
PA152: Efficient Use of DB

10. Schema Tuning

Vlastislav Dohnal

PA152, Vlastislav Dohnal, FI MUNI, 2022 2

Schema

 Relation schema

relation name and a list of attributes, their types

and integrity constraints

E.g.,

 Table student(uco, name, last_name, day_of_birth)

 Database schema

Schema of all relations

PA152, Vlastislav Dohnal, FI MUNI, 2022 3

Differences in Schema

 Same data organized differently

 Example of business requirements

Suppliers

 Address

Orders

 Part/product, quantity, supplier

PA152, Vlastislav Dohnal, FI MUNI, 2022 4

Differences in Schema
 Alternatives

Schema 1
 Order1(supplier_id, part_id, quantity,

supplier_address)

Schema 2
 Order2(supplier_id, part_id, quantity)

 Supplier(id, address)

 Differences

Schema 2 saves space.

Schema 1 may not keep address when there
is no order.

PA152, Vlastislav Dohnal, FI MUNI, 2022 5

Differences in Schema

 Performance trade-off

Frequent access to address of supplier given

an ordered part

 schema 1 is good (no need for join)

Many new orders

 schema 1 wastes space (address duplicates)

 relation will be stored in more blocks

PA152, Vlastislav Dohnal, FI MUNI, 2022 6

Theory of Good Schema

 Normal forms

1NF, 2NF, 3NF, Boyce-Codd NF, …

 Functional dependency

A B

 B functionally depends on A

 Value of attr. B is determined if we know the value

of attr. A

 Let t, s be rows of a relation,

then t[A] = s[A] t[B] = s[B]

PA152, Vlastislav Dohnal, FI MUNI, 2022 7

Theory of Good Schema

 Order1(supplier_id, part_id, quantity,

supplier_address)

 Functional dependency example:

supplier_id supplier_address

supplier_id, part_id quantity

PA152, Vlastislav Dohnal, FI MUNI, 2022 8

Theory of Good Schema

 K is a primary key

K R

L R for any L K

 i.e., for each attribute A in R holds:

K A and L A

 Example

Supplier(id, address)

 id address

 id is the (primary) key

PA152, Vlastislav Dohnal, FI MUNI, 2022 9

Theory of Good Schema

 Example

Order1(supplier_id, part_id, quantity,

supplier_address)

supplier_id supplier_address

supplier_id, part_id quantity

supplier_id, part_id is the primary key

PA152, Vlastislav Dohnal, FI MUNI, 2022 10

Schema Normalization

 1NF – all attributes are atomic

 2NF – all attributes depend on a whole

super-key

 3NF – all attributes depend directly on a

candidate key

no transitive dependency

 Normalization

= transformation to BCNF/3NF

PA152, Vlastislav Dohnal, FI MUNI, 2022 11

Schema Normalization

 A relation R is normalized if

every functional dependency X A involving

attributes in R has the property that X is a

(super-)key.

 Example

Order1(supplier_id, part_id, quantity,

supplier_address)

 supplier_id supplier_address

 supplier_id, part_id quantity

 Is not normalized

PA152, Vlastislav Dohnal, FI MUNI, 2022 12

Schema Normalization

 Example

Order2(supplier_id, part_id, quantity)

 supplier_id, part_id quantity

Supplier(id, address)

 id address

Schema is normalized

PA152, Vlastislav Dohnal, FI MUNI, 2022 13

Schema Normalization: Example

 Bank

Customer has an account

Customer has an address

Account is open at a branch of the bank

 Is relation normalized?

Bank(customer, account, address, branch)

PA152, Vlastislav Dohnal, FI MUNI, 2022 14

Schema Normalization: Example

 Relation

Bank(customer, account, address, branch)

customer account

customer address

account branch

 Primary key is customer

Proven by functional dependencies…

 Relation is not normalized

There is a transitive dependency.

PA152, Vlastislav Dohnal, FI MUNI, 2022 15

Schema Normalization: Example

 Relation decomposition

Bank(customer, account, address, branch)

 customer account

 customer address

Account(account, branch)

 account branch

Normalized now…

PA152, Vlastislav Dohnal, FI MUNI, 2022 16

Practical Schema Design

 Identify entities

Customer, supplier, order, …

 Each entity has attributes

Customer has an address, phone number, …

 There are two constraints on attributes:

1. An attribute cannot have attribute of its own (is

atomic).

2. The entity associated with an attribute must

functionally determine that attribute.

 A functional dependency for each non-key attribute.

PA152, Vlastislav Dohnal, FI MUNI, 2022 17

Practical Schema Design

 Each entity becomes a relation

 To these relations, add relations that

reflect relationships between entities

E.g., WorksOn(emp_id, project_id)

 Identify the functional dependencies

among all attributes and check that the

schema is normalized

 If functional dependency AB C, then ABC

should be part of the same relation.

PA152, Vlastislav Dohnal, FI MUNI, 2022 18

Vertical Partitioning
 Example: Telephone Provider

Customer entity has id, address and
remaining credit value.
 Deps:

 id address

 id credit

Normalized schema design
 Customer(id, address, credit)

 Or
 CustAddr(id, address)

 CustCredit(id, credit)

Which design is better?

PA152, Vlastislav Dohnal, FI MUNI, 2022 19

Vertical Partitioning

 Which design is better, depends on the

query pattern:

The application that sends a monthly

statement.

The credit is updated or examined several

times a day.

 The second schema might be better

Relation CustCredit is smaller

 Fewer blocks; may fit in main memory

 faster table/index scan

PA152, Vlastislav Dohnal, FI MUNI, 2022 20

Vertical Partitioning

 Single relation is better than two

 if attributes are queried together

 no need for join

 Two relations are better if

Attributes queried separately (or some much

more often)

Attributes are large (long strings, …)

 Caveat: LOBs are stored apart of the relation.

Or some attributes are updated more often

than the others.

PA152, Vlastislav Dohnal, FI MUNI, 2022 21

Vertical Partitioning

 Another example

Customer has id and address (street, city, zip)

 Is this normalization convenient?

CustStreet(id, street)

CustCity(id, city, zip)

PA152, Vlastislav Dohnal, FI MUNI, 2022 22

Vertical Partitioning: Performance

 R(X,Y,Z) - X integer, Y and Z large strings

Performance depends on query pattern

0

0.005

0.01

0.015

0.02

No
Partitioning -
Query XYZ

Vertical
Partitioning -
Query XYZ

No
Partitioning -

Query XY

Vertical
Partitioning -

Query XY

T
h

ro
u

g
p

u
t

(q
u

e
ri

e
s

/s
e

c
)

Table-scan

No partitioning:
R(X,Y,Z)

Vert. part.:
R1(X,Y)
R2(X,Z)

SQLServer 2k
Windows 2k

PA152, Vlastislav Dohnal, FI MUNI, 2022 23

Vertical Partitioning: Performance

 R(X,Y,Z) - X integer, Y and Z long strings

Selection X=?, project XY or XYZ

0

200

400

600

800

1000

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s
/s

e
c

)

% of access that only concern XY

no vertical
partitioning

vertical
partitioning

Index Scan

Vert. part.
gives advantage if
proportion of
accessing XY is
greater than 25%.

Join requires 2
index accesses.

PA152, Vlastislav Dohnal, FI MUNI, 2022 24

Vertical Antipartitioning

 Start with normalized schema

 Add attributes of a relation to the other

 Example

Stock market (brokers)

 Price trends for last 3 000 trading days

 Broker’s decision based on last 10 day mainly

Schema

 StockDetail(stock_id, issue_date, company)

 StockPrice(stock_id, date, price)

PA152, Vlastislav Dohnal, FI MUNI, 2022 25

Vertical Antipartitioning

 Schema

StockDetail(stock_id, issue_date, company)

StockPrice(stock_id, date, price)

 Queries for all 10-day prices are

expensive

Even though there is an index on stock_id,

date

Join is needed for further information from

StockDetail

PA152, Vlastislav Dohnal, FI MUNI, 2022 26

Vertical Antipartitioning

 Replicate some data

 Schema

StockDetail(stock_id, issue_date, company,

price_today, price_yesterday, …,

price_10d_ago)

StockPrice(stock_id, date, price)

 Queries for all 10-day prices

1x index scan; no join

PA152, Vlastislav Dohnal, FI MUNI, 2022 27

Vertical Antipartitioning

 Disadvantage

Data replication

 Not high

 Can diminish by not storing in StockPrice

 queries for average price get complicated, …

PA152, Vlastislav Dohnal, FI MUNI, 2022 28

Tuning Denormalization

 Denormalization

violating normalization

 for the sake of performance!

 Good for

Attributes from different normalized relations

are often accessed together

 Bad for

Updates are frequent

 locate “source” data to update replicas

PA152, Vlastislav Dohnal, FI MUNI, 2022 29

Tuning Denormalization
 Example (TPC-H)

 region(r_regionkey, r_name, r_comment)

 nation(n_nationkey, n_name, n_regionkey, n_comment)

 supplier(s_suppkey, s_name, s_address,

s_nationkey, s_phone, s_acctbal, s_comment)

 item(i_orderkey, i_partkey, i_suppkey, i_linenumber,

i_quantity, i_extendedprice, i_discount, i_tax,

i_returnflag, i_linestatus, i_shipdate, i_commitdate,

i_receiptdate, i_shipmode, i_comment)

 T(item) = 600 000

T(supplier) = 500, T(nation) = 25, T(region) = 5

 Query: Find items of European suppliers

PA152, Vlastislav Dohnal, FI MUNI, 2022 30

Tuning Denormalization
 Denormalization of item

 itemdenormalized (i_orderkey, i_partkey , i_suppkey,
i_linenumber, i_quantity, i_extendedprice,
i_discount, i_tax, i_returnflag, i_linestatus,
i_shipdate, i_commitdate, i_receiptdate,
i_shipmode, i_comment, i_regionname);

 600 000 rows

PA152, Vlastislav Dohnal, FI MUNI, 2022 31

Tuning Denormalization

 Queries:
SELECT i_orderkey, i_partkey, i_suppkey, i_linenumber,

i_quantity, i_extendedprice, i_discount, i_tax,
i_returnflag, i_linestatus, i_shipdate, i_commitdate,
i_receiptdate, i_shipinstruct, i_shipmode, i_comment, r_name

FROM item, supplier, nation, region
WHERE i_suppkey = s_suppkey AND s_nationkey = n_nationkey AND

n_regionkey = r_regionkey AND r_name = 'Europe';

SELECT i_orderkey, i_partkey, i_suppkey, i_linenumber,
i_quantity, i_extendedprice, i_discount, i_tax,
i_returnflag, i_linestatus, i_shipdate, i_commitdate,
i_receiptdate, i_shipinstruct, i_shipmode, i_comment, i_regionname

FROM itemdenormalized
WHERE i_regionname = 'Europe';

PA152, Vlastislav Dohnal, FI MUNI, 2022 32

Tuning Denormalization: Performance

 Query:

Find items of European suppliers

0.0000

0.0005

0.0010

0.0015

0.0020

normalized denormalized

T
h

ro
u

g
h

p
u

t
(Q

u
e
ri

e
s
/s

e
c
)

Normalized:
join of 4 relations

Denormalized:
one relation
54% perf. gain

Oracle 8i EE
Windows 2k
3x 18GB disk
(10 000 rpm)

54% gain

PA152, Vlastislav Dohnal, FI MUNI, 2022 33

Clustered Storage of Relations

 An alternative to denormalization

 Not always supported by DB system

 Oracle

Clustered storage of two relations

 Order(supplier_id, product_id, quantity)

 Supplier(id, address)

Storage

 Order records stored at the corresponding supplier

record

PA152, Vlastislav Dohnal, FI MUNI, 2022 34

Clustered Storage of Relations

 Example
 Order(supplier_id, product_id, quantity)

 Supplier(id, address)

10, Inter-pro.cz Hodonín
10, 235, 5
10, 545, 10

11, Unikov Bzenec
11, 123, 30
11, 234, 2
11, 648, 10
11, 956, 1

12, Školex Modřice
12, 12, 50
12, 34, 120

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 35

Horizontal Partitioning

 Divides table by its rows

Vertical partitioning = by columns

 Motivation

Smaller volume of data to process

Rapid deletions

 Use

Data archiving

Spatial partitioning

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 36

Horizontal Partitioning

 Automatically

Modern (commercial) DB systems

 MS SQL Server 2005 and later

 Oracle 9i and later, …

 PostgreSQL 10

 Manually

With DB support

 Query optimizer

Without DB support

PA152, Vlastislav Dohnal, FI MUNI, 2022 37

Horizontal Partitioning

 Query rewrites

Automatic partitioning

 No rewrites necessary

Manual partitioning

 With DB support

 No rewrites necessary

 Table inheritance / definition of views with UNION ALL

 Without DB support

 Manual query rewrite

 List of tables in FROM clause must be changed

PA152, Vlastislav Dohnal, FI MUNI, 2022 38

Horizontal Partitioning: SQL Server
 MS SQL Server 2005 and later

 Define partitioning function
 CREATE PARTITION FUNCTION

 Partitioning to intervals

 Define partitioning scheme
 CREATE PARTITION SCHEME

 Where to store data (what storage partitions)

 Create partitioned table
 CREATE TABLE … ON partitioning scheme

 Stored data are automatically split into partitions

 Create indexes
 CREATE INDEX

 Indexes are created on table partitions, i.e., automatically
partitioned

PA152, Vlastislav Dohnal, FI MUNI, 2022 39

Horizontal Partitioning: Oracle

 Oracle 9i and later

Partitioning by intervals, enums, hashing

 Composite partitioning supported

 Partitions split into subpartitions

 Included in syntax of CREATE TABLE
http://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7002.htm#i2129707

 PostgreSQL 10 and later

Partitioning by intervals, enums, hashing

 CREATE TABLE … (…) PARTITION BY RANGE

(…);

http://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7002.htm#i2129707

Horizontal Partitioning: MariaDB
 Part of SQL syntax, applies to indexes

 Types:

hash, range, list; also double partitioning

 Limitation on UNIQUE constraints

All columns used in the table's partitioning
expression must be part of every unique key the
table may have.

PA152, Vlastislav Dohnal, FI MUNI, 2022 40

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE) ENGINE=MyISAM

PARTITION BY HASH(MONTH(tr_date))

PARTITIONS 6

CREATE TABLE ti …

PARTITION BY RANGE (MONTH(tr_date)) (

PARTITION spring VALUES LESS THAN (4),

PARTITION summer VALUES LESS THAN (7),

PARTITION fall VALUES LESS THAN (10),

PARTITION winter VALUES LESS THAN MAXVALUE);

Including primary key

PA152, Vlastislav Dohnal, FI MUNI, 2022 41

Horizontal Partitioning: PostgreSQL

 PostgreSQL 8.2 and later

Partitioning by intervals, enums

 Principle (http://www.postgresql.org/docs/current/static/ddl-partitioning.html)

Table inheritance

 Create a base table

 No data stored, no indexes, …

 Individual partitions are inherited tables

 For each table, a CHECK constraint to limit data is defined

 Create necessary indexes

Disadvantage: ref. integrity cannot be used

http://www.postgresql.org/docs/current/static/ddl-partitioning.html

PA152, Vlastislav Dohnal, FI MUNI, 2022 42

Horizontal Partitioning: PostgreSQL

 Principle

 Inserting records

 Inserted into base table

 Insert rules defined on the base table

 Insertion to the “newest” partition only one RULE

 In general, one rule per partition is defined

 Triggers can be used too…

 In case views are used,

 Define INSTEAD OF triggers

PA152, Vlastislav Dohnal, FI MUNI, 2022 43

Horizontal Partitioning: PostgreSQL

 Example in xdohnal schema (db.fi.muni.cz)

Not partitioned table account

 Primary key id

 R(account) = 200 000

 V(account,home_city) = 5

Partitioned table account_parted

 by home_city (5 partitions)

 Partitions: account_parted1 .. account_parted5

home_city | count
home_city1 | 40020
home_city2 | 40186
home_city3 | 39836
home_city4 | 39959
home_city5 | 39999

PA152, Vlastislav Dohnal, FI MUNI, 2022 44

Horizontal Partitioning: PostgreSQL

 Statistics

Table Rows Sizes Indexes

account 200 000 41 984 kB 4 408 kB

account_parted 0 0 kB 8 kB

account_parted1 40 020 8 432 kB 896 kB

account_parted2 40 186 8 464 kB 896 kB

account_parted3 39 836 8 392 kB 888 kB

account_parted4 39 959 8 416 kB 896 kB

account_parted5 39 999 8 424 kB 896 kB

Totals: 200 000 42 128 kB 4 472 kB

PA152, Vlastislav Dohnal, FI MUNI, 2022 45

Horizontal Partitioning: PostgreSQL

 Query optimizer

Allow checking constraint on partitions

 Queries (compare execution plans)

select * from account where id=8;
select * from account_parted where id=8;

select count(*) from account where home_city='home_city1';
select count(*) from account_parted where home_city='home_city1';

select * from account where home_city='home_city1' and id=8;
select * from account_parted where home_city='home_city1' and id=8;

set constraint_exclusion=on;

Transaction Tuning
 Application view on a transaction

 It runs isolated – without any concurrent

activity.

 Database view on a transaction

Atomic and consistent change of data; many

can be run concurrently.

So, correctness of result must be ensured.

PA152, Vlastislav Dohnal, FI MUNI, 2022 46

Transaction Concurrency
 Two transactions are concurrent if their

executions overlap in time.

Can happen on a single thread/processor too,

e.g., one waiting for I/O to complete.

 Concurrency control

Control activity of transactions and make the

result appear as equivalent of serial

execution.

Typically achieved by mutual exclusion

 E.g., semaphore

PA152, Vlastislav Dohnal, FI MUNI, 2022 47

Transaction Concurrency
 A semaphore on entire database (one

transaction at a time)

Good for in-memory databases.

 Locking mechanism is good for secondary

memory databases.

Read (shared) locks and write (exclusive)

locks.

Record level and relation (table) level

PA152, Vlastislav Dohnal, FI MUNI, 2022 48

Concurrency through locking
 Rules

1. A transaction must hold a lock on x before

accessing it.

2. A transaction must not acquire a lock on any

item y after releasing a lock on any item x.

 This ensures correctness

no update can be made to data read (and

locked) by someone else.

PA152, Vlastislav Dohnal, FI MUNI, 2022 49

Duration of Transaction
 Duration effects on performance

More locks a transaction requests, more likely

it is that it will wait for some other transaction

to finish.

The longer T executes, the longer some other

transaction may wait if it is blocked by T.

 In operational DBs, shorter transactions

are preferred.

since updates are frequent

PA152, Vlastislav Dohnal, FI MUNI, 2022 50

Transaction Design
 Avoid user-interaction during a transaction

 Lock only what you need

E.g., do not filter recs in an app

 Chop transaction

E.g., T accesses x and y. Any other T’ accesses
at most one of x or y and nothing else. T can be
divided into two transaction (each modifying x
and y separately).

 Weaken isolation level

Many DBMSes default to releasing read locks on
completing the read IO.

PA152, Vlastislav Dohnal, FI MUNI, 2022 51

Levels of Isolation
 Serializable

 Repeatable read

Phantom reads (newly inserted recs)

 Read committed

Non-repeatable reads (a transaction has
committed an update)

 Read uncommitted

Dirty reads (non-committed recs); writes are
still atomic

 No locking

PA152, Vlastislav Dohnal, FI MUNI, 2022 52

Query Tuning: Takeaways
 Five basic principles

Think globally; fix locally

Break bottlenecks by partitioning

 transactions, relations, also more HW ((-:

Start-up costs are high; running costs are low

 E.g., it is expensive to begin a read operation on a

disk.

Render unto server what is due unto server

Be prepared for trade-offs

PA152, Vlastislav Dohnal, FI MUNI, 2022 53

