
PA152: Efficient Use of DB

3. Representing

Data Elements

Vlastislav Dohnal

PA152, Vlastislav Dohnal, FI MUNI, 2022 2

Outline

 Data elements and fields

 Records

 Block organization

 Properties and examples

PA152, Vlastislav Dohnal, FI MUNI, 2022 3

Representing Data

 What to store?

name

salary

date

picture

 How to store?

values byte sequence

Data Elements

Records

Blocks

Files

Data Storage

PA152, Vlastislav Dohnal, FI MUNI, 2022 4

Data Element Types

 Integers
 By range: 2, 4, 8 bytes

 E.g. 35 in 16 bits

 Typically sign bit or ones complement

 Real numbers
 Floating-point numbers

 n bits split to mantissa and exponent (IEEE 754)

 Fixed decimal point (number(p,s))

 Encoding a group of 9 digits (in base 10) into 4 bytes

 Store as a string in base 10

00000000 00100011

PA152, Vlastislav Dohnal, FI MUNI, 2022 5

 Boolean

Usually as an integer

True

False

No reason to use less than 1 byte

 Bit array

Length + bits

 Typically rounded up to next multiple of 4/8 bytes

Data Element Types

1111 1111

0000 0000

PA152, Vlastislav Dohnal, FI MUNI, 2022 6

Data Element Types
 Date

 number of days since “epoch” (e.g., Jan 1, 1970)
 or as a packed 3-byte integer DD + MM*32 + YYYY*16*32

 string YYYYMMDD (8 bytes)
 YYYYDDD (7 bytes)

 Why not YYMMDD?

 Time
 number of seconds since midnight

 number of milliseconds or microseconds

 or as a packed 3-byte integer
DD*24*3600 + HH*3600 + MM*60 + SS

 fractions of second
 As string HHMMSSFF or as above with fractional part separately

(up to 3 bytes for 6 digits)

 time zones – time converted and stored in UTC
 so converted from given/local time zone to UTC

PA152, Vlastislav Dohnal, FI MUNI, 2022 7

Data Element Types

 Datetime

Combining date and time

 Year*13+month; day, hour, min, sec + fraction

 5 bytes + fractional part

 Timestamp

Seconds since epoch

 midnight Jan 1, 1970 UTC; Jan 1, 2000 in Pg.

 Enumerated type

Assign integers (ordinal numbers)

red 0, green 1, blue 2, yellow 3, ...

total number of bytes

PA152, Vlastislav Dohnal, FI MUNI, 2022 8

Data Element Types

 Characters & character sets

 In ASCII encoding – 1 byte

Multi-byte characters

 UCS-2 (UTF-16) – UTF-8 encoding in 16 bits

 Characters with ordinal numbers from 0 to 65535

 UTF-8 – variable-length encoding

 Character may occupy 1-4 bytes

 Originally up to 6

 Now it is limited to the same range as UTF-16.

 Representation:

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

PA152, Vlastislav Dohnal, FI MUNI, 2022 9

Data Element Types

 Strings

Fixed length

 Size limited, so

 shorter strings filled with space

 longer strings cut off

Variable length

 Length plus content

 Null-terminated

 must be read completely

 cannot use zero character (ord == 0) in the string

Character set issues (encoding)

PA152, Vlastislav Dohnal, FI MUNI, 2022 10

Storing Data Elements: Summary

 Each element has a “type”

bit interpretation

size

special “unknown” value (NULL)

 Usually, fixed length

predefined bit representation

 Variable length

 length plus content/value

PA152, Vlastislav Dohnal, FI MUNI, 2022 11

Outline

 Data elements and fields

 Records

 Block organization

 Properties and examples

PA152, Vlastislav Dohnal, FI MUNI, 2022 12

Record

 List of related data elements

 i.e., their values

Fields, Attributes

 E.g.

Employee

 name – Novák

 salary – 1234

 start_date – Jan 1, 2000

PA152, Vlastislav Dohnal, FI MUNI, 2022 13

Record Schema

 Describes record structure

 Information contained

Number of attributes

Order of attributes

Data type and name of each attribute

PA152, Vlastislav Dohnal, FI MUNI, 2022 14

Record Types by Schema

 Fixed schema

Same schema for all records

 Stored out of record (in data dictionary)

 Variable schema

Record itself contains schema

Useful for:

 “sparse“ records (many NULLs)

 repeating attributes

 evolving formats

 schema changes during DB lifetime

PA152, Vlastislav Dohnal, FI MUNI, 2022 15

Record Types by Length

 Fixed length

Each record of same size (in bytes)

 Variable length

Saving space

More complex implementation

Can store large data (images, …)

PA152, Vlastislav Dohnal, FI MUNI, 2022 16

Example: Fixed Length and Schema

 Employee

1) id – 2 byte integer

2) name – 10 chars

3) department – 2 bytes

code55 n o v á k 02

83 d l o u h ý 01

schema

records

 Padding to “convenient“ size

 Faster memory access when address is

round to 4 (8) bytes

55 n o v á k 02 - -

PA152, Vlastislav Dohnal, FI MUNI, 2022 17

Example: Variable Length and Schema

 Employee:

Called „Tagged fields“

Codes identify attribute names stored elsewhere;
could be strings directly, i.e., tags.

4I52 4S HCEČ46
#

 F
ie

ld
s

C
o
d
e
 i
d
e
n
ti
fy

in
g

fi
e
ld

 a
s

id
In

te
g
e
r

ty
p
e

C
o
d
e
 f
o
r

E
n
a
m

e
S
tr

in
g
 t

y
p
e

L
e
n
g
th

 o
f
st

r.

PA152, Vlastislav Dohnal, FI MUNI, 2022 18

Example: Repeating Attribute

 Employee’s children

Useful in case of arrays, etc.

 Repeating attribute may not mean variable

length either schema

Can set maximum number of values

 Unused space filled with NULLs

3 Name: Jan Novák Child: Tomáš Child: Pavel

Novák Potápění Šachy --

PA152, Vlastislav Dohnal, FI MUNI, 2022 19

„Intermediate“ Schema

 Compromise between fixed and variable

schema

 Record schema “version” in record header

5 27

record type
tells me what
to expect
(i.e., points to schema)

record length

PA152, Vlastislav Dohnal, FI MUNI, 2022 20

Record Header

 = information about the record (fixed

length; no relation to attribute values)

Record schema “version” (pointer)

Record Length

Creation / update / access timestamp

OID (Object Identifier) – “record ID”, “tuple ID”

Bit array of NULL value flags

 One bit for each attribute

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 21

Other Issues
 Compression

 Increase speed of accessing/updating (fewer
bytes)

Within record (values independently)

Collection of records
 More effective (can build a dictionary, find common

patters)

 More complex to implement

 In Pg, LZ4 and PGLZ

Lempel, Ziv based lossless algorithm
 high compression performance (>0.5GMB/s per core)

 Extreme decompression perf. (>6 GB/s per core)

PA152, Vlastislav Dohnal, FI MUNI, 2022 22

Other Issues
 Encryption

Consequence to indexing…

How to do range queries?

…

Solution:
 Encrypt buffer data during file system I/O

 WAL records stored in WAL buffers that get
encrypted when writing to the file system

PA152, Vlastislav Dohnal, FI MUNI, 2022 23

Storing Objects

 Current commercial DBMS support objects

Extension of relational DBMS

OODBMS

 Objects have attributes

Primitive types store as a record

Collections create a new relation

 Referencing using OIDs

PA152, Vlastislav Dohnal, FI MUNI, 2022 24

Storing Relations

 Row-oriented

Tackled up to now…

 Column-oriented

Values of the same attribute stored together

 Example of row-oriented storage:

Order(id, cust, prod, store, price, date, qty)

id1 cust1 prod1 store1 price1 date1 qty1

id2 cust2 prod2 store2 price2 date2 qty2

id3 cust3 prod3 store3 price3 date3 qty3

PA152, Vlastislav Dohnal, FI MUNI, 2022 25

Column-oriented Storage

 Relation

Order(id, cust, prod, store, price, date, qty)

id1 cust1

id2 cust2

id3 cust3

id4 cust4

... ...

id1 prod1

id2 prod2

id3 prod3

id4 prod4

... ...

Id may or may not be stored.
Could exploit record ordering

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 26

Comparison

 Advantage of column-oriented storage

More compact (no padding to 4/8 bytes,

compression, …)

Efficient access (e.g., data mining)

 Process few attributes but all their values

 Advantage of row-oriented storage

Record update / insertion more efficient

Whole record access more efficient

Mike Stonebraker, Elizabeth O'Neil, Pat O’Neil, Xuedong Chen, et al.:

C-Store: A Column-oriented DBMS, VLDB Conference, 2005.

http://www.cs.umb.edu/~poneil/vldb05_cstore.pdf

PA152, Vlastislav Dohnal, FI MUNI, 2022 27

Outline

 Data elements and fields

 Records

 Block organization

 Properties and examples

PA152, Vlastislav Dohnal, FI MUNI, 2022 28

Block Organization

 Records

Fixed length

Variable length

 Block of fixed length

records

file

blocks …

PA152, Vlastislav Dohnal, FI MUNI, 2022 29

Block Organization
 Issues for storing records in blocks:

1. Separating records

2. Spanned vs. unspanned records

3. Sequencing

4. Interlacing more relations

5. Indirection

PA152, Vlastislav Dohnal, FI MUNI, 2022 30

Separating Records

 Fixed-length records

No delimiter

Store record count and point to 1st record

 Variable-length records

Delimiter / special marker

Store record lengths (or offsets)

 Within each record

 In block header

R2R1 R3blok

 Variable-length records

 Organization: block header, records

 Header
 Pointers to other blocks (overflow, index, …)

 Block type (relation, overflow, index, …)

 Relation ID

 (Directory of record offsets)

 Timestamps (creation, modification, access)

Separating Records

PA152, Vlastislav Dohnal, FI MUNI, 2022 31

unused space

header record 1 record 2 … record n block

PA152, Vlastislav Dohnal, FI MUNI, 2022 32

Spanned vs. unspanned

 Unspanned

each record in a block

simple, but not space efficient

 Spanned

record split across blocks

required when a record exceeds block size!

R1 R2 R3 R4 R5

block 1 block 2

…

R1 R2 R3(a) R3(b) R6R5R4 R7(a)

block 1 block 2

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 33

Unspanned: Example

 Records cannot cross block boundary

106 records, each 2 050 bytes (fixed length)

Block size 4 096 bytes

Space allocated: 106 * 4096 B

Space utilized: 106 * 2050 B

Utilization ratio: 50.05%

block 1 block 2

2050 bytes unused 2046 2050 bytes unused 2046

R1 R2

PA152, Vlastislav Dohnal, FI MUNI, 2022 34

Unspanned

 Options for oversized attribute values

The Oversized-Attribute Storage Technique

 TOAST or "the best thing since sliced bread”**

 Principle

 A TOAST table is created (chunk_id, chunk_seq, value)

 Value is split into “chunks”

 Chunks form records in TOAST table

 Chunk identified by (chunk_id, chunk_seq)

 Original space is used to store length of the value, toast

table id and chunk id.

Compression

Split into multiple records within the table

(internally)

** [cit. dokumentace PostgreSQL]

PA152, Vlastislav Dohnal, FI MUNI, 2022 35

Unspanned

 Large Objects (.LOBs)

Two types: binary / text

Stored off the table

 in consecutive blocks (in a separate file)

Typically, not indexed by DBMS

 i.e., cannot search in the value

PA152, Vlastislav Dohnal, FI MUNI, 2022 36

Spanned

 Record split across blocks

Blocks must be ordered or

Use pointers

 Record split into “fragments”

Bit flag “fragmented” in header

Pointers to next / previous fragments

R1 R2 R3(a) R3(b) R6R5R4 R7(a)

block 1 block 2

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 37

Sequencing

 Ordering records in file (and blocks)

by some key value

=> sequential file

 Reason:

Efficient record access in the key ordering

E.g., good for merge-join, order by, …

 Solution in DBMS

Clustered index

PA152, Vlastislav Dohnal, FI MUNI, 2022 38

Sequencing – sequential file

 Stored consecutively

physically contiguous

 Linked

preserve order!

R2R1 R3 …

R3R1 R2

 Overflow area

Records in sequence

 reorganization needed after record modifications

Pointer to an overflow area / block

PA152, Vlastislav Dohnal, FI MUNI, 2022 39

Sequencing – sequential file

block

R1.0

R2.0

R3.0

R4.0

R5.0

header

R2.1

R1.3

R4.7

header

PA152, Vlastislav Dohnal, FI MUNI, 2022 40

Relation Interlacing

 Records of multiple tables in one block

Records of more relations accessed

simultaneously

Store together Access faster

More complex implementation

PA152, Vlastislav Dohnal, FI MUNI, 2022 41

Relation Interlacing: Example

 Relations: employee (eid, name, address)

deposit (eid, did, amount)

 Good for query Q1:
 SELECT name, address, amount

FROM deposit, employee

WHERE deposit.eid = employee.eid AND employee.eid = 2354

(2354, ‘Joe Little’, ‘Brno’)

(2354, 999001, 100)

(2354, 999010, 1500)

block
…

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 42

Relation Interlacing: Example

 Query Q2:

SELECT * FROM employee

 Interlacing not convenient for Q2

Depends on frequency of individual queries

 Solution:

Do not mix within one block

Store block in near proximity (same disk cylinder)

PA152, Vlastislav Dohnal, FI MUNI, 2022 43

Relation Interlacing

(2354, ‘Joe Little’, ‘Brno’)
block1

…

(2356, ‘Peter Newman’, ‘Brno’)

block2 (2354, 999001, 100)

(2354, 999010, 1500)
…

(2356, 924013, 5500)

PA152, Vlastislav Dohnal, FI MUNI, 2022 44

Indirection (Pointers to Records)

 Applications:

Spanned records

Referencing blocks / record (e.g., in indices)

Linked blocks (e.g., in indices)

OODBMS: objects referencing other objects

H

D M

A F

Adam

Matěj

Denisa

Hynek

Felix

index file

PA152, Vlastislav Dohnal, FI MUNI, 2022 45

Indirection

 Record address

Memory address

 direct addressing

 4/8-byte pointer in virtual memory of process

DB address

 sequence of bytes describing record location in

external memory

 direct vs. indirect addressing

PA152, Vlastislav Dohnal, FI MUNI, 2022 46

Indirection in DB

 Direct addressing

Physical record address

 Purely physical address in storage

 Device ID, track, platter, block, offset in block

Not flexible

 E.g., block or records reallocation

PA152, Vlastislav Dohnal, FI MUNI, 2022 47

Indirection in DB

 Indirect addressing

Record / block identified by its ID

 ID = logical address

 any sequence of bits

Map table: ID physical address

phys. addr.ID
rec ID

r
address

a

map table
…

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 48

Indirection in DB

 Indirect addressing

Disadvantage

 Increased costs

 Accessing map table

 Storing map table

Advantage

 Very flexible

 Deletion/insertion of records

 Optimization of block storage

PA152, Vlastislav Dohnal, FI MUNI, 2022 49

Indirection in DB
 Combination = suitable option

Phys. record address =
phys. block address + offset

 Offset is the order of record within block

 List of records in block header

Advantages
 Can move records within block

 No changes to phys. address

 Map table is not necessary

Disadvantage
 Minor: Moving a record to another block

 Replace it with a pointer to new location (block + offset)

 Major: Not flexible in moving blocks (defragmentation)

PA152, Vlastislav Dohnal, FI MUNI, 2022 50

Indirection in DB

 Widely used option

Record address =

File ID + block number + offset

Blocks are organized by a file system

 blocks are numbered from zero within each file

File ID, Physical

Block # Block ID

File System
Map

PA152, Vlastislav Dohnal, FI MUNI, 2022 51

Indirection in DB

 Indirection in block (Slotted Page Structure)

Phys. record addr. = file id + blck no. + offset

R3

R4

R1 R2

block

unused space

header

PA152, Vlastislav Dohnal, FI MUNI, 2022 52

Block Header

 Present in each block

File ID (or RELATION ID or DB ID)

Block type

 e.g., record of type, overflow area, TOAST table, …

Block ID (this one)

Record directory (points to record data)

Pointer to free space (beginning, end)

Pointer to other blocks (e.g., in indices)

Modification timestamp/version number

PA152, Vlastislav Dohnal, FI MUNI, 2022 53

Record Modifications

 Insertion

Typically “no problem”

 Deletion

Unused space management

 Update

Same size

 Ok

Enlarging/shrinking

 Same issues as for insertion/deletion

PA152, Vlastislav Dohnal, FI MUNI, 2022 54

Deletion

 Pointer to deleted records

Must be invalidated

Cannot point to new data

Dangling pointers

R1 ?

Deleted record

PA152, Vlastislav Dohnal, FI MUNI, 2022 55

Deletion

 Direct record addressing (phys. addr.)

1. Mark as deleted

 With a marker (tombstone)

 One bit

 Reality: several bytes due to memory padding

2. Advertise the free space

 Linked list of unused areas

block

cannot be reused unused space

PA152, Vlastislav Dohnal, FI MUNI, 2022 56

Deletion

 Indirect addressing

Map table

Deleted record is freed in the block

Tombstone in map table

 or mapping is deleted, but no ID reuse!

ID LOC

…

7788

…

Map Table

Cannot be reused

PA152, Vlastislav Dohnal, FI MUNI, 2022 57

Deletion

 Rec. addr. = block addr. + rec. offset

Free space occupied by the record

Defragment space

 to make it contiguous

Set pointer to null in record directory

block

unused space

R3

R4

R1 R2

PA152, Vlastislav Dohnal, FI MUNI, 2022 58

Deletion

 Store rec. ID in the record

Check ID during record access

No overhead than extending the record with

RecID

 If RecID is the pointer itself, some other

identification, e.g., xmin is necessary to

differentiate the records.

PA152, Vlastislav Dohnal, FI MUNI, 2022 59

Insertion

 Unordered file

Append to end of file

 Last block, or allocate new

 Insert into unused space of existing block

 Need to handle variable length of records

PA152, Vlastislav Dohnal, FI MUNI, 2022 60

Insertion

 Ordered file (sequential)

Unfeasible without indirect addressing nor

record offsets

Find free space in “neighboring” block

reorganize

 Move last record in the block to the next block

 Put a marker in the original place to point to the new

location

Use overflow block

 Pointer to an overflow block is in the block header

PA152, Vlastislav Dohnal, FI MUNI, 2022 61

Update

 Record enlarged

Within a block

 No need for tombstones

 Move following records

Create an overflow block

…

 Record shrunk

by analogy…

May free overflow blocks

Memory Buffers and Pointers
 DB pointer in memory are inefficient

 Pointer swizzling

Change of DB pointer to memory pointer and

back

PA152, Vlastislav Dohnal, FI MUNI, 2022 62

Rec A
relation
block 2

index
block 1

Memory (buffers/cache) Disk

Itm J

Memory Buffers and Pointers
 After loading block 1 in memory

no update is necessary

PA152, Vlastislav Dohnal, FI MUNI, 2022 63

Rec A

Itm J
index
block 1

relation
block 2

index
block 1

Memory (buffers/cache) Disk

Itm J

Pointer Swizzling
 After reading block 2, pointer updated

PA152, Vlastislav Dohnal, FI MUNI, 2022 64

Rec A

Itm J
index
block 1

relation
block 2

index
block 1

Memory (buffers/cache) Disk

Itm J

relation
block 2 Rec A

PA152, Vlastislav Dohnal, FI MUNI, 2022 65

Pointer Swizzling

 When:

Automatically – immediately after reading

On request – on first use/access

Never – use map table instead

 Implementation:

DB address updated to memory address

 Build a Translation table

 store a pair (disk addr., memory addr.) for each record

Flag (swizzled/unswizzled) in the pointer

PA152, Vlastislav Dohnal, FI MUNI, 2022 66

Buffer Management

 DB features needed

Keep some blocks in memory/cache

 Indices, join of relations, …

 Different strategies

LRU, FIFO, pinned blocks, toss-immediate, …

Buffer Management Strategies
 LRU

Update timestamp on access to block

 significant maintenance, but effective

 FIFO

Store time of loading, no update on access

 improper for highly accessed blocks

 e.g., root of B+ tree

 Pinned blocks

Blocks allocated in buffers forever

PA152, Vlastislav Dohnal, FI MUNI, 2022 67

 “Clock” algorithm

Efficient approximation of LRU

Hand points to last read record

Rotates to find a block to be

written back to disk and

replaced (flag is 0).

On loading / accessing a block, set the flag to 1

Reset the flag on passing over the blocks

 Can implement pinned blocks. How?

Buffer Management Strategies

PA152, Vlastislav Dohnal, FI MUNI, 2022 68

1

1

0

0

1

1

1

00

0

1

0

Buffer Management: Example
 Join relations with LRU:

Blocked Nested loops:

LRU ineffective: blocks to process removed

 Need to pin blocks of relation r/s

PA152, Vlastislav Dohnal, FI MUNI, 2022 69

For each bs in s do

For each br in r do

For each ts in bs do

For each tr in br do

Join tuples tr and ts

r s

s1

s2

r1

r2

r3

buffers

Reading 1st block of s and process r Read 2nd block of s …

4

buffers

s1

r3

s2

4

5

1

buffers

s1

r1

r2

2

3

3

buffers

s1

r3

r2

4

3

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 70

Outline

 Data elements and fields

 Records

 Block organization

 Properties and examples

PA152, Vlastislav Dohnal, FI MUNI, 2022 71

Own Implementation

 Access type (operations) and their efficiency:

Locating a record with given key
 Getting consecutive records

 Insert / update / delete of records

Table scan

File reorganization

Flexibility Space requirements

Complexity Efficiency

PA152, Vlastislav Dohnal, FI MUNI, 2022 72

Specialized Systems

 BigTable

Distributed storage for tuples, by Google

Scalable up to petabytes (1PB=1000TB)
F. Chang, J. Dean, S. Ghemawat, et al.:

Bigtable: A Distributed Storage System for Structured Data,

Seventh Symposium on Operating System Design and

Implementation (OSDI), 2006.
http://labs.google.com/papers/bigtable-osdi06.pdf

 HBase

Distributed storage for tuples

Open-source Apache projekt Hadoop
http://hadoop.apache.org/

http://labs.google.com/papers/bigtable-osdi06.pdf
http://hadoop.apache.org/

Properties of BigTable and HBase
 Not traditional relational database systems

NoSQL databases

 Storage as a “keyvalue” map

row_id, column_id, time value

 Variable relation schema

 Records are versioned

see time component in the key

 Ordered by row_id

PA152, Vlastislav Dohnal, FI MUNI, 2022 73

Lecture’s Takeaways
 Differences in storing values

Handling NULL values in attributes

 Organization of records in blocks

 Pointers in DBMS

Why and how

 To recall / revise

Sequential file

 Record manipulation operations

 Index files (sparse / dense indexes)

PA152, Vlastislav Dohnal, FI MUNI, 2022 74

