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• Cannot be deleted/changed once deployed
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Example Smart Contract
contract Bank {

mapping (address => uint256) public funds;
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return funds[account];
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Example Smart Contract
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

How do we know that deposit increases funds by amount?



Writing the Specification
contract Bank {

mapping (address => uint256) public funds;

function deposit (uint256 amount) public payable {
funds[msg.sender] += amount;

}

function getFunds (address account) public view returns (uint256) {
return funds[account];

}
}

How do we know that deposit increases funds by amount?

Need to first write “deposit increases funds by amount” 
more formally so that we can automatically check it!



Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit =  getFunds (e, e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e, e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
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Inline from contract



Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit =  getFunds (e, e.msg.sender);
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Specification in CVL

rule deposit_ok (uint256 amount) {
env e;
uint256 before_deposit =  getFunds (e, e.msg.sender);
deposit (e, amount);
uint256 after_deposit = getFunds (e, e.msg.sender);
assert (after_deposit == before_deposit + amount);

}
Must hold for ALL values of amount!
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Certora Prover Works on Bytecode

Compile Solidity to get EVM Bytecode
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Helps find compiler bugs!
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Static Analysis on TAC Cont.
Analysis Type
Points-to analysis                           --> 
….

Value range analysis                      --> 
.…

Control-flow analysis                     -->

Example Application
reveals connections between TAC 
variables

allows us to simplify SMT axioms 
……….

split the original program into 
several smaller programs
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Hoare Triples
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP (S, Q): weakest predicate such that after executing S Q holds
{WP (S, Q)} S {Q}

Then to prove the triple, “just” show that P ⇒WP(S, Q)

Thus, if  P ⇒ WP (S, Q) then {P} S {Q}
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Weakest Precondition
Hoare Triple: {P} S {Q}

If P holds before executing S, then Q holds after executing S

WP(S, Q): weakest predicate such that Q holds after executing S 
{WP(S, Q)} S {Q}

Then to prove the triple, just show that P ⇒WP(S, Q) is valid

Thus, if  P ⇒ WP(S, Q) is valid then {P} S {Q}



Weakest Precondition Computation
Basic instructions: 

• Assertions: WP(assert A, B) = A ∧ B
• Assumptions: WP(assume A, B) = A ⟹ B
• Assignments = assumptions! 
• Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
• Choice statements: WP(S[]T, B) = WP(S, B) ∧ WP(T, B)
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Weakest Precondition Computation
Basic instructions: 

• Assertions: WP(assert A, B) = A ∧ B
• Assumptions: WP(assume A, B) = A ⟹ B
• Assignments = assumptions! 
• Sequential composition: WP(S;T, B) = WP(S, WP(T, B))
• Choice statements: WP(S[]T, B) = WP(S, B) ∧ WP(T, B)

Loops
Unroll specific number of iterations + 

1. Either assume loop termination condition, or
2. Assert loop termination condition
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Verification Condition
If P ⇒ WP(S, Q) is valid formula then the program satisfies the specification

We check P ∧ ¬ WP(S, Q) for satisfiability (not validity!).  

• If P ∧ ¬ WP(S, Q) is unsatisfiable then the program satisfies the spec.

• Else, if P ∧ ¬ WP(S, Q) is satisfiable, then the program might violate the spec.



Static 
analyzer

TAC

Decompiler

EVM Bytecode

Compiler

Constraint
Solver

Z3, CVC5, 
Yices, 

Vampire

Counterexamples

Generate Verification Conditions

TAC

Logical 
formula

VC
Generator

P ∧ ¬ WP(S, Q)

Turning the program + spec to logic is done!



VC
Generator

TAC

Static 
analyzer

TAC

Decompiler

EVM Bytecode

Compiler

Using Constraint Solvers 

Logical 
formula

Constraint
Solver

Z3, CVC5, 
Yices, 

Vampire

CounterexamplesContract violated spec!

Contract meets spec!

P ∧ ¬ WP(S, Q)



SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)



SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation



SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel



SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel



SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

NIA



SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

LIA

NIA



SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

LIA

NIA
LIA model



SMT Machinery
Encodings of P ∧ ¬ WP(S, Q)

- Precise NIA
- LIA Overraproximation

SMT solvers

- z3, cvc4, cvc5, vampire, yices
- 1-4 configs per solver
- Choosen configurations run in parallel

LIA

NIA
LIA model



LIA Multiplication Axiomatization
a*b modelled with an unintepreted function a$b



LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0  à a$b > 0
• a > 0, b < 0  à a$b < 0
• a < 0, b > 0  à a$b < 0
• a < 0, b < 0  à a$b > 0
• a > 0, b > 0  à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2  à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b



LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0  à a$b > 0
• a > 0, b < 0  à a$b < 0
• a < 0, b > 0  à a$b < 0
• a < 0, b < 0  à a$b > 0
• a > 0, b > 0  à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2  à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b



LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0  à a$b > 0
• a > 0, b < 0  à a$b < 0
• a < 0, b > 0  à a$b < 0
• a < 0, b < 0  à a$b > 0
• a > 0, b > 0  à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2  à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b



LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0  à a$b > 0
• a > 0, b < 0  à a$b < 0
• a < 0, b > 0  à a$b < 0
• a < 0, b < 0  à a$b > 0
• a > 0, b > 0  à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2  à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b



LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0  à a$b > 0
• a > 0, b < 0  à a$b < 0
• a < 0, b > 0  à a$b < 0
• a < 0, b < 0  à a$b > 0
• a > 0, b > 0  à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2  à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b



LIA Multiplication Axiomatization

• a$0 = 0
• a$b = b$a
• a > 0, b > 0  à a$b > 0
• a > 0, b < 0  à a$b < 0
• a < 0, b > 0  à a$b < 0
• a < 0, b < 0  à a$b > 0
• a > 0, b > 0  à a$b >= a, a$b >= b
• 0 <= a1 <= a2, 0 <= b1 <= b2  à a1$b1 <= a2$b2

a*b modelled with an unintepreted function a$b



Learned Literals
Given a formula F, an SMT solver says:

• F is SAT, or

• F is UNSAT, or

• timeout



Learned Literals
Given a formula F, an SMT solver says:

• F is SAT, or

• F is UNSAT, or 

• timeout, but learned F => L for some L



Learned Literals
Given a formula F, an SMT solver says:

• F is SAT, or

• F is UNSAT, or

• timeout, but learned F => L for some L

Example
L ≡ (x = 5) ∧

(y <= 10 ∨ y > 20 )∧
(y < 100) ∧
(z = x ∨ z > 10)



Learned Literals
Given a formula F, an SMT solver says:

• F is SAT, or

• F is UNSAT, or

• timeout, but learned F => L for some L

Example
L ≡ (x = 5) ∧

(y <= 10 ∨ y > 20 )∧
(y < 100) ∧
(z = x ∨ z > 10)

Z3
Yices

CVC5
CVC5 learning



Learned Literals
Given a formula F, an SMT solver says:

• F is SAT, or
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WE ARE HIRING
full time, part time, internship

(contact me, jaroslav@certora.com, 
or see https://www.certora.com)


