PA152: Efficient Use of DB 8. Query Optimization

Vlastislav Dohnal

Generating Execution Plans

- Consider using:
 - □ Rel. algebra transformation rules
 - □ Implementations of rel. alg. operations
 - □ Use of existing indexes
 - Building indexes and sorting on the fly

Plan Cost Estimation

- Depends on costs of each operation
 i.e., its implementation
- Assumptions for operation costs:
 - Input is read from and disk
 - Output is kept in memory
 - Costs on CPU
 - Processing on CPU is faster than reading from disk
 - often neglected or simplified
 - Network communication costs
 - Issue in distributed databases
 - Ignoring contents of mem buffers/caches between queries
- Estimated costs of operation
 - \Box = number of read and write accesses to disk

Operation Cost Estimation

Example: settings in PostgreSQL

http://www.postgresql.org/docs/13/static/runtime-config-query.html#GUC-CPU-OPERATOR-COST https://www.postgresql.org/docs/13/static/runtime-config-resource.html

seq_page_cost (1.0)

- □ random_page_cost (4.0)
- \Box cpu_tuple_cost (0.01)
- □ cpu_index_tuple_cost (0.005)
- cpu_operator_cost (0.0025)
- □ shared_buffers (32MB) ¼ RAM
- □ effective_cache_size (4GB) ½ RAM
- □ work_mem (8MB)
 - Memory available to an operation

Operation Cost Estimation

Parameters

- \Box B(R) size of relation R in blocks
- \Box f(R) max. record count to store in a block
- □ M max. RAM buffers available (in blocks)
- HT(i) depth of index *i* (in levels)
 LB(i) sum of all leaf nodes of index *i*

Operation Implementation

Based on concept of iterator

- □ Open initialization
 - preparations before returning any record of result
- □ GetNext return next record of result
- Close finalization
 - release temp buffers, …
- Advantages

□ Result may not be returned at once

- Does not occupy main memory; may not be materialized on a disk
- Pipelining can be used

Accessing Relation: table scanRelation is not interlaced

R1 R2 R3 R4 R5 R6 R7 R8 .

Reading costs: B(R)

□ TwoPhase-MergeSort = 3B(R) reading/writing

Final writing is ignored

Relation is interlaced

R1 R2 *S1 S2* R3 R4 *S3 S4* ...

Reading costs are up to T(R) blocks!

□ TwoPhase-MergeSort

T(R) + 2B(R) reads and writes

Accessing Relation: index scan

- Read relation using an index
 - \Box Scanning index \rightarrow reading records
 - Read index blocks (<< B(R))</p>
 - Read records of relation
 - Applicable to any attribute
 - □ Max. costs:

- Max. number of nodes in an m-ary tree
- (max. B(R) and T(R) reads) + (up to $m^{HT+1} 1$) \Box Where *m* is an index arity (LB = m^{HT})
- Advantages
 - □ Can limit to a subset of records (interval)
 - Min. costs: 0 read blocks of relation + 1..HT blocks of index
 - $\hfill\square$ For a covering index

One-Pass Algorithms

- Implementation:
 - \Box Read relation \rightarrow Processing \rightarrow Output buffers
 - Processing records one by one

Operations

- Projection, Selection, Duplicate elimination (DISTINCT)
 - costs: B(R)
- □ Aggregation functions (GROUP BY)
 - costs: B(R)
- □ Set operations, cross product
 - costs: B(R) + B(S)

Duplicate Elimination – distinct

Procedure

- Test whether the record is in output
- □ If not, output the record
- Test for existence in output
 - □ Store already seen records in memory
 - Can use *M-2* blocks
 - □ No data structure: n^2 complexity (comparisons)
 - Use hashing
- Limitation: *B(R) < M-1*
- Can be implemented using iterators?

Distinct – example

Relation company(<u>company_key</u>,company_name)

explain analyze SELECT DISTINCT company_name FROM provider.company; HashAggregate (cost=438.68..554.67 rows=11600 width=20) (actual time=9.347..12.133 rows=11615 loops=1) Group Key: company_name

-> Seq Scan on company (cost=0.00..407.94 rows=12294 width=20)

(actual time=0.019..5.007 rows=12295 loops=1)

Planning time: 0.063 ms Execution time: 12.799 ms

explain analyze SELECT DISTINCT company_key FROM provider.company; Unique (cost=0.29..359.43 rows=12294 width=8) (actual time=0.041..8.857 rows=12295 loops=1) -> Index Only Scan using company_pkey on company (cost=0.29..328.69 rows=12294 width=8) (actual time=0.039..5.686 rows=12295 loops=1) Heap Fetches: 4726

Heap Fetches: 4726 Planning time: 0.063 ms Execution time: 9.645 ms

explain analyze SELECT DISTINCT company_name FROM provider.company ORDER BY company_name; Unique (cost=1243.05..1304.52 rows=11600 width=20) (actual time=53.468..59.072 rows=11615 loops=1)

-> Sort (cost=1243.05..1273.79 rows=12294 width=20) (actual time=53.467..55.482 rows=12295 loops=1) Sort Key: company_name Sort Method: guicksort Memory: 1214kB

-> Seq Scan on company (cost=0.00..407.94 rows=12294 width=20)

(actual time=0.018..5.338 rows=12295 loops=1)

12

PA152, Vlastislav Dohnal, FI MUNI, 2022

Aggregations / Grouping

Procedure

- Create groups for group-by attributes
- Store accumulated values of aggregation functions

Internal structure

- Organize values of grouping attributes, e.g., hashing
- Accumulated value of aggregations
 - MIN, MAX, COUNT, SUM one value (number)
 - AVG two numbers (SUM and COUNT)
- □ Accumulated values are small: *M-1* blocks are enough

Iterators:

Output block is not reserved.

- All prepared in Open
- Advantage of pipelining is inapplicable

PA152, Vlastislav Dohnal, FI MUNI, 2022

Set Operations

- Requirement: $min(B(R), B(S)) \le M-2$
 - □ Smaller relation read in memory
 - □ Larger relation is read gradually
 - □ Set union (possibly also Set difference):
 - Memory requirements: $B(R)+B(S) \le M-2$
- Assumption
 - □ R is larger relation, i.e., S is in memory
- Implementation
 - □ Create a temp search structure
 - E.g., hashing

Set union

□ Notice: Not *multiset union*

i.e., without ALL in SQL

- Read S; construct search structure
 Eliminate duplicates
 Output unique records immediately
- Read R and check existence of the record in S
 - □ If present, skip it.
 - □ If not seen, output it and add to structure
- Limitations
 - $\Box B(R) + B(S) \le M-2$

Set intersection

□ Notice: Not *multiset intersection*

Read S; construct search structure Eliminate duplicates

- Read R and check existence of the record in S
 - If present, output the record and delete it from structure.
 - □ If not seen, skip it.

Limitations

 $\Box \min(B(R), B(S)) \le M-2$

i.e., without ALL in SQL

Set Difference

R–S

Read S; construct search structure

- Eliminate duplicates
- Read R and check existence of the record in S
 - If not present, output it
 - Also insert into internal structure
- \square B(S) + B(R) \leq M-2 (worse case, but with pipelining)
 - Or max(B(R),B(S)) \leq M-2, when preprocessing R (no pipelining)

■ S–R

- Read S; construct search structure
 - Eliminate duplicates
- Read R and check existence of the record in S
 - If present, delete it from internal structure
- Output all remaining recs. in S (no pipel.) $B(S) \leq M-1$
 - PA152, Vlastislav Dohnal, FI MUNI, 2022

Multiset (Bag) Operations

- Bag union $R \cup_B S$ □ Easy exercise...
- Bag intersection $R \cap_B S$ Read S; construct search structure Eliminate duplicates by storing their count Read R and check existence of the record in S □ If record is present, output it and decrement record count! If counter is zero, delete it from internal structure □ If record is not found, skip it \Box min(B(R), B(S)) \leq M-2

Multiset (Bag) Operations

- Bag difference S–_BR
 - Same idea
 - □ If record of R is present in S, decrement its counter

19

- Output internal structure (recs. of S)
 - with positive count
- \square B(S) \leq M-1
- Bag difference R–_BS
 - □ By analogy…
 - \Box If record of R is not present in S \rightarrow output
 - 🗆 If found,
 - \rightarrow if counter is zero, output it
 - $\blacksquare \rightarrow$ decrement the counter and skip it
 - $\square B(S) \le M-2$ PA152, Vlastislav Dohnal, FI MUNI, 2022

Join Operation – one pass version

- Cross product
 - Easy exercise...
- Natural join
 - \Box Assume relations R(X,Y), S(Y,Z)
 - X unique attributes is R, Z unique attrs. in S
 - Y common attributes in R and S
 - Read S; construct search structure on Y

□ For each record of R, find all matching recs. of S

- Output concatenation of all combinations (eliminate repeating attributes Y)
- Outer join ?

One-Pass Algorithms

Summary

□ Unary operation: *op*(R)

■ B(R) ≤ M-1, 1 block for output; some need 1 for input

□ Binary operation: R *op* S

■ B(S) ≤ M-2, 1 block for R, 1 block for output □ Some ops require: B(R)+B(S) ≤ M-2 or max(B(R),B(S))<M-1

 $\Box \operatorname{Cost} = \mathsf{B}(\mathsf{R}) + \mathsf{B}(\mathsf{S})$

Based on size of memory buffers M

 \Box Known \rightarrow ok

 \Box Not known \rightarrow estimate it

■ Wrong size → swapping, use two-pass algo instead of one-pass algorithm

PA152, Vlastislav Dohnal, FI MUNI, 2022

Join Algorithms

- Relations does not fit in memory
 - □ So called "one and a half" passes algorithms
- Basic variant: Nested-loop join
 - □ for each s in S do
 - for each r in R do

 \Box if *r* and *s* match in Y **then** output concatenation of *r* and *s*.

Example

 $\Box T(R) = 10\ 000$ $T(S) = 5\ 000$ M=2

□ Costs = 5 000·(1+10 000) = 50 005 000 IOs

reading a record of S

Join Algorithms

- Relations accessed by blocks
- Block-based nested-loop join

R – inner relation, S – outer relation

Example:

 $\Box B(R) = 1000$ B(S) = 500 M=3 $\Box Costs = 500 \cdot (1+1000) = 500 500$ IOs

Join Algorithms

- Exploit all buffer blocks (M blocks)
 - Cached Block-based Nested-loop Join
 - Read M-2 blocks of relation S at once
 - Read relation R block by block
 Join records
- □ Costs: $B(S)/(M-2) \cdot (M-2 + B(R))$ IOs ■ Example $R \bowtie S$:
 - □ M=102
 - □ Costs: 5 · (100 + 1000) = 5 500 IOs
 - Swapping relations
 - Costs: 10 · (100 + 500) = 6 000 IOs

Join Algorithms – Summary

- Nested-loops join
 - □ Use always blocked variant
 - □ Read the smaller relation into memory (if M>3)
- Storage of relation
 - Important for final costs
 - Interlaced \rightarrow each record needs one I/O
 - Non-interlaced → each record needs B(R)/T(R) I/Os only
- Applicable to any join condition theta joins

Two-Pass Algorithms

Procedure:

- \Box Preprocess input relation \rightarrow store it
 - Sorting (Multi-way MergeSort)
 - Hashing
- Processing
- Operations:
 - Joins
 - □ Duplicate elimination (DISTINCT)
 - □ Aggregations (GROUP BY)
 - □ Set operations

Join Algorithms – MergeJoin ■ R⊠S R(X,Y), S(Y,Z)

Algorithm:

- □ Sort R and S
- $\Box i = 1; j = 1;$
- \Box while (i \leq T(R)) \land (j \leq T(S)) do
 - if R[i].Y = S[j].Y then doJoin()
 - else if R[i].Y > S[j].Y then j = j+1
 - else if R[i].Y < S[j].Y then i = i+1</pre>

Join Algorithms – MergeJoin Function doJoin():

Proceed nested-loop join for records of same Y

■ while $(R[i],Y = S[j],Y) \land (i \le T(R))$ do • j2 = j• while $(R[i],Y = S[j2],Y) \land (j2 \le T(S))$ do □ Output joined R[i] and S[j2] □ j2 = j2 + 1• i = i + 1□ j = j2

i	R[i].Y	S[j].Y	j
1	10	5	1
2	20	20	2
3	20	20	3
4	30	30	4
5	40	30	5
		50	6
		52	7

Costs

□ MergeSort of R and S \rightarrow 4·(B(R) + B(S)) □ MergeJoin \rightarrow B(R) + B(S)

Example (M=102)

□ MergeJoin

- Sorting: 4·(1000 + 500) = 6000 read/write IOs
- Joining: 1000 + 500 = 1500 read IOs
- Total: 7500 read/write IOs

Original cached block-based nested-loop join
 5500 read IOs

- Another example
 - □ B(R) = 10 000
 - \Box M = 102 blocks

10x larger relations!!!

 $B(S) = 5\ 000$

Cached Block-based Nested-loop Join
 (5 000/100) · (100 + 10 000) = 505 000 read IOs
 MergeJoin

■ 5·(10 000 + 5 000) = 75 000 read/write IOs

MergeJoin

- Preprocessing is expensive
 - If relations are sorted by Y, can be omitted.
- Analysis of IO costs
 - □ MergeJoin
 - linear complexity
 - Cached Block-based Nested-loop Join
 - quadratic complexity
 - $\Box \rightarrow$ from a certain size of relations, MergeJoin is better

Join Algorithms – MergeJoin Memory requirements \Box Limitation to max $(B(R), B(S)) < M^2$ Optimal memory size Using MergeSort on relation R • Number of runs = B(R)/M, Run length = M • Limitation: number of runs $\leq M - 1$ $\bullet B(R)/M < M \rightarrow B(R) < M^2 \rightarrow M > \sqrt{B(R)}$ Example $\Box B(R) = 1000 \rightarrow M > 31,62$ $\square B(S) = 500 \rightarrow M > 22,36$

Join Algorithms – MergeJoin→SortJoin ■ Improvement:

Not necessary to have the relations sorted completely

Join Algorithms – <u>SortJoin</u>

Improvement

- □ Prepare sorted runs of R and S
- □ Read 1st block of all runs (R and S)
- □ Get min value in Y
 - Find corresponding records in other runs
 - Join them
- In case too many records with the same Y
 Apply block-nested-loop join in the remaining memory

Join Algorithms – SortJoin

Costs

- \Box Sorted runs: 2·(B(R) + B(S))
- \Box Joining: B(R) + B(S)
- Limitations
 - \Box Run length = M, number of runs < M

$$\Box \rightarrow \mathsf{B}(\mathsf{R}) + \mathsf{B}(\mathsf{S}) < \mathsf{M} \cdot (\mathsf{M} \text{-} 1)$$

Example (M=102)

□ Sorting: 2·(1000 + 500) Joining: 1000 + 500

□ Total: 4 500 read/write IOs

■ → better than cached block-based nested-loop join

Join Algorithms – <u>HashJoin</u> ■ R⊠S R(X,Y), S(Y,Z)

Join Algorithms – HashJoin R(X,Y), S(Y,Z)■ R⊠S Define a hash function for attributes Y Create hashed index of R and S Address space is M-1 buckets \Box For each i \in [0,M-2] Read bucket i of R and S Find matching records and join them

- Joining buckets
 - □ Read whole bucket of S (≤ M-2)

May create an internal structure to speed up
 Read bucket of R block by block

Costs:

 \Box Create hashed index: 2·(B(R)+B(S))

□ Bucket joining: B(R)+B(S)

Limitations:

Size of each bucket of S ≤ M-2

 Estimate: min(B(R), B(S)) < (M - 1). (M - 2)

 Example:

 Hashing: 2.(1000+500)
 Joining: 1000+500

□ Total: 4 500 read/write IOs

- Minimum memory requirements
 - □ Hashing S; optimal bucket occupation
 - Memory buffer: M blocks
 - Bucket size = B(S) / (M-1)

□ This must be smaller than M (due to joining)

$$\Box \to [B(S)/(M-1)] \le M-2$$

$$\blacksquare \approx M - 1 > \left[\sqrt{B(S)} \right]$$

Optimization

- keep some buckets in memory
- □ <u>Hybrid HashJoin</u>
- Bucketing of S Optimal size B(S)=500

$$\Box \sqrt{B(S)} \approx 23$$

- □ i.e., each bucket is of 22 blocks
- □ M=102
 - \rightarrow keep 3 buckets in memory (66 blocks)
 - $\bullet \rightarrow$ 36 blocks of memory to spare

Join Algorithm – Hybrid HashJoin

- Structure of memory to hash R
 - \Box 1000/23 = 44 blocks per bucket

Records hashed to bucket 0-2

- Join immediately with S_{0-2} buckets (in memory) \rightarrow output

Join Algorithm – Hybrid HashJoin

- Joining buckets
 - □ Do for buckets with id 3-22
 - Read one whole bucket in memory; read the other bucket block by block

Join Algorithm – Hybrid HashJoin

Costs:

 \Box Bucketize S: 500 + 20.22 = 940 read/write IOs

□ Bucketize R: 1000 + 20·44 = 1880 read/write IOs

Only 20 buckets to write!

□ Joining: 20·44 + 20·22 = 1320 read IOs

Three buckets are already done (during bucketizing R)
 In total: 4140 read/write IOs

Join Algorithms Hybrid HashJoin How many buckets to keep in memory? Empirically: 1 bucket

Hashing record pointers

- Organize pointers to records instead of records themselves
 - Store pairs [key value, rec. pointer] in buckets
- Joining
 - If match, we must read the records

Join Algorithm – Hashing Pointers Example

- □ 100 key-pointer pairs fit in one block
- □ Estimate results size: 100 recs
- Costs:
 - Bucketize S in memory (500 IOs)
 □ 5000 records → 5000/100 blocks = 50 blocks in memory
 - Joining read R gradually and join
 - \square If match, read full records of S \rightarrow 100 read IOs
 - Total: 500 + 1000 + 100 = 1600 read IOs

Join Algorithms – <u>IndexJoin</u> ■ R⊠S R(X,Y), S(Y,Z)

Assume:

□ Index on attributes Y of R

- Procedure:
 - \Box For each record $s \in S$
 - \Box Look up matches in index \rightarrow records A
 - For each record $r \in A$
 - Output concatenation of r and s

Example

Assume

Index on Y of R: HT=2, LB=200

Scenario 1

□ Index fits in memory

- Costs:
 - Pass of S: 500 read IOs (B(S)=500, T(S)=5000)
 - Searching in index: for free
 □ If match, read record of R → 1 read IO

Costs

Depends on the number of matches

□Variants:

- A) Y in R is primary key; Y in S is foreign key
 → 1 record
 Costs: 500 + 5000·1·1 = 5500 read IOs
- B) V(R,Y) = 5000 $T(R) = 10\ 000$ uniform distribution $\rightarrow 2$ records Costs: 500 + 5000·2·1 = 10500 read IOs
- C) DOM(R,Y)=1 000 000 T(R) = 10 000
 → 10k/1m = 1/100 of record
 Costs: 500 + 5000 · (1/100) · 1 = 550 read IOs

Scenario 2

- Index does not fit in memory
- □ Index on Y of R is of 201 blocks
 - Keep root-node block and 99 leaf-node blocks in memory M=102
- □ Costs for searching
 - 0.(99/200) + 1.(101/200) = 0.505 read IOs per search (query)

Scenario 2

B(S) + T(S) (searching index + reading records)
 Variants:

- A) → 1 record
 Costs: 500 + 5000 · (0.5+1) = 8000 read IOs
- B) → 2 records
 Costs: 500 + 5000 · (0.5+2) = 13000 read IOs
- C) → 1/100 of record
 Costs: 500 + 5000 · (0.5+1/100)
 = 3050 read IOs

Join Algorithms – Summary

R ⋈ S B(R) = 1000 B(S) = 500

Algorithm	Costs
Cached Block-based Nested-loop Join	5500
Merge Join (w/o sorting)	1500
Merge Join (with sorting)	7500
Sort Join	4500
Index Join (R.Y index)	8000 ightarrow 550
Hash Join	4500
Hybrid	4140
Pointers	1600

Join Algorithms – Summary

$R \bowtie S$ Assume B(S) < B(R), Y are common attributes			
Algorithm	Costs	Limits	
Block-based Nested-loop	$B(S) \cdot (1+B(R))$	M=3	
Cached version	$B(S)/(M-2) \cdot (M-2 + B(R))$	M≥3	
Merge Join (w/o sorting)	B(R) + B(S)	M=3	
Merge Join (with sorting)	$5 \cdot (B(R) + B(S))$	$M = \sqrt{B(R)}$	
Sort Join	$3 \cdot (B(R) + B(S))$	$M = \sqrt{B(R)} + \sqrt{B(S)} + 1$	
Index Join (R.Y index) (max costs)	$B(S) + T(S) \cdot (HT + \theta)$ e.g. $\theta = T(R)/V(R,Y)$	min. M=4	
Hash Join	$3 \cdot (B(R) + B(S))$	$M = 2 + \sqrt{B(S)}$ max. M-1 buckets	
Hybrid	$3(B(R) + B(S)) - \frac{2(B(R) + B(S))}{\left[\sqrt{B(R)}\right]}$	$M = \frac{B(R)}{\left[\sqrt{B(R)}\right]} + \left(\left[\sqrt{B(R)}\right]\right) + 1$	
Pointers	$B(S)+B(R)+T(R) \cdot \theta$ e.g. $\theta = T(S)/V(S,Y)$	M=B(hash index on S)+3	

Join Algorithms – Recommendation

- Cached Block-based Nested-loop Join
 Good for small relations (relative to memory size)
- HashJoin
 - □ For equi-joins (equality on attributes only)
 - Relations are not sorted or no indexes
- SortJoin
 - □ Good for *non-equi-joins*
 - \Box E.g., R.Y > S.Y
- MergeJoin
 - If relations are already sorted
- IndexJoin
 - □ If index exists, it <u>could</u> be useful
 - Depends on expected result size

Two-Pass Algorithms

Using sorting

Duplicate Elimination

□ Aggregations (GROUP BY)

□ Set operations

Duplicate Elimination

Procedure

- □ Do 1st phase of MergeSort
 - $\blacksquare \rightarrow$ sorted runs on disk
- Read all runs block by block
 - Find smallest record and output it
 - Skip all duplicate records
- Properties
 - □ Costs: 3*B*(*R*)
 - □ Limitations: $B(R) \le M^*(M-1)$

• Optimal $M \ge \sqrt{B(R)} + 1$

Aggregations

- Procedure (analogous to previous)
 - □ Sort runs of R (by group-by attributes)

Read all runs block by block

• Find smallest value \rightarrow new group

□ Compute all aggregates over all records of this group
 □ No more record in this group → output it

Properties

□ Costs: 3*B*(*R*)

□ Limitations: $B(R) \le M^*(M-1)$

• Optimal $M \ge \sqrt{B(R)} + 1$

Set union

- Notice: No two-pass algo for bag union
- Set union
 - \Box Do 1st phase of MergeSort on *R* and *S*
 - $\blacksquare \rightarrow$ sorted runs on disk
 - □ Read all runs (both R and S) gradually
 - Find the first remaining record and output it
 - Skip all duplicates of this record (in R and S)
- Properties
 - \Box Costs: 3(B(R) + B(S))
 - \Box Limitations: $\sqrt{B(R) + B(S)} \le M$
 - Need one block per all runs (of R and also S)

Set intersection and difference

■ R \cap S, R-S, R \cap_{B} S, R- $_{B}$ S

Procedure

 \Box Do 1st phase of MergeSort on *R* and *S*

- Read all runs (both R and S) gradually
 - Find the first remaining record t
 - Count t's occurrences in R and S (separately)
 #_R, #_S
 - Copy to output (respecting specific operation)

Set intersection and difference On copy to output. $\Box R \cap S$: output *t*, • if $\#_{R} > 0 \land \#_{S} > 0$ $\Box R \cap_B S$: output *t* min($\#_R, \#_S$)-times \Box R-S: output *t*, • if $\#_{R} > 0 \land \#_{S} = 0$ $\Box R_{R}S$: output t max($\#_{R} - \#_{S}, 0$)-times Properties \Box Costs: 3(B(R) + B(S)) \Box Limitations: $\sqrt{B(R)} + B(S) \le M$ Need one block per all runs (of R and also S) PA152, Vlastislav Dohnal, FI MUNI, 2022 63

Two-Pass Algorithms

Using hashing

- Duplicate Elimination
- □ Aggregations (GROUP BY)
- □ Set operations

Duplicate Elimination

Procedure

□ Bucketize *R* into M-1 buckets

- $\bullet \rightarrow$ store buckets on disk
- For each bucket
 - Read it in memory and remove duplicates; output remaining records

bucket size is max. M-1 blocks

Properties

 \Box Costs: 3*B*(*R*)

□ Limitations: $B(R) \leq (M-1)^2$

Aggregations

Procedure (analogous to previous)

- □ Bucketize *R* into M-1 buckets by group-by attrs.
 - $\bullet \rightarrow$ store buckets on disk
- For each bucket
 - Read block by block in memory and
 - Create groups for new values and compute aggregates
 - Limit on bucket size is not defined. But groups and partial aggregates must fit in max. M-1 blocks.
 - Output results
- Properties
 - \Box Costs: 3*B*(*R*)
 - □ Limitations: $B(R) \le (M-1)^2$ can be relaxed

Set union, intersection, difference

Procedure

- □ Bucketize *R* and *S* (the same hash function)
 - into M-1 buckets
- \Box Process the pair of buckets R_i and S_i
 - Read one in memory (depends on operation)
 bucket size: max. M-2
 - Read the other gradually

Properties

 $\Box \text{ Costs: } 3(B(R) + B(S))$

Limitations on M depends on the operation

Set intersection, difference

- Intersection (smaller relation is S)
 - Load the buckets of S in mem
 - □ Restrictions: min(B(R), B(S)) ≤ (M-2)*(M-1)
- Difference R-S:
 - To eliminates duplicates in R, read buckets of R into mem
 - □ Restrictions: $B(R) \leq (M-2)^*(M-1)$

Difference S-R:

- Load the buckets of S in mem
- □ Restrictions: $B(S) \leq (M-2)^*(M-1)$

Set Union

- Must eliminate duplicates in R and S
- for each i in hash addresses:
 - read Bkt^S_i, build in-mem hash table & eliminate dups
 also gradually output the records
 - read Bkt^R_i gradually:

 \Box for each *r* in Bkt^R_i:

- if r not in in-mem hash table
 - output r and add to in-mem hash table
- Restrictions: $\sqrt{B(R)} + \sqrt{B(S)} < M$

Need to load both the buckets into M

Summary

Operations

□ distinct, group by, set operations, joins

Algorithm type

one-pass, one-and-a-half pass, two-pass

Implementation

Sorting

Hashing

Exploiting indexes

Costs

- blocks to read/write
- memory footprint

Lecture Takeaways

- Influence of algorithm implementation on costs
- Estimated costs leads to choice of implementation
- If more mem is needed (estimation was wrong)
 - It is allocated and the operation is *not* terminated.
- Also tiny code changes count!