
PA152: Efficient Use of DB

8. Query Optimization

Vlastislav Dohnal

PA152, Vlastislav Dohnal, FI MUNI, 2022 2

Query Optimization
 Generating and comparing query

execution plans

Pick the best

Query

Execution Plans

Cost estimation

Generating

Filtering

Assigning costs

PA152, Vlastislav Dohnal, FI MUNI, 2022 3

Generating Execution Plans

 Consider using:

Rel. algebra transformation rules

 Implementations of rel. alg. operations

Use of existing indexes

Building indexes and sorting on the fly

PA152, Vlastislav Dohnal, FI MUNI, 2022 4

Plan Cost Estimation
 Depends on costs of each operation

 i.e., its implementation

 Assumptions for operation costs:
 Input is read from and disk

 Output is kept in memory

 Costs on CPU
 Processing on CPU is faster than reading from disk

 often neglected or simplified

 Network communication costs
 Issue in distributed databases

 Ignoring contents of mem buffers/caches between
queries

 Estimated costs of operation
 = number of read and write accesses to disk

Operation Cost Estimation
 Example: settings in PostgreSQL

http://www.postgresql.org/docs/13/static/runtime-config-query.html#GUC-CPU-OPERATOR-COST
https://www.postgresql.org/docs/13/static/runtime-config-resource.html

 seq_page_cost (1.0)

 random_page_cost (4.0)

 cpu_tuple_cost (0.01)

 cpu_index_tuple_cost (0.005)

 cpu_operator_cost (0.0025)

 shared_buffers (32MB) – ¼ RAM

effective_cache_size (4GB) – ½ RAM

work_mem (8MB)
 Memory available to an operation

PA152, Vlastislav Dohnal, FI MUNI, 2022 5

http://www.postgresql.org/docs/13/static/runtime-config-query.html#GUC-CPU-OPERATOR-COST
https://www.postgresql.org/docs/9.6/static/runtime-config-resource.html

PA152, Vlastislav Dohnal, FI MUNI, 2022 6

Operation Cost Estimation

 Parameters

B(R) – size of relation R in blocks

 f(R) – max. record count to store in a block

M – max. RAM buffers available (in blocks)

HT(i) – depth of index i (in levels)

LB(i) – sum of all leaf nodes of index i

PA152, Vlastislav Dohnal, FI MUNI, 2022 7

Operation Implementation
 Based on concept of iterator

Open – initialization
 preparations before returning any record of result

GetNext – return next record of result

Close – finalization
 release temp buffers, …

 Advantages

Result may not be returned at once
 Does not occupy main memory; may not be

materialized on a disk

Pipelining can be used

PA152, Vlastislav Dohnal, FI MUNI, 2022 8

Accessing Relation: table scan
 Relation is not interlaced

Reading costs: B(R)

TwoPhase-MergeSort = 3B(R) reading/writing
 Final writing is ignored

 Relation is interlaced

Reading costs are up to T(R) blocks!

TwoPhase-MergeSort
 T(R) + 2B(R) reads and writes

R1 R2 R3 R4 R5 R6 R7 R8 …

R1 R2 S1 S2 R3 R4 S3 S4 …

PA152, Vlastislav Dohnal, FI MUNI, 2022 9

Accessing Relation: index scan
 Read relation using an index

Scanning index reading records
 Read index blocks (<< B(R))

 Read records of relation

Applicable to any attribute

Max. costs:
 (max. B(R) and T(R) reads) + (up to 𝑚𝐻𝑇+1 − 1)

 Where m is an index arity (LB = 𝑚𝐻𝑇)

 Advantages
Can limit to a subset of records (interval)

 Min. costs: 0 read blocks of relation + 1..HT blocks of
index
 For a covering index

Max. number of nodes

in an m-ary tree

PA152, Vlastislav Dohnal, FI MUNI, 2022 10

One-Pass Algorithms
 Implementation:

Read relation Processing Output buffers

Processing records one by one

 Operations

Projection, Selection, Duplicate elimination
(DISTINCT)
 costs: B(R)

Aggregation functions (GROUP BY)
 costs: B(R)

Set operations, cross product
 costs: B(R) + B(S)

PA152, Vlastislav Dohnal, FI MUNI, 2022 11

Duplicate Elimination – distinct
 Procedure

Test whether the record is in output

 If not, output the record

 Test for existence in output

Store already seen records in memory
 Can use M-2 blocks

No data structure: n2 complexity (comparisons)

Use hashing

 Limitation: B(R) < M-1

 Can be implemented using iterators?

Distinct – example
 Relation company(company_key,company_name)

PA152, Vlastislav Dohnal, FI MUNI, 2022

12

explain analyze SELECT DISTINCT company_name FROM provider.company;

HashAggregate (cost=438.68..554.67 rows=11600 width=20) (actual time=9.347..12.133 rows=11615 loops=1)

Group Key: company_name

-> Seq Scan on company (cost=0.00..407.94 rows=12294 width=20)

(actual time=0.019..5.007 rows=12295 loops=1)

Planning time: 0.063 ms

Execution time: 12.799 ms

explain analyze SELECT DISTINCT company_key FROM provider.company;

Unique (cost=0.29..359.43 rows=12294 width=8) (actual time=0.041..8.857 rows=12295 loops=1)

-> Index Only Scan using company_pkey on company (cost=0.29..328.69 rows=12294 width=8)

(actual time=0.039..5.686 rows=12295 loops=1)

Heap Fetches: 4726

Planning time: 0.063 ms

Execution time: 9.645 ms

explain analyze SELECT DISTINCT company_name FROM provider.company ORDER BY company_name;

Unique (cost=1243.05..1304.52 rows=11600 width=20) (actual time=53.468..59.072 rows=11615 loops=1)

-> Sort (cost=1243.05..1273.79 rows=12294 width=20) (actual time=53.467..55.482 rows=12295 loops=1)

Sort Key: company_name

Sort Method: quicksort Memory: 1214kB

-> Seq Scan on company (cost=0.00..407.94 rows=12294 width=20)

(actual time=0.018..5.338 rows=12295 loops=1)

PA152, Vlastislav Dohnal, FI MUNI, 2022 13

Aggregations / Grouping
 Procedure

 Create groups for group-by attributes

 Store accumulated values of aggregation functions

 Internal structure

 Organize values of grouping attributes, e.g., hashing

 Accumulated value of aggregations

 MIN, MAX, COUNT, SUM – one value (number)

 AVG – two numbers (SUM and COUNT)

 Accumulated values are small: M-1 blocks are enough

 Iterators:
 All prepared in Open

 Advantage of pipelining is inapplicable

Output block is not reserved.

PA152, Vlastislav Dohnal, FI MUNI, 2022 14

Set Operations
 Requirement: min(B(R), B(S)) ≤ M-2

Smaller relation read in memory

Larger relation is read gradually

Set union (possibly also Set difference):
 Memory requirements: B(R)+B(S) ≤ M-2

 Assumption

R is larger relation, i.e., S is in memory

 Implementation

Create a temp search structure
 E.g., hashing

PA152, Vlastislav Dohnal, FI MUNI, 2022
15

Set union
Notice: Not multiset union

i.e., without ALL in SQL

 Read S; construct search structure

Eliminate duplicates

Output unique records immediately

 Read R and check existence of the record
in S

 If present, skip it.

 If not seen, output it and add to structure

 Limitations

B(R)+B(S) ≤ M-2

PA152, Vlastislav Dohnal, FI MUNI, 2022
16

Set intersection
Notice: Not multiset intersection

i.e., without ALL in SQL

 Read S; construct search structure

Eliminate duplicates

 Read R and check existence of the record
in S

 If present, output the record and delete it from
structure.

 If not seen, skip it.

 Limitations

min(B(R), B(S)) ≤ M-2

PA152, Vlastislav Dohnal, FI MUNI, 2022 17

Set Difference
 R–S

 Read S; construct search structure
 Eliminate duplicates

 Read R and check existence of the record in S
 If not present, output it

 Also insert into internal structure

 B(S) + B(R) ≤ M-2 (worse case, but with pipelining)
 Or max(B(R),B(S)) ≤ M-2, when preprocessing R (no pipelining)

 S–R
 Read S; construct search structure

 Eliminate duplicates

 Read R and check existence of the record in S
 If present, delete it from internal structure

 Output all remaining recs. in S (no pipel.)

 B(S) ≤ M-1

PA152, Vlastislav Dohnal, FI MUNI, 2022 18

Multiset (Bag) Operations
 Bag union RBS

Easy exercise…

 Bag intersection RBS
Read S; construct search structure

 Eliminate duplicates by storing their count

Read R and check existence of the record in S

 If record is present, output it
 and decrement record count!

 If counter is zero, delete it from internal structure

 If record is not found, skip it

min(B(R), B(S)) ≤ M-2

PA152, Vlastislav Dohnal, FI MUNI, 2022 19

Multiset (Bag) Operations
 Bag difference S–BR

Same idea

 If record of R is present in S, decrement its counter

Output internal structure (recs. of S)
 with positive count

B(S) ≤ M-1

 Bag difference R–BS

By analogy…

 If record of R is not present in S output

 If found,
 if counter is zero, output it

 decrement the counter and skip it

B(S) ≤ M-2

PA152, Vlastislav Dohnal, FI MUNI, 2022 20

Join Operation – one pass version

 Cross product
 Easy exercise…

 Natural join

Assume relations R(X,Y), S(Y,Z)

 X – unique attributes is R, Z – unique attrs. in S

 Y – common attributes in R and S

Read S; construct search structure on Y

For each record of R, find all matching recs. of S

 Output concatenation of all combinations (eliminate

repeating attributes Y)

 Outer join ?

PA152, Vlastislav Dohnal, FI MUNI, 2022 21

One-Pass Algorithms
 Summary

Unary operation: op(R)
 B(R) ≤ M-1, 1 block for output; some need 1 for input

Binary operation: R op S
 B(S) ≤ M-2, 1 block for R, 1 block for output

 Some ops require: B(R)+B(S) ≤ M-2 or max(B(R),B(S))<M-1

Cost = B(R) + B(S)

 Based on size of memory buffers M

Known ok

Not known estimate it
 Wrong size swapping, use two-pass

algo instead of one-pass algorithm

PA152, Vlastislav Dohnal, FI MUNI, 2022 22

Join Algorithms

 Relations does not fit in memory

So called “one and a half” passes algorithms

 Basic variant: Nested-loop join

for each s in S do

 for each r in R do

 if r and s match in Y then output concatenation of r and s.

 Example

T(R) = 10 000 T(S) = 5 000 M=2

Costs = 5 000(1+10 000) = 50 005 000 IOs

Reading whole Rreading a record of S

PA152, Vlastislav Dohnal, FI MUNI, 2022 23

Join Algorithms

 Relations accessed by blocks

 Block-based nested-loop join
 R – inner relation, S – outer relation

 Example:

B(R) = 1000 B(S) = 500 M=3

Costs = 500(1+1000) = 500 500 IOs

PA152, Vlastislav Dohnal, FI MUNI, 2022 24

Join Algorithms
 Exploit all buffer blocks (M blocks)

Cached Block-based Nested-loop Join

Read M-2 blocks of relation S at once
 Read relation R block by block

 Join records

Costs: B(S)/(M-2) (M-2 + B(R)) IOs

 Example RS:

M=102

Costs: 5 (100 + 1000) = 5 500 IOs

Swapping relations
 Costs: 10 (100 + 500) = 6 000 IOs

PA152, Vlastislav Dohnal, FI MUNI, 2022 25

Join Algorithms – Summary

 Nested-loops join

Use always blocked variant

Read the smaller relation into memory (if M>3)

 Storage of relation

 Important for final costs

 Interlaced each record needs one I/O

 Non-interlaced each record needs B(R)/T(R) I/Os

only

 Applicable to any join condition

 theta joins

PA152, Vlastislav Dohnal, FI MUNI, 2022

26

Two-Pass Algorithms
 Procedure:

Preprocess input relation store it
 Sorting (Multi-way MergeSort)

 Hashing

Processing

 Operations:

Joins

Duplicate elimination (DISTINCT)

Aggregations (GROUP BY)

Set operations

PA152, Vlastislav Dohnal, FI MUNI, 2022 27

memory

R

S ..
.

sorted runs

...

R

S

sorted relations

...

join
result

pass to merge

relations

Join Algorithms – MergeJoin

 R S R(X,Y), S(Y,Z)

disk

PA152, Vlastislav Dohnal, FI MUNI, 2022 28

Join Algorithms – MergeJoin

 R S R(X,Y), S(Y,Z)

 Algorithm:

Sort R and S

 i = 1; j = 1;

while (i ≤ T(R)) (j ≤ T(S)) do

 if R[i].Y = S[j].Y then doJoin()

 else if R[i].Y > S[j].Y then j = j+1

 else if R[i].Y < S[j].Y then i = i+1

PA152, Vlastislav Dohnal, FI MUNI, 2022 29

Join Algorithms – MergeJoin

 Function doJoin():

Proceed nested-loop join for records of same Y

while (R[i].Y = S[j].Y) (i ≤ T(R)) do

 j2 = j

 while (R[i].Y = S[j2].Y) (j2 ≤ T(S)) do

 Output joined R[i] and S[j2]

 j2 = j2 + 1

 i = i + 1

 j = j2

PA152, Vlastislav Dohnal, FI MUNI, 2022 30

Join Algorithms – MergeJoin

i R[i].Y S[j].Y j

1 10 5 1

2 20 20 2

3 20 20 3

4 30 30 4

5 40 30 5

50 6

52 7

PA152, Vlastislav Dohnal, FI MUNI, 2022 31

Join Algorithms – MergeJoin

 Costs

MergeSort of R and S 4(B(R) + B(S))

MergeJoin B(R) + B(S)

 Example (M=102)

MergeJoin

 Sorting: 4(1000 + 500) = 6000 read/write IOs

 Joining: 1000 + 500 = 1500 read IOs

 Total: 7500 read/write IOs

Original cached block-based nested-loop join

 5500 read IOs

PA152, Vlastislav Dohnal, FI MUNI, 2022 32

Join Algorithms – MergeJoin

 Another example

B(R) = 10 000 B(S) = 5 000

M = 102 blocks

Cached Block-based Nested-loop Join

 (5 000/100) (100 + 10 000) = 505 000 read IOs

MergeJoin

 5(10 000 + 5 000) = 75 000 read/write IOs

10x larger relations!!!

PA152, Vlastislav Dohnal, FI MUNI, 2022 33

Join Algorithms – MergeJoin

 MergeJoin

Preprocessing is expensive

 If relations are sorted by Y, can be omitted.

 Analysis of IO costs

MergeJoin

 linear complexity

Cached Block-based Nested-loop Join

 quadratic complexity

 from a certain size of relations,

MergeJoin is better

PA152, Vlastislav Dohnal, FI MUNI, 2022 34

Join Algorithms – MergeJoin
 Memory requirements

Limitation to max 𝐵 𝑅 , 𝐵 𝑆 < 𝑀2

 Optimal memory size

Using MergeSort on relation R
 Number of runs = 𝐵 𝑅 𝑀, Run length = 𝑀

 Limitation: number of runs ≤ 𝑀 − 1

 𝐵 𝑅 𝑀 < 𝑀 𝐵 𝑅 < 𝑀2 𝑀 > 𝐵 𝑅

 Example

B(R) = 1000 M>31,62

B(S) = 500 M>22,36

PA152, Vlastislav Dohnal, FI MUNI, 2022 35

Join Algorithms – MergeJoinSortJoin

 Improvement:

Not necessary to have the relations sorted

completely

R

S

Can join
directly?

sorted runs
(1st phase of MergeSort)

PA152, Vlastislav Dohnal, FI MUNI, 2022 36

Join Algorithms – SortJoin

 Improvement

Prepare sorted runs of R and S

Read 1st block of all runs (R and S)

Get min value in Y

 Find corresponding records in other runs

 Join them

 In case too many records with the same Y

Apply block-nested-loop join in the remaining

memory

PA152, Vlastislav Dohnal, FI MUNI, 2022 37

Join Algorithms – SortJoin
 Costs

Sorted runs: 2(B(R) + B(S))

Joining: B(R) + B(S)

 Limitations

Run length = M, number of runs < M

 B(R) + B(S) < M(M-1)

 Example (M=102)

Sorting: 2(1000 + 500) Joining: 1000 + 500

Total: 4 500 read/write IOs
 better than cached block-based

nested-loop join

PA152, Vlastislav Dohnal, FI MUNI, 2022 38

Join Algorithms – HashJoin

 R S R(X,Y), S(Y,Z)

..
.

..
. M-1R

..
.

..
. M-1S

memory buckets

join

PA152, Vlastislav Dohnal, FI MUNI, 2022 39

Join Algorithms – HashJoin

 R S R(X,Y), S(Y,Z)

Define a hash function for attributes Y

Create hashed index of R and S

 Address space is M-1 buckets

For each i [0,M-2]

 Read bucket i of R and S

 Find matching records and join them

PA152, Vlastislav Dohnal, FI MUNI, 2022 40

Join Algorithms – HashJoin

 Joining buckets

Read whole bucket of S (≤ M-2)

 May create an internal structure to speed up

Read bucket of R block by block

B
u
ck

e
ts

 o
f

R

..
.

Si

memory..
.B
u
ck

e
ts

 o
f

S

PA152, Vlastislav Dohnal, FI MUNI, 2022 41

Join Algorithms – HashJoin
 Costs:

Create hashed index: 2(B(R)+B(S))

Bucket joining: B(R)+B(S)

 Limitations:

Size of each bucket of S ≤ M-2

 Estimate: 𝑚𝑖𝑛 𝐵 𝑅 , 𝐵 𝑆 < 𝑀 − 1 . (𝑀 − 2)

 Example:

Hashing: 2(1000+500)

Joining: 1000+500

Total: 4 500 read/write IOs

PA152, Vlastislav Dohnal, FI MUNI, 2022 42

Join Algorithms – HashJoin

 Minimum memory requirements

Hashing S; optimal bucket occupation

 Memory buffer: M blocks

 Bucket size = B(S) / (M-1)

 This must be smaller than M (due to joining)

 𝐵(𝑆) 𝑀 − 1 ≤ 𝑀 − 2

 ≈ 𝑀 − 1 > 𝐵 𝑆

PA152, Vlastislav Dohnal, FI MUNI, 2022 43

Join Algorithms – HashJoin

 Optimization

keep some buckets in memory

Hybrid HashJoin

 Bucketing of S – Optimal size

B(S)=500

 𝐵 𝑆 23

 i.e., each bucket is of 22 blocks

M=102

 keep 3 buckets in memory (66 blocks)

 36 blocks of memory to spare

PA152, Vlastislav Dohnal, FI MUNI, 2022 44

Join Algorithm – Hybrid HashJoin

 Preprocessing S

Contents of memory buffer

Memory usage (M=102):
G0-2 3*22 blocks
Other buckets 23-3 blocks
Reading S 1 block
output 1 block
Total 88 blocks

14 blocks are available!

memory

G0

G2

in

..
.

22 blocks

23-3=20 buckets

S

..
.

..
.

PA152, Vlastislav Dohnal, FI MUNI, 2022 45

Join Algorithm – Hybrid HashJoin

 Structure of memory to hash R

1000/23 = 44 blocks per bucket

Records hashed to bucket 0-2

 Join immediately with S0-2 buckets (in memory)

output

memory

G0

G2

in
..
.

44 blocks

23-3=20 buckets

R

..
.

..
.

PA152, Vlastislav Dohnal, FI MUNI, 2022 46

Join Algorithm – Hybrid HashJoin

 Joining buckets

Do for buckets with id 3-22

Read one whole bucket in memory; read the

other bucket block by block

memory

Hi

output

..
.

22

23-3=20

result

..
.

44

23-3=20

Buckets of S Buckets of R
one bucket

of S

one block of
bucket of R

PA152, Vlastislav Dohnal, FI MUNI, 2022 47

Join Algorithm – Hybrid HashJoin

 Costs:

Bucketize S: 500 + 2022 = 940 read/write IOs

Bucketize R: 1000 + 2044 = 1880 read/write IOs

 Only 20 buckets to write!

Joining: 2044 + 2022 = 1320 read IOs

 Three buckets are already done (during bucketizing R)

 In total: 4140 read/write IOs

PA152, Vlastislav Dohnal, FI MUNI, 2022 48

Join Algorithms

 Hybrid HashJoin

How many buckets to keep in memory?

 Empirically: 1 bucket

 Hashing record pointers

Organize pointers to records instead of

records themselves

 Store pairs [key value, rec. pointer] in buckets

Joining

 If match, we must read the records

PA152, Vlastislav Dohnal, FI MUNI, 2022 49

Join Algorithm – Hashing Pointers

 Example

100 key-pointer pairs fit in one block

Estimate results size: 100 recs

Costs:

 Bucketize S in memory (500 IOs)

 5000 records 5000/100 blocks = 50 blocks in memory

 Joining – read R gradually and join

 If match, read full records of S 100 read IOs

 Total: 500 + 1000 + 100 = 1600 read IOs

PA152, Vlastislav Dohnal, FI MUNI, 2022 50

Join Algorithms – IndexJoin

 R S R(X,Y), S(Y,Z)

 Assume:

 Index on attributes Y of R

 Procedure:

For each record s S

Look up matches in index records A

 For each record r A

 Output concatenation of r and s

PA152, Vlastislav Dohnal, FI MUNI, 2022 51

Join Algorithms – IndexJoin

 Example

Assume

 Index on Y of R: HT=2, LB=200

 Scenario 1

 Index fits in memory

Costs:

 Pass of S: 500 read IOs (B(S)=500, T(S)=5000)

 Searching in index: for free

 If match, read record of R 1 read IO

PA152, Vlastislav Dohnal, FI MUNI, 2022 52

Join Algorithms – IndexJoin

 Costs

Depends on the number of matches

Variants:

 A) Y in R is primary key; Y in S is foreign key

 1 record

Costs: 500 + 500011 = 5500 read IOs

 B) V(R,Y) = 5000 T(R) = 10 000

uniform distribution 2 records

Costs: 500 + 500021 = 10500 read IOs

 C) DOM(R,Y)=1 000 000 T(R) = 10 000

 10k/1m = 1/100 of record

Costs: 500 + 5000(1/100)1 = 550 read IOs

PA152, Vlastislav Dohnal, FI MUNI, 2022 53

Join Algorithms – IndexJoin

 Scenario 2

 Index does not fit in memory

 Index on Y of R is of 201 blocks

 Keep root-node block and 99 leaf-node blocks

in memory M=102

Costs for searching

 0(99/200) + 1(101/200) = 0.505 read IOs per

search (query)

PA152, Vlastislav Dohnal, FI MUNI, 2022 54

Join Algorithms – IndexJoin

 Scenario 2

Costs

 B(S) + T(S)(searching index + reading records)

Variants:

 A) 1 record

Costs: 500 + 5000(0.5+1) = 8000 read IOs

 B) 2 records

Costs: 500 + 5000(0.5+2) = 13000 read IOs

 C) 1/100 of record

Costs: 500 + 5000(0.5+1/100)

= 3050 read IOs

PA152, Vlastislav Dohnal, FI MUNI, 2022 55

Join Algorithms – Summary

R S

B(R) = 1000

B(S) = 500

Algorithm Costs

Cached Block-based Nested-loop Join 5500

Merge Join (w/o sorting) 1500

Merge Join (with sorting) 7500

Sort Join 4500

Index Join (R.Y index) 8000 550

Hash Join 4500

Hybrid 4140

Pointers 1600

PA152, Vlastislav Dohnal, FI MUNI, 2022

Join Algorithms – Summary
R S Assume B(S) < B(R), Y are common attributes

Algorithm Costs Limits

Block-based Nested-loop B(S) (1+B(R)) M=3

Cached version B(S)/(M-2) (M-2 + B(R)) M3

Merge Join (w/o sorting) B(R) + B(S) M=3

Merge Join (with sorting) 5 (B(R) + B(S)) 𝑀 = 𝐵 𝑅

Sort Join 3 (B(R) + B(S)) 𝑀 = 𝐵 𝑅 + 𝐵 𝑆 + 1

Index Join (R.Y index)
(max costs)

B(S) + T(S) (HT +)

e.g. = T(R)/V(R,Y)

min. M=4

Hash Join 3 (B(R) + B(S)) 𝑀 = 2 + 𝐵 𝑆
max. M-1 buckets

Hybrid 3 𝐵 𝑅 + 𝐵(𝑆) −
2 𝐵 𝑅 + 𝐵(𝑆)

𝐵 𝑅 𝑀 =
𝐵(𝑅)

𝐵 𝑅
+ 𝐵 𝑅 + 1

Pointers B(S)+B(R)+T(R)

e.g. = T(S)/V(S,Y)

M=B(hash index on S)+3

56

PA152, Vlastislav Dohnal, FI MUNI, 2022 57

Join Algorithms – Recommendation
 Cached Block-based Nested-loop Join

 Good for small relations (relative to memory size)

 HashJoin
 For equi-joins (equality on attributes only)

 Relations are not sorted or no indexes

 SortJoin
 Good for non-equi-joins

 E.g., R.Y > S.Y

 MergeJoin
 If relations are already sorted

 IndexJoin
 If index exists, it could be useful

 Depends on expected result size

PA152, Vlastislav Dohnal, FI MUNI, 2022 58

Two-Pass Algorithms

 Using sorting

Duplicate Elimination

Aggregations (GROUP BY)

Set operations

PA152, Vlastislav Dohnal, FI MUNI, 2022 59

Duplicate Elimination

 Procedure

Do 1st phase of MergeSort

 sorted runs on disk

Read all runs block by block

 Find smallest record and output it

 Skip all duplicate records

 Properties

Costs: 3B(R)

Limitations: B(R) ≤ M*(M-1)

 Optimal M ≥ 𝐵 𝑅 + 1

PA152, Vlastislav Dohnal, FI MUNI, 2022 60

Aggregations

 Procedure (analogous to previous)

Sort runs of R (by group-by attributes)

Read all runs block by block

 Find smallest value new group

 Compute all aggregates over all records of this group

 No more record in this group output it

 Properties

Costs: 3B(R)

Limitations: B(R) ≤ M*(M-1)

 Optimal M ≥ 𝐵 𝑅 + 1

PA152, Vlastislav Dohnal, FI MUNI, 2022 61

Set union
 Notice: No two-pass algo for bag union

 Set union

Do 1st phase of MergeSort on R and S
 sorted runs on disk

Read all runs (both R and S) gradually
 Find the first remaining record and output it

 Skip all duplicates of this record (in R and S)

 Properties

Costs: 3(B(R) + B(S))

Limitations: 𝐵 𝑅 + 𝐵 𝑆 ≤ 𝑀
 Need one block per all runs (of R and also S)

PA152, Vlastislav Dohnal, FI MUNI, 2022 62

Set intersection and difference

 RS, R-S, RBS, R-BS

 Procedure

Do 1st phase of MergeSort on R and S

Read all runs (both R and S) gradually

 Find the first remaining record t

 Count t’s occurrences in R and S (separately)

 #R, #S

 Copy to output (respecting specific operation)

PA152, Vlastislav Dohnal, FI MUNI, 2022 63

Set intersection and difference
 On copy to output:

RS: output t,
 if #R > 0 #S > 0

RBS: output t min(#R,#S)-times

R-S: output t,
 if #R > 0 #S = 0

R-BS: output t max(#R - #S,0)-times

 Properties

Costs: 3(B(R) + B(S))

Limitations: 𝐵 𝑅 + 𝐵 𝑆 ≤ 𝑀
 Need one block per all runs (of R and

also S)

PA152, Vlastislav Dohnal, FI MUNI, 2022 64

Two-Pass Algorithms

 Using hashing

Duplicate Elimination

Aggregations (GROUP BY)

Set operations

PA152, Vlastislav Dohnal, FI MUNI, 2022 65

Duplicate Elimination

 Procedure

Bucketize R into M-1 buckets

 store buckets on disk

For each bucket

 Read it in memory and remove duplicates; output

remaining records

 bucket size is max. M-1 blocks

 Properties

Costs: 3B(R)

Limitations: B(R) ≤ (M-1)2

PA152, Vlastislav Dohnal, FI MUNI, 2022 66

Aggregations
 Procedure (analogous to previous)

Bucketize R into M-1 buckets by group-by attrs.

 store buckets on disk

For each bucket

 Read block by block in memory and

 Create groups for new values and compute aggregates

 Limit on bucket size is not defined. But groups and partial
aggregates must fit in max. M-1 blocks.

 Output results

 Properties

Costs: 3B(R)

Limitations: B(R) ≤ (M-1)2
lze téměř zrušitcan be relaxed

PA152, Vlastislav Dohnal, FI MUNI, 2022 67

Set union, intersection, difference

 Procedure

Bucketize R and S (the same hash function)

 into M-1 buckets

Process the pair of buckets Ri and Si

 Read one in memory (depends on operation)

 bucket size: max. M-2

 Read the other gradually

 Properties

Costs: 3(B(R) + B(S))

Limitations on M depends on the operation

Set intersection, difference
 Intersection (smaller relation is S)

Load the buckets of S in mem

Restrictions: min(B(R), B(S)) ≤ (M-2)*(M-1)

 Difference R-S:

To eliminates duplicates in R, read buckets of

R into mem

Restrictions: B(R) ≤ (M-2)*(M-1)

 Difference S-R:

Load the buckets of S in mem

Restrictions: B(S) ≤ (M-2)*(M-1)
PA152, Vlastislav Dohnal, FI MUNI, 2022 68

Set Union
 Must eliminate duplicates in R and S

 for each i in hash addresses:
 read BktSi , build in-mem hash table & eliminate dups

 also gradually output the records

 read BktRi gradually:

 for each r in BktRi :

 if r not in in-mem hash table

 output r and add to in-mem hash table

 Restrictions: 𝐵 𝑅 + 𝐵 𝑆 < 𝑀

Need to load both the buckets into M

PA152, Vlastislav Dohnal, FI MUNI, 2022 69

Summary
 Operations

distinct, group by, set operations, joins

 Algorithm type

one-pass, one-and-a-half pass, two-pass

 Implementation

Sorting

Hashing

Exploiting indexes

 Costs

blocks to read/write

memory footprint

PA152, Vlastislav Dohnal, FI MUNI, 2022 70

Lecture Takeaways
 Influence of algorithm implementation on

costs

 Estimated costs leads to choice of

implementation

 If more mem is needed (estimation was

wrong)

 It is allocated and the operation is not

terminated.

 Also tiny code changes count!

PA152, Vlastislav Dohnal, FI MUNI, 2022 71

