned Literals

Given a formula F, an SMT solver says:

- F is SAT, or
- F is UNSAT, or
- timeout, but learned F => L for some L

Learned Literals

Given a formula F, an SMT solver says:

- F is SAT, or
- F is UNSAT, or
- timeout, but learned F => L for some L

```
Example

L \equiv (x = 5) \land
(y \le 10 \lor y > 20) \land
(y \le 100) \land
(z = x \lor z > 10)
```


Learned Literals

Given a formula F, an SMT solver says:

- F is SAT, or
- F is UNSAT, or
- timeout, but learned F => L for some L

```
Example

L \equiv (x = 5) \land
(y \le 10 \lor y > 20) \land
(y \le 100) \land
(z = x \lor z > 10)
```


Learned Literals

Given a formula F, an SMT solver says:

- F is SAT, or
- F is UNSAT, or
- timeout, but learned F => L for some L

```
Example

L \equiv (x = 5) \land

(y <= 10 \lor y > 20) \land

(y < 100) \land

(z = x \lor z > 10)
```


Putting It All Together

after_deposit=0

https://demo.certora.com

Certora Inc.

- Founded in 2019
- 60 software engineers including 13 PhDs
- Offices in Tel Aviv and Seattle
- Teams:
 - Static analysis
 - SMT
 - Frontend
 - Rulewriters
 - Fuzzing and mutation testing
 - Security Engineers (white hat hackers)

Certora Inc.

- Founded in 2019
- 60 software engineers including 13 PhDs
- Offices in Tel Aviv and Seattle
- Teams:
 - Static analysis
 - SMT
 - Frontend
 - Rulewriters
 - Fuzzing and mutation testing
 - Security Engineers (white hat hackers)

WE ARE HIRING full time, part time, internship

(contact me, jaroslav@certora.com, or see https://www.certora.com)