
PA152: Efficient Use of DB

3. Representing

Data Elements

Vlastislav Dohnal

PA152, Vlastislav Dohnal, FI MUNI, 2022 2

Outline

 Data elements and fields

 Records

 Block organization

 Properties and examples

PA152, Vlastislav Dohnal, FI MUNI, 2022 3

Representing Data

 What to store?

name

salary

date

picture

 How to store?

values  byte sequence

Data Elements

Records

Blocks

Files

Data Storage

PA152, Vlastislav Dohnal, FI MUNI, 2022 4

Data Element Types

 Integers
 By range: 2, 4, 8 bytes

 E.g. 35 in 16 bits

 Typically sign bit or ones complement

 Real numbers
 Floating-point numbers

 n bits split to mantissa and exponent (IEEE 754)

 Fixed decimal point (number(p,s))

 Encoding a group of 9 digits (in base 10) into 4 bytes

 Store as a string in base 10

00000000 00100011

PA152, Vlastislav Dohnal, FI MUNI, 2022 5

 Boolean

Usually as an integer

True

False

No reason to use less than 1 byte

 Bit array

Length + bits

 Typically rounded up to next multiple of 4/8 bytes

Data Element Types

1111 1111

0000 0000

PA152, Vlastislav Dohnal, FI MUNI, 2022 6

Data Element Types
 Date

 number of days since “epoch” (e.g., Jan 1, 1970)
 or as a packed 3-byte integer DD + MM*32 + YYYY*16*32

 string YYYYMMDD (8 bytes)
 YYYYDDD (7 bytes)

 Why not YYMMDD?

 Time
 number of seconds since midnight

 number of milliseconds or microseconds

 or as a packed 3-byte integer
DD*24*3600 + HH*3600 + MM*60 + SS

 fractions of second
 As string HHMMSSFF or as above with fractional part separately

(up to 3 bytes for 6 digits)

 time zones – time converted and stored in UTC
 so converted from given/local time zone to UTC

PA152, Vlastislav Dohnal, FI MUNI, 2022 7

Data Element Types

 Datetime

Combining date and time

 Year*13+month; day, hour, min, sec + fraction

 5 bytes + fractional part

 Timestamp

Seconds since epoch

 midnight Jan 1, 1970 UTC; Jan 1, 2000 in Pg.

 Enumerated type

Assign integers (ordinal numbers)

red  0, green  1, blue  2, yellow  3, ...

total number of bytes

PA152, Vlastislav Dohnal, FI MUNI, 2022 8

Data Element Types

 Characters & character sets

 In ASCII encoding – 1 byte

Multi-byte characters

 UCS-2 (UTF-16) – UTF-8 encoding in 16 bits

 Characters with ordinal numbers from 0 to 65535

 UTF-8 – variable-length encoding

 Character may occupy 1-4 bytes

 Originally up to 6

 Now it is limited to the same range as UTF-16.

 Representation:

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

PA152, Vlastislav Dohnal, FI MUNI, 2022 9

Data Element Types

 Strings

Fixed length

 Size limited, so

 shorter strings filled with space

 longer strings cut off

Variable length

 Length plus content

 Null-terminated

 must be read completely

 cannot use zero character (ord == 0) in the string

Character set issues (encoding)

PA152, Vlastislav Dohnal, FI MUNI, 2022 10

Storing Data Elements: Summary

 Each element has a “type”

bit interpretation

size

special “unknown” value (NULL)

 Usually, fixed length

predefined bit representation

 Variable length

 length plus content/value

PA152, Vlastislav Dohnal, FI MUNI, 2022 11

Outline

 Data elements and fields

 Records

 Block organization

 Properties and examples

PA152, Vlastislav Dohnal, FI MUNI, 2022 12

Record

 List of related data elements

 i.e., their values

Fields, Attributes

 E.g.

Employee

 name – Novák

 salary – 1234

 start_date – Jan 1, 2000

PA152, Vlastislav Dohnal, FI MUNI, 2022 13

Record Schema

 Describes record structure

 Information contained

Number of attributes

Order of attributes

Data type and name of each attribute

PA152, Vlastislav Dohnal, FI MUNI, 2022 14

Record Types by Schema

 Fixed schema

Same schema for all records

 Stored out of record (in data dictionary)

 Variable schema

Record itself contains schema

Useful for:

 “sparse“ records (many NULLs)

 repeating attributes

 evolving formats

 schema changes during DB lifetime

PA152, Vlastislav Dohnal, FI MUNI, 2022 15

Record Types by Length

 Fixed length

Each record of same size (in bytes)

 Variable length

Saving space

More complex implementation

Can store large data (images, …)

PA152, Vlastislav Dohnal, FI MUNI, 2022 16

Example: Fixed Length and Schema

 Employee

1) id – 2 byte integer

2) name – 10 chars

3) department – 2 bytes

code55 n o v á k 02

83 d l o u h ý 01

schema

records

 Padding to “convenient“ size

 Faster memory access when address is

round to 4 (8) bytes

55 n o v á k 02 - -

PA152, Vlastislav Dohnal, FI MUNI, 2022 17

Example: Variable Length and Schema

 Employee:

Called „Tagged fields“

Codes identify attribute names stored elsewhere;
could be strings directly, i.e., tags.

4I52 4S HCEČ46
#

 F
ie

ld
s

C
o
d
e
 i
d
e
n
ti
fy

in
g

fi
e
ld

 a
s

id
In

te
g
e
r

ty
p
e

C
o
d
e
 f
o
r

E
n
a
m

e
S
tr

in
g
 t

y
p
e

L
e
n
g
th

 o
f
st

r.

PA152, Vlastislav Dohnal, FI MUNI, 2022 18

Example: Repeating Attribute

 Employee’s children

Useful in case of arrays, etc.

 Repeating attribute may not mean variable

length either schema

Can set maximum number of values

 Unused space filled with NULLs

3 Name: Jan Novák Child: Tomáš Child: Pavel

Novák Potápění Šachy --

PA152, Vlastislav Dohnal, FI MUNI, 2022 19

„Intermediate“ Schema

 Compromise between fixed and variable

schema

 Record schema “version” in record header

5 27

record type
tells me what
to expect
(i.e., points to schema)

record length

PA152, Vlastislav Dohnal, FI MUNI, 2022 20

Record Header

 = information about the record (fixed

length; no relation to attribute values)

Record schema “version” (pointer)

Record Length

Creation / update / access timestamp

OID (Object Identifier) – “record ID”, “tuple ID”

Bit array of NULL value flags

 One bit for each attribute

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 21

Other Issues
 Compression

 Increase speed of accessing/updating (fewer
bytes)

Within record (values independently)

Collection of records
 More effective (can build a dictionary, find common

patters)

 More complex to implement

 In Pg, LZ4 and PGLZ

Lempel, Ziv based lossless algorithm
 high compression performance (>0.5GMB/s per core)

 Extreme decompression perf. (>6 GB/s per core)

PA152, Vlastislav Dohnal, FI MUNI, 2022 22

Other Issues
 Encryption

Consequence to indexing…

How to do range queries?

…

Solution:
 Encrypt buffer data during file system I/O

 WAL records stored in WAL buffers that get
encrypted when writing to the file system

PA152, Vlastislav Dohnal, FI MUNI, 2022 23

Storing Objects

 Current commercial DBMS support objects

Extension of relational DBMS

OODBMS

 Objects have attributes

Primitive types  store as a record

Collections  create a new relation

 Referencing using OIDs

PA152, Vlastislav Dohnal, FI MUNI, 2022 24

Storing Relations

 Row-oriented

Tackled up to now…

 Column-oriented

Values of the same attribute stored together

 Example of row-oriented storage:

Order(id, cust, prod, store, price, date, qty)

id1 cust1 prod1 store1 price1 date1 qty1

id2 cust2 prod2 store2 price2 date2 qty2

id3 cust3 prod3 store3 price3 date3 qty3

PA152, Vlastislav Dohnal, FI MUNI, 2022 25

Column-oriented Storage

 Relation

Order(id, cust, prod, store, price, date, qty)

id1 cust1

id2 cust2

id3 cust3

id4 cust4

... ...

id1 prod1

id2 prod2

id3 prod3

id4 prod4

... ...

Id may or may not be stored.
Could exploit record ordering

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 26

Comparison

 Advantage of column-oriented storage

More compact (no padding to 4/8 bytes,

compression, …)

Efficient access (e.g., data mining)

 Process few attributes but all their values

 Advantage of row-oriented storage

Record update / insertion more efficient

Whole record access more efficient

Mike Stonebraker, Elizabeth O'Neil, Pat O’Neil, Xuedong Chen, et al.:

C-Store: A Column-oriented DBMS, VLDB Conference, 2005.

http://www.cs.umb.edu/~poneil/vldb05_cstore.pdf

PA152, Vlastislav Dohnal, FI MUNI, 2022 27

Outline

 Data elements and fields

 Records

 Block organization

 Properties and examples

PA152, Vlastislav Dohnal, FI MUNI, 2022 28

Block Organization

 Records

Fixed length

Variable length

 Block of fixed length

records

file

blocks …

PA152, Vlastislav Dohnal, FI MUNI, 2022 29

Block Organization
 Issues for storing records in blocks:

1. Separating records

2. Spanned vs. unspanned records

3. Sequencing

4. Interlacing more relations

5. Indirection

PA152, Vlastislav Dohnal, FI MUNI, 2022 30

Separating Records

 Fixed-length records

No delimiter

Store record count and point to 1st record

 Variable-length records

Delimiter / special marker

Store record lengths (or offsets)

 Within each record

 In block header

R2R1 R3blok

 Variable-length records

 Organization: block header, records

 Header
 Pointers to other blocks (overflow, index, …)

 Block type (relation, overflow, index, …)

 Relation ID

 (Directory of record offsets)

 Timestamps (creation, modification, access)

Separating Records

PA152, Vlastislav Dohnal, FI MUNI, 2022 31

unused space

header record 1 record 2 … record n block

PA152, Vlastislav Dohnal, FI MUNI, 2022 32

Spanned vs. unspanned

 Unspanned

each record in a block

simple, but not space efficient

 Spanned

record split across blocks

required when a record exceeds block size!

R1 R2 R3 R4 R5

block 1 block 2

…

R1 R2 R3(a) R3(b) R6R5R4 R7(a)

block 1 block 2

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 33

Unspanned: Example

 Records cannot cross block boundary

106 records, each 2 050 bytes (fixed length)

Block size 4 096 bytes

Space allocated: 106 * 4096 B

Space utilized: 106 * 2050 B

Utilization ratio: 50.05%

block 1 block 2

2050 bytes unused 2046 2050 bytes unused 2046

R1 R2

PA152, Vlastislav Dohnal, FI MUNI, 2022 34

Unspanned

 Options for oversized attribute values

The Oversized-Attribute Storage Technique

 TOAST or "the best thing since sliced bread”**

 Principle

 A TOAST table is created (chunk_id, chunk_seq, value)

 Value is split into “chunks”

 Chunks form records in TOAST table

 Chunk identified by (chunk_id, chunk_seq)

 Original space is used to store length of the value, toast

table id and chunk id.

Compression

Split into multiple records within the table

(internally)

** [cit. dokumentace PostgreSQL]

PA152, Vlastislav Dohnal, FI MUNI, 2022 35

Unspanned

 Large Objects (.LOBs)

Two types: binary / text

Stored off the table

 in consecutive blocks (in a separate file)

Typically, not indexed by DBMS

 i.e., cannot search in the value

PA152, Vlastislav Dohnal, FI MUNI, 2022 36

Spanned

 Record split across blocks

Blocks must be ordered or

Use pointers

 Record split into “fragments”

Bit flag “fragmented” in header

Pointers to next / previous fragments

R1 R2 R3(a) R3(b) R6R5R4 R7(a)

block 1 block 2

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 37

Sequencing

 Ordering records in file (and blocks)

by some key value

=> sequential file

 Reason:

Efficient record access in the key ordering

E.g., good for merge-join, order by, …

 Solution in DBMS

Clustered index

PA152, Vlastislav Dohnal, FI MUNI, 2022 38

Sequencing – sequential file

 Stored consecutively

physically contiguous

 Linked

preserve order!

R2R1 R3 …

R3R1 R2

 Overflow area

Records in sequence

 reorganization needed after record modifications

Pointer to an overflow area / block

PA152, Vlastislav Dohnal, FI MUNI, 2022 39

Sequencing – sequential file

block

R1.0

R2.0

R3.0

R4.0

R5.0

header

R2.1

R1.3

R4.7

header

PA152, Vlastislav Dohnal, FI MUNI, 2022 40

Relation Interlacing

 Records of multiple tables in one block

Records of more relations accessed

simultaneously

Store together  Access faster

More complex implementation

PA152, Vlastislav Dohnal, FI MUNI, 2022 41

Relation Interlacing: Example

 Relations: employee (eid, name, address)

deposit (eid, did, amount)

 Good for query Q1:
 SELECT name, address, amount

FROM deposit, employee

WHERE deposit.eid = employee.eid AND employee.eid = 2354

(2354, ‘Joe Little’, ‘Brno’)

(2354, 999001, 100)

(2354, 999010, 1500)

block
…

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 42

Relation Interlacing: Example

 Query Q2:

SELECT * FROM employee

 Interlacing not convenient for Q2

Depends on frequency of individual queries

 Solution:

Do not mix within one block

Store block in near proximity (same disk cylinder)

PA152, Vlastislav Dohnal, FI MUNI, 2022 43

Relation Interlacing

(2354, ‘Joe Little’, ‘Brno’)
block1

…

(2356, ‘Peter Newman’, ‘Brno’)

block2 (2354, 999001, 100)

(2354, 999010, 1500)
…

(2356, 924013, 5500)

PA152, Vlastislav Dohnal, FI MUNI, 2022 44

Indirection (Pointers to Records)

 Applications:

Spanned records

Referencing blocks / record (e.g., in indices)

Linked blocks (e.g., in indices)

OODBMS: objects referencing other objects

H

D M

A F

Adam

Matěj

Denisa

Hynek

Felix

index file

PA152, Vlastislav Dohnal, FI MUNI, 2022 45

Indirection

 Record address

Memory address

 direct addressing

 4/8-byte pointer in virtual memory of process

DB address

 sequence of bytes describing record location in

external memory

 direct vs. indirect addressing

PA152, Vlastislav Dohnal, FI MUNI, 2022 46

Indirection in DB

 Direct addressing

Physical record address

 Purely physical address in storage

 Device ID, track, platter, block, offset in block

Not flexible

 E.g., block or records reallocation

PA152, Vlastislav Dohnal, FI MUNI, 2022 47

Indirection in DB

 Indirect addressing

Record / block identified by its ID

 ID = logical address

 any sequence of bits

Map table: ID  physical address

phys. addr.ID
rec ID

r
address

a

map table
…

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 48

Indirection in DB

 Indirect addressing

Disadvantage

 Increased costs

 Accessing map table

 Storing map table

Advantage

 Very flexible

 Deletion/insertion of records

 Optimization of block storage

PA152, Vlastislav Dohnal, FI MUNI, 2022 49

Indirection in DB
 Combination = suitable option

Phys. record address =
phys. block address + offset

 Offset is the order of record within block

 List of records in block header

Advantages
 Can move records within block

 No changes to phys. address

 Map table is not necessary

Disadvantage
 Minor: Moving a record to another block

 Replace it with a pointer to new location (block + offset)

 Major: Not flexible in moving blocks (defragmentation)

PA152, Vlastislav Dohnal, FI MUNI, 2022 50

Indirection in DB

 Widely used option

Record address =

File ID + block number + offset

Blocks are organized by a file system

 blocks are numbered from zero within each file

File ID, Physical

Block # Block ID

File System
Map

PA152, Vlastislav Dohnal, FI MUNI, 2022 51

Indirection in DB

 Indirection in block (Slotted Page Structure)

Phys. record addr. = file id + blck no. + offset

R3

R4

R1 R2

block

unused space

header

PA152, Vlastislav Dohnal, FI MUNI, 2022 52

Block Header

 Present in each block

File ID (or RELATION ID or DB ID)

Block type

 e.g., record of type, overflow area, TOAST table, …

Block ID (this one)

Record directory (points to record data)

Pointer to free space (beginning, end)

Pointer to other blocks (e.g., in indices)

Modification timestamp/version number

PA152, Vlastislav Dohnal, FI MUNI, 2022 53

Record Modifications

 Insertion

Typically “no problem”

 Deletion

Unused space management

 Update

Same size

 Ok

Enlarging/shrinking

 Same issues as for insertion/deletion

PA152, Vlastislav Dohnal, FI MUNI, 2022 54

Deletion

 Pointer to deleted records

Must be invalidated

Cannot point to new data

Dangling pointers

R1 ?

Deleted record

PA152, Vlastislav Dohnal, FI MUNI, 2022 55

Deletion

 Direct record addressing (phys. addr.)

1. Mark as deleted

 With a marker (tombstone)

 One bit

 Reality: several bytes due to memory padding

2. Advertise the free space

 Linked list of unused areas

block

cannot be reused unused space

PA152, Vlastislav Dohnal, FI MUNI, 2022 56

Deletion

 Indirect addressing

Map table

Deleted record is freed in the block

Tombstone in map table

 or mapping is deleted, but no ID reuse!

ID LOC

…

7788

…

Map Table

Cannot be reused

PA152, Vlastislav Dohnal, FI MUNI, 2022 57

Deletion

 Rec. addr. = block addr. + rec. offset

Free space occupied by the record

Defragment space

 to make it contiguous

Set pointer to null in record directory

block

unused space

R3

R4

R1 R2

PA152, Vlastislav Dohnal, FI MUNI, 2022 58

Deletion

 Store rec. ID in the record

Check ID during record access

No overhead than extending the record with

RecID

 If RecID is the pointer itself, some other

identification, e.g., xmin is necessary to

differentiate the records.

PA152, Vlastislav Dohnal, FI MUNI, 2022 59

Insertion

 Unordered file

Append to end of file

 Last block, or allocate new

 Insert into unused space of existing block

 Need to handle variable length of records

PA152, Vlastislav Dohnal, FI MUNI, 2022 60

Insertion

 Ordered file (sequential)

Unfeasible without indirect addressing nor

record offsets

Find free space in “neighboring” block 

reorganize

 Move last record in the block to the next block

 Put a marker in the original place to point to the new

location

Use overflow block

 Pointer to an overflow block is in the block header

PA152, Vlastislav Dohnal, FI MUNI, 2022 61

Update

 Record enlarged

Within a block

 No need for tombstones

 Move following records

Create an overflow block

…

 Record shrunk

by analogy…

May free overflow blocks

Memory Buffers and Pointers
 DB pointer in memory are inefficient

 Pointer swizzling

Change of DB pointer to memory pointer and

back

PA152, Vlastislav Dohnal, FI MUNI, 2022 62

Rec A
relation
block 2

index
block 1

Memory (buffers/cache) Disk

Itm J

Memory Buffers and Pointers
 After loading block 1 in memory

no update is necessary

PA152, Vlastislav Dohnal, FI MUNI, 2022 63

Rec A

Itm J
index
block 1

relation
block 2

index
block 1

Memory (buffers/cache) Disk

Itm J

Pointer Swizzling
 After reading block 2, pointer updated

PA152, Vlastislav Dohnal, FI MUNI, 2022 64

Rec A

Itm J
index
block 1

relation
block 2

index
block 1

Memory (buffers/cache) Disk

Itm J

relation
block 2 Rec A

PA152, Vlastislav Dohnal, FI MUNI, 2022 65

Pointer Swizzling

 When:

Automatically – immediately after reading

On request – on first use/access

Never – use map table instead

 Implementation:

DB address updated to memory address

 Build a Translation table

 store a pair (disk addr., memory addr.) for each record

Flag (swizzled/unswizzled) in the pointer

PA152, Vlastislav Dohnal, FI MUNI, 2022 66

Buffer Management

 DB features needed

Keep some blocks in memory/cache

 Indices, join of relations, …

 Different strategies

LRU, FIFO, pinned blocks, toss-immediate, …

Buffer Management Strategies
 LRU

Update timestamp on access to block

 significant maintenance, but effective

 FIFO

Store time of loading, no update on access

 improper for highly accessed blocks

 e.g., root of B+ tree

 Pinned blocks

Blocks allocated in buffers forever

PA152, Vlastislav Dohnal, FI MUNI, 2022 67

 “Clock” algorithm

Efficient approximation of LRU

Hand points to last read record

Rotates to find a block to be

written back to disk and

replaced (flag is 0).

On loading / accessing a block, set the flag to 1

Reset the flag on passing over the blocks

 Can implement pinned blocks. How?

Buffer Management Strategies

PA152, Vlastislav Dohnal, FI MUNI, 2022 68

1

1

0

0

1

1

1

00

0

1

0

Buffer Management: Example
 Join relations with LRU:

Blocked Nested loops:

LRU ineffective: blocks to process removed

 Need to pin blocks of relation r/s

PA152, Vlastislav Dohnal, FI MUNI, 2022 69

For each bs in s do

For each br in r do

For each ts in bs do

For each tr in br do

Join tuples tr and ts

r s

s1

s2

r1

r2

r3

buffers

Reading 1st block of s and process r Read 2nd block of s …

4

buffers

s1

r3

s2

4

5

1

buffers

s1

r1

r2

2

3

3

buffers

s1

r3

r2

4

3

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 70

Outline

 Data elements and fields

 Records

 Block organization

 Properties and examples

PA152, Vlastislav Dohnal, FI MUNI, 2022 71

Own Implementation

 Access type (operations) and their efficiency:

Locating a record with given key
 Getting consecutive records

 Insert / update / delete of records

Table scan

File reorganization

Flexibility Space requirements

Complexity Efficiency

PA152, Vlastislav Dohnal, FI MUNI, 2022 72

Specialized Systems

 BigTable

Distributed storage for tuples, by Google

Scalable up to petabytes (1PB=1000TB)
F. Chang, J. Dean, S. Ghemawat, et al.:

Bigtable: A Distributed Storage System for Structured Data,

Seventh Symposium on Operating System Design and

Implementation (OSDI), 2006.
http://labs.google.com/papers/bigtable-osdi06.pdf

 HBase

Distributed storage for tuples

Open-source Apache projekt Hadoop
http://hadoop.apache.org/

http://labs.google.com/papers/bigtable-osdi06.pdf
http://hadoop.apache.org/

Properties of BigTable and HBase
 Not traditional relational database systems

NoSQL databases

 Storage as a “keyvalue” map

row_id, column_id, time  value

 Variable relation schema

 Records are versioned

see time component in the key

 Ordered by row_id

PA152, Vlastislav Dohnal, FI MUNI, 2022 73

Lecture’s Takeaways
 Differences in storing values

Handling NULL values in attributes

 Organization of records in blocks

 Pointers in DBMS

Why and how

 To recall / revise

Sequential file

 Record manipulation operations

 Index files (sparse / dense indexes)

PA152, Vlastislav Dohnal, FI MUNI, 2022 74

