PA152: Efficient Use of DB

4. Indexing

Vlastislav Dohnal



" B
Indexing

key value @’ key value

m Reason: faster access to records

than sequential (table) scan

m Variants:
Conventional indexes
B-tree
Hashing

PA152, Vlastislav Dohnal, FI MUNI, 2022

file

record



"
Terminology

m Sequential file
Index-sequential file

m Search key
Primary key
m |Index

Primary index
Secondary index

Dense index
Sparse index

Multilevel index

PA152, Vlastislav Dohnal, FI MUNI, 2022



File

Sequential file Index-sequential file

10 10| ——"10

20 30| — 20
50| \.

30 70 O 30

40 40
90|

50 50

60 60

70 70

80 80

90 90

100 100

PA152, Vlastislav Dohnal, FI MUNI, 2022



"
Index
m Collection of items:

<key value, pointer to record/block>
Dense index Sparse index
10] —+—110 - 10
20 > 20 _— |30
30 —— — [ |50
40] | 30 /170
40
50 —
60| - |50
701 < |60
80| <
\70
80

PA152, Vlastislav Dohnal, FI MUNI, 2022



Index
m Multilevel index
2nd |evel 1st leve File
10] +—T10] —+—] 10
50| < 20 > 20
140
50| —
60 —__ {50
201 <1 60
80| <
\ 70
80

» Should indexes be dense in higher levels?

PA152, Vlastislav Dohnal, FI MUNI, 2022




"
Indices and Pointers

m Pointers In iIndexes

Pointer to records
m Block addr. + record offset (index)

Pointer to block

m Block addr. =
file ID + block number

File Is contiguous and sequential

= May to store pointers to blocks
use “implicit” pointers, i.e., can be computed

e.g., block number derived from the order of items In
iIndex

PA152, Vlastislav Dohnal, FI MUNI, 2022



"
Implicit Block Pointers
m Block size 8KiB

. Seq. file
m Searching for ,K3“ Index P :
Index scan:
m K3 in 3 item K1_>B1 B2 8192
— 3 block (B3)
Offset in file KZ—B2 B3 16384
n (3-1)-8192=16 384 | K3—=B3
K4—B4 B4 24576
;ﬁffﬁf

PA152, Vlastislav Dohnal, FI MUNI, 2022 8



" I
Duplicate Keys

m Index type
dense index?
sparse index?

PA152, Vlastislav Dohnal, FI MUNI, 2022

File

10

10

10

20

20

30

30

30

40

45




"
Duplicate Keys: Dense Index
m Duplicate values in primary index

Seq. file

10| —
- [10

10| —
(10

10| —

20 \s: 10

20

20
0] - —— 20

0] 4 ———3

30 \% -

= \% 40

45

PA152, Vlastislav Dohnal, FI MUNI, 2022



" S
Duplicate Keys: Dense Index

m Values In primary index are unique
File must always be sequential

10

[

—

20

—]

30

40

45

N

PA152, Vlastislav Dohnal, FI MUNI, 2022

Seq. file

10

10

10

20

20

30

30

30

40

45

11



Duplicate Keys: Sparse Index

m Pointers with the first value in the block
Can eliminate duplicate values

10

10

-4

20

30

40

T
\

m Record look up!!!
Find value “20”

PA152, Vlastislav Dohnal, FI MUNI, 2022

Seq. file

10

10

10

20

20

30

30

30

40

45

12



" B
Duplicate Keys: Sparse Index
m Pointers with new value in block

Delete
this =
item?

Always place new key to index Seq. file

10
10

10| —

20 110

o +— X

0l - 20
30
30
40

m Next slides (Deletion/insertion to prim. index) are

PA152, Vlastislav Dohnal, FI MUNI, 2022

45

13



" I
Deletion from Index

m Sparse index
Delete record with key 40

10

10

30

20

50

/0

30

40

1l
T~
\ \
<
\\

50

60

/0

PA152, Vlastislav Dohnal, FI MUNI, 2022

80

14



Deletion from Index: Result

m Sparse index
After deletion of 40

10

10

30

20

50

30

/0

50

60

I

~

\\\.
\\--40

/0

80

PA152, Vlastislav Dohnal, FI MUNI, 2022

15



" I
Deletion from Index

m Sparse index
Delete record with key 30

10| —— 710
30| — 20
50| | T~
70 \\ 30
40
50
60
70

PA152, Vlastislav Dohnal, FI MUNI, 2022

80

16



Deletion from Index: Result

m Sparse index

After deletion of record30

= New value in block
changed,
SO update index

10

40

50

/0

1
~
N \
<
\\

10

20

40

50

60

/0

PA152, Vlastislav Dohnal, FI MUNI, 2022

80

17



" I
Deletion from Index

m Sparse index
Delete records 30 and 40

10

20

50

/0

30

40

10, —*
T~
\\\
\

50

60

/0

PA152, Vlastislav Dohnal, FI MUNI, 2022

80

18



Deletion from Index: Result

m Sparse index

After deletion of records 30 and 40

m Block reclaimed,
SO update index

10

—

50

AN

/0

\

>

10

20

30

N
Ay
-

40+

e

50

60

/0

80

PA152, Vlastislav Dohnal, FI MUNI, 2022

19



"
Deletion from Index

m Dense index — always update index

Delete record with key 30

PA152, Vlastislav Dohnal, FI MUNI, 2022

10] ———]10
20 20
0 T30
40
50| —
60 \\ 50
70 /60
50 \s“ 70

80

20



Deletion from Index: Result

m Dense index

After deletion of record 30

10

et

20

10

40

50

60

/0

80

[ 1] 1]

il

PA152, Vlastislav Dohnal, FI MUNI, 2022

20

40

50

60

/0

80

21



Insertion to

Index

m Sparse index
Insert record 34

m Free space
— NO reorg

.. 10| — 7|10
anization 30 | - 20
40| | T~
N 30
60| .
34
40
50

60

PA152, Vlastislav Dohnal, FI MUNI, 2022

22



BN
Insertion to Index
m Sparse index

Insert record with key 15

= No free space
— reorganize
Immediately

10

10

30

20

40

60

30

1l
~
N \
<
\\

40

50

60

PA152, Vlastislav Dohnal, FI MUNI, 2022

23



B
Insertion to Index
m Sparse index

Insert record with key 15

= No free space
— reorganize
Immediately

m Solution: move
some records to
next block

Variation:

10

20

40

60

1l
~
N \
<
\\

m Insert new block (chained file)
= may corrupt implicit pointers

PA152, Vlastislav Dohnal, FI MUNI, 2022

10

15

20

30

40

50

60

24



B
Insertion to Index

m Sparse index
Insert record with key 25

10| —— 7110
30 \ 20
40 N
60| . 30
34
40
= No free space 20
— reorganize 60
= Solution:

allocate overflow block
Reorganize record into main file later

PA152, Vlastislav Dohnal, FI MUNI, 2022



B
Insertion to Index

m Dense index

Insert record
= Update index — insert new item

= Update file — by analogy to file update in sparse
Index case

PA152, Vlastislav Dohnal, FI MUNI, 2022

26



" S
Secondary Index

m File ordered by another key

l.e., Index created for different key than the
primary file

Or the file Is not ordered at all
m Which type:
Dense or sparse?

PA152, Vlastislav Dohnal, FI MUNI, 2022

27



Secondary Index Search key

10| 7 30
/ 20| - 50

P 30|
I 0l < 20
90 \ I /
\ o 40

Sparse

for higher levels Dense inde 10
90
60

m Must use pointers to records!

PA152, Vlastislav Dohnal, FI MUNI, 2022



Secondary Index: Duplicate Keys

m Replicated in index

Increases
m space

requirements 10
m access time

PA152, Vlastislav Dohnal, FI MUNI, 2022

10| ~ 20
0] [ 10
20| - 20
40
20 -
30| \ 10
40| ~ 40
40|
10
40| 40
40| —
\\ 30
\ 40

29



"
Secondary Index: Duplicate Keys

m Index item contains list of pointers
But the item Is of variable length

10

20

30

40

PA152, Vlastislav Dohnal, FI MUNI, 2022

30




"
Secondary Index: Duplicate Keys
m Shift the variable-length list to “buckets”

\\

T 20
0 > -
30| - A =120
d0 40
50 10
60| \_ > 40
— 0
index block N i
index blocks \ 30
40

file blocks

buckets

PA152, Vlastislav Dohnal, FI MUNI, 2022 31



"
Secondary Index: Duplicate Keys

m Advantage: a list of records for querying

Evaluate more selection constrains without
accessing records

m Example:
Relation

= employee(name, department, room)
Indexes:

= hame — primary index

m department — secondary index

m room — secondary index

PA152, Vlastislav Dohnal, FI MUNI, 2022 32



"
Secondary Index: Duplicate Keys

m Query: employee of Toys dept. in room G243
File
Index (department) (employee) Index (room)

—] L~
Toys / - / \ G243

~ -
\\ /
& \ (\a&,@
xC
& <
N

0

m Intersect buckets
To get pointers to matching employee records
Also used In text information retrieval

PA152, Vlastislav Dohnal, FI MUNI, 2022




"
Example: Text Information Retrieval

m “"Full-text” index for documents
m Split documents into words

Document 1 . :> Word List for Docl
Caesar and Caesar
Brutus are 1. Split to words *Brutus
ambitious. 2. Stemming «ambitious

3. Ignore words in stop-list

m Build an inverted file
over all documents

l.e., a file of records <word; [docld, docld2, ...]>

PA152, Vlastislav Dohnal, FI MUNI, 2022 34



"
Example: Text Information Retrieval

m Inverted file { ] ) ]

ambitious 1 ambitious 1
brutus 1 brutus 1,3
brut_us 3 j‘> capitol 1
capitol 2 caesar 1,2
caesar 1

caesar 2

m Retrieve docs containing Brutus & Caesar
Read posting lists for Brutus and Caesar
Intersect them

PA152, Vlastislav Dohnal, FI MUNI, 2022 35



"
Conventional Indexes: Summary

m Basic ideas
Sparse vs. dense; multilevel

m Insertion / deletion

Duplicate keys
m in case of secondary indexes

m Advantages

Simple

Index Iis a sequential file too — good for ,full scan”
m Disadvantages

Costly updates

Lost of physical “sequentiality”
m due to overflow buckets

PA152, Vlastislav Dohnal, FI MUNI, 2022

36



"
B-trees

m Another index type
Sequential order not necessary
Balanced — max I/Os guarantee

m More variants
B-tree, B*-tree, B'-tree, ...
m Typically, by saying “B-tree” we mean “B*-free”
m Origin
Rudolf Bayer and Ed McCreight invented the B-tree while

working at Boeing Research Labs in 1971 (Bayer & McCreight
1972)

= They did not explain what, if anything, the B stands for.

= Douglas Comer explains:

The origin of "B-tree" has never been explained by the authors. As we
shall see, "balanced," "broad," or "bushy" might apply. Others suggest
that the "B" stands for Boeing. Because of his contributions, however, it
seems appropriate to think of B-trees as "Bayer"-trees.

* Source: Wikipedia

PA152, Vlastislav Dohnal, FI MUNI, 2022 37



"
B*-tree
m Example n=4

100

/

/

\

120

150

180

k

1
!

—| [lo o—-0O| [0 o VO o O
ML O O = N M [N LN N> 0O
. ™ — = = [ — —~

.. pointers to record in file ...

PA152, Vlastislav Dohnal, FI MUNI, 2022

—H179 T~

38



B*-tree

m Non-leaf node, n=4

Keys
k<57

e

™ i LN
LN 00 (@)
/ \ N
Keys Keys
97 <k <81 81 <k<95

PA152, Vlastislav Dohnal, FI MUNI, 2022

Keys
95 <k

39



"
B*-tree
m Leaf node, n=4

Pointer from non-leaf node (parent)

Pointer to next leaf

Record pointers: \s

Revision follows, so skip it.
PA152, Vlastislav Dohnal, FI MUNI, 2022 40



B*-tree
m Parameter n (tree arity) influences:
Node format: pr| Ky [Po| Ky [psl ... oo Kipiq |Po

Minimal occupation

Leaf node
m All leaves at same lowest level
m P, points to record with key K, (data)
m P, points to next leaf (chained leaves)

Non-leaf node
= p; points to node organizing keys K: K, ; S K <K,

PA152, Vlastislav Dohnal, FI MUNI, 2022 41



+
B*-tree
m Occupation constraints
Max Min Max keys | Min keys
pointers pointers
Non-leaf n /2] n-1 n/2]-1
(not root) (children) | (children)
Non-leaf n 2 n-1 1
(root) (children) | (children)
Leaf n-1 [(n-1)/2] n-1 [(n-1)/2]
(not root) (records) | (records) | (records) | (records)
Leaf n-1 0 n-1 0
(root) (records) | (records) | (records) | (records)

PA152, Vlastislav Dohnal, FI MUNI, 2022




B
Bt-tree: Insertion

m Principle: Grows from leaves to root

m Procedure: Find leaf node and insert new key
Including pointer to the new record
Update parent if necessary

m Insert cases:

No reorganization
s Free capacity in leaf

Split leaf
Split non-leaf
Split root

PA152, Vlastislav Dohnal, FI MUNI, 2022 43



"
BT-tree: n=4
m Insert key 32

No reorganization S
/ i
e
a

X

O 80‘7')

L |

Vol v

PA152, Vlastislav Dohnal, FI MUNI, 2022

44



= S
B*-tree: n=4
m Insert key 7

Leaf split §
/ N
e \
// /M\
, / N\
1 T I
b bov v

Deletion variants follow, which is revision, so skip it.
PA152, Vlastislav Dohnal, FI MUNI, 2022 45



" A
B*-tree: n=4
m Insert key 160
Splitting non-leaf node

~

S
TN\

\
120
150
18Q
T
180

i e

%
2

—179 -

|
-150
156

ill—.

<160
<

180
200

R

PA152, Vlastislav Dohnal, FI MUNI, 2022

46




= S
B*-tree: n=4
m Insert key 45

Split root

X
10
20

a

[¥™

>

'

—

S O
@\
|

LN
@\
T

PA152, Vlastislav Dohnal, FI MUNI, 2022

~

i

-+ 40
45




"
B*-tree: Split Leaf

n=3, insert key 6 6
1. AEE\ /

/ \‘ V;I :>56:7

1 3 || 5

/

PA152, Vlastislav Dohnal, FI MUNI, 2022 48

1 3 |T™>

6 [+ | 7




S
B*-tree: Split non-leaf node
1. 4\% - ‘5/, 7 ~\

>{T5[][6 [+>]7 :
TsRr i — /NN \
;\\ T~

—>1 1 5 6 |+ /

n=3, insert key 4

AN
?

>\

/4» 2 ¢|,|7|~|\||
TII 3 =>4 T H—N|5||6H}7II ]

L] 5 [
4, ‘4/ ~u

A

v ~
L1 3[+>[41] [+>[5][6+>[7]] ]

PA152, Vlastislav Dohnal, FI MUNI, 2022 49




" I
B*-tree: Deletion

m Find leaf node and delete key
Including the corresponding record
Delete node if empty, ...

m Deletion cases:
No reorganization (leaf is not “underfilled”)

Coalesce with neighbor (sibling node) and
delete node

Redistribute keys between neighbors (without
node deletion)

Cases (b) and (c) for non-leaf nodes

PA152, Vlastislav Dohnal, FI MUNI, 2022 50



= S
B*-tree: n=5
m Delete key 50

Coalesce (merge) keys into a neighbor and
delete node /

7

>3

?
R G
R !

PA152, Vlastislav Dohnal, FI MUNI, 2022 51

C

30



= S
B*-tree: n=5
m Delete key 50

Redistribute keys between neighbors (avoid
node deletion)

(@)
288
// \\
— . N
o O O LWn o D
i O\ ™M (N < LD
| N L —
IS I

PA152, Vlastislav Dohnal, FI MUNI, 2022 52



" A
B*-tree: n=b
m Delete key 37
Redistribute keys between neighboring non-

leaf nodes
=y
\\( \%\

/
ﬁ
ToR Vol =
AN AN M
Il Lo |
v v ¢¢¢ ! v v

PA152, Vlastislav Dohnal, FI MUNI, 2022 53

/

— 1 10
20

%

R

- 40

-45
1

1
3

<10

14



" I
B*-tree: Deletion

m Practice:

Coalescing often not implemented

= More inserts than deletes (both random) leads to
utilization of 65-69% even if nodes not merged

Too complex and low impact

PA152, Vlastislav Dohnal, FI MUNI, 2022

54



= B
Bt-tree vs. Conventional index

m Block size 4 KiB

Key = 4B, pointer to block/rec = 4B

Multilevel secondary index
m sparse: 512 keys and pointers to a block
m dense: 512 keys and pointers to records
B*-tree
m non-leaf node: 512 pointers to other nodes
m leaf: 511 pointers to records

m Comparison in records in a relation:.

Full 2-level indexes: (15t level == 1 block)

m Sec. index: up to 262 144 records (512")
up to 1 048 576 records if implicit indexes are used

= B*-tree: up to 261 632 records (512"1 . 511)
= Prim. index (all sparse levels): up to 512"+1 records

PA152, Vlastislav Dohnal, FI MUNI, 2022

55



= B
Bt-tree vs. Conventional index

m Conclusion:

B*-tree has larger space overhead
@ Is dynamic, but may not be physically sequential
® B*-tree — more complex locking

Conventional index must be reorganized as whole

s DBMS does not know when to reorganize
B*-tree makes small local reorganizations
Conventional index needs large reorganizations

Buffer manager
© B*-tree — fixed buffer requirements (log depth)

® Static iIndex — must use overflow blocks to be efficient
Linear complexity due to overflow areas

= LRU is no good for B*-trees!
m B*-tree is a better organization.

PA152, Vlastislav Dohnal, FI MUNI, 2022 56



"
B-tree (without *)
m |[dea: no key replication

— record pointer also in non-leaf nodes
Different constraints on key values in subtrees

/

K1 p1 ! K2 p2 \K3P3 \

\

Pointers to: ... / l _ \ _
Record with K1/ Record with K Record with K

Node with keys Node with keys Node with keys Node with keys
k < K1 K1l <k<K2 K2 <k <K3 K3 <k

PA152, Vlastislav Dohnal, FI MUNI, 2022 57



B-tree: Example

m Leaf chaining cannot be used

No! Not
present!

=
m&\\
G T —

T4

G9 |

/

SOT-

/ 0

/“\

0.

7

g

T e

58

PA152, Vlastislav Dohnal, FI MUNI, 2022



" J
B-tree
m Occupation constrains

Max Min Max keys Min keys
pointers pointers
Non-leaf n [n/2] n-1 [n/21-1
(non-root) (children) (children) (keys and (keys and
pointers) pointers)
Non-leaf n 2 n-1 1
(root) (children) (children) (keys and (keys and
pointers) pointers)
Leaf n-1 [(n-1)/2] n-1 [(n-1)/2]
(non-root) (records) (records) (record (record
pointers) pointers)
Leaf n-1 0 n-1 0
(root) (records) (records) (record (record
pointers) pointers)

PA152, Vlastislav Dohnal, FI MUNI, 2022

59



" A
Comparison: B-tree and B*-tree
m Sizes
Block = 4KiB
Pointer = 4 bytes
Key = 4 bytes
m Assume a full 2-level tree

1 root and leaves
Each node in one block

PA152, Vlastislav Dohnal, FI MUNI, 2022

60



"
Comparison: B-tree

m Root:

341 keys + 341 record pointers

342 pointers to child nodes (blocks)
m 341-(4+4) + 342-4 = 4096 bytes

m Leaf:

512 keys + 512 record pointers
m 512 - (4+4) = 4096 bytes

m Total records:
341 + 342 - 512 =175 445 recs

PA152, Vlastislav Dohnal, FI MUNI, 2022

61



" I
Comparison: B*-tree

m Root:

511 keys, 512 block pointers
m511-4 +512-4 = 4092 bytes

m Leaf:

511 keys + 511 record pointers
m 511 - (4+4) + 4 = 4092 bytes

m Total records:
512 - 511 = 261 632 recs

PA152, Vlastislav Dohnal, FI MUNI, 2022

62



Comparison: Result
m Read |/Os:

B-tree
m P, g = 341/ 175 445 = 0,2%
u PZ reads — 1- Pl read — 99,8%
B*-tree

u PZ reads =100%

PA152, Vlastislav Dohnal, FI MUNI, 2022

63



" S
Comparison: Result

m B-trees

Faster lookup
= Not always, can be deeper (see prev. slide)

Different formats of non-leaf & leaf nodes
Deletion more complicated

= B*-trees preferred!

PA152, Vlastislav Dohnal, FI MUNI, 2022

64



"
B*-tree

m Bf-tree as file
Leaves store the records themselves.

m Duplicate keys

Pointers in leaves = pointers to buckets

m I.e., blocks with a list of record pointers with the same
key value

m Variable-length key values (e.g., strings)
Store completely — low arity, varying arity, ...
Use prefixes (prefix compression)

PA152, Vlastislav Dohnal, FI MUNI, 2022 65



» S
Lecture’s Takeaways
m Efficiency of B+ trees

m Handling duplicate keys
l.e. multiple records with the same key value.

m Revision of terminology

Dense / sparse index

Primary / secondary index
m Clustered / non-clustered index

Covering index

PA152, Vlastislav Dohnal, FI MUNI, 2022

66



