
PA152: Efficient Use of DB

12. Advanced Topics
sequences, spatial indexes, access control

Vlastislav Dohnal

PA152, Vlastislav Dohnal, FI MUNI, 2022 2

Credits

 Materials are based on presentations:

Courses CS245, CS345, CS345

 Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer

Widom

 Stanford University, California

 Course CS145 following the book

 Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom:

Database Systems: The Complete Book

 Book

 Andrew J. Brust, Stephen Forte:

Mistrovství v programování SQL Serveru 2005

 MSDN library by Microsoft

PA152, Vlastislav Dohnal, FI MUNI, 2022 3

Contents

 Generating IDs

 Spatial data

Data types, indexing

 DB security

Access control in DB

Stored procedures

Attacking DBMS

PA152, Vlastislav Dohnal, FI MUNI, 2022 4

Generating PK values
 Typically, a sequence of numbers

 Increasing monotonically

 Example:

 student(učo, first_name, last_name)

 Ad-hoc solution 1:
 Getting current maximum

maxučo := SELECT max(učo) FROM student;

 Incrementing and using in new record
INSERT INTO student
VALUES (maxučo+1, ‘Mad’, ‘Max’);

Disadvantage:
 Concurrent use  duplicate values

PA152, Vlastislav Dohnal, FI MUNI, 2022 5

Generating PK values
 Ad-hoc solution 2:

Combining INSERT and SELECT in a statement
INSERT INTO student VALUES (

(SELECT max(učo) FROM student)+1,
‘Mad’, ‘Max’);

Updates to index are atomic
 Looks promising….

 Nested select may be evaluated on “stale data”

Duplicate values are less probable.
 Improved performance only

 i.e., sending one statement to DB

PA152, Vlastislav Dohnal, FI MUNI, 2022 6

Generating PK values
 Solution 2: issues in concurrency

Always when in transaction

Depends on way of locking DB uses:
 SELECT locks data (shared lock)

 Others are blocked

 Locks are always released after commit

 INSERT

 values are correct (no dups), but others are
waiting

PA152, Vlastislav Dohnal, FI MUNI, 2022 7

Generating PK values
 Ad-hoc solution 3:

Auxiliary table
keys(table VARCHAR, id INTEGER)

1. UPDATE keys SET id=id+1
WHERE table=‘student’;

2. newid := SELECT id FROM keys
WHERE table=‘student’;

 Or one statements:
newid := UPDATE keys SET id=id+1

WHERE table=‘student’ RETURNING id;

3. INSERT INTO student
VALUES (newid , ‘Mad’, ‘Max’);

PA152, Vlastislav Dohnal, FI MUNI, 2022 8

Generating PK values
 Solution 3:

 Inconvenience in concurrency when in
transaction:
 UPDATE locks the record in keys

 Locks get released after commit (after INSERT)

 values are correct (no dups), but others are
waiting

Advantage:
 If combined with Solution 1

 i.e., two consecutive transactions

 values are correct (no dups) and nobody is
blocked!

PA152, Vlastislav Dohnal, FI MUNI, 2022
9

Generating PK values
 Recommended to use DB tools

Data types
 PostgreSQL: SERIAL, BIGSERIAL

 SQLServer: IDENTITY

Sequences
 Oracle, PostgreSQL

Toggle at attribute
 MySQL

 Support for getting last generated number

Good for inserting to tables with foreign keys
 E.g., inserting first item into e-shopping basket

 Creating a new basket & inserting goods

PA152, Vlastislav Dohnal, FI MUNI, 2022 10

Generating PK values
 CREATE SEQUENCE …

Numeric sequence generator

 Is parameterized:
 Min / max value, cyclic

 Functions in PostgreSQL

Nextval – generate new value

Currval – get last generated value

Can be imbedded in INSERT
 INSERT INTO table_name

VALUES (nextval(‘sequence_name’), …);

PA152, Vlastislav Dohnal, FI MUNI, 2022 11

Generating PK values: Performance

 Example for Solution 3:
 accounts(number, branchnum, balance);

 Clustered index on number

 counter(nextkey);
 One record with value 1

 For generating values of id by Solution 3

 Configuration:
 Transaction isolation: READ COMMITTED

 Only committed data are visible.

 Dual Xeon (550MHz,512Kb), 1GB RAM,
RAID controller, 4x 18GB drives (10000RPM),
Windows 2000.

PA152, Vlastislav Dohnal, FI MUNI, 2022 12

Generating PK values: Performance

 Batch of 100 000 insertions into accounts

 Generating ID values:

 DB support:

 SQLServer 7 (identity)

 insert into accounts (branchnum, balance) values (94496, 2789);

 Oracle 8i (sequence)

 insert into accounts values (seq.nextval, 94496, 2789);

 Solution 3:
begin transaction

update counter set nextkey = nextKey+1;

:nk := select nextkey from counter;
commit transaction
begin transaction

insert into accounts values(:nk, 94496, 2789);
commit transaction

PA152, Vlastislav Dohnal, FI MUNI, 2022 13

Generating PK values

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(s

ta
te

m
e
n

ts
/s

e
c
)

Number of concurrent insertion threads

SQLServer

system

ad-hoc

0

50

100

150

200

250

300

0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(s

ta
te

m
e
n

ts
/s

e
c
)

Number of concurrent insertion threads

Oracle

system

ad-hoc

 X axis:

 Increasing number of parallel insertions

 DB tools outperforms ad-hoc solution.

PA152, Vlastislav Dohnal, FI MUNI, 2022 14

Generating PK values

 PostgreSQL

CREATE TABLE product (

id SERIAL PRIMARY KEY,

title VARCHAR(10)

);

 Internal implementation

 Create new sequence

 product_id_seq

 Attribute id has defaults value:

 nextval(‘product_id_seq’)

PA152, Vlastislav Dohnal, FI MUNI, 2022 15

Generating PK values
 PostgreSQL (hand-crafted)

 CREATE SEQUENCE product_id_seq;

 CREATE TABLE product (

id INT PRIMARY KEY

DEFAULT nextval(‘product_id_seq’),

title VARCHAR(10)

);

 Usage:

 INSERT INTO product (title)

VALUES (‘Coil’);

 INSERT INTO product (id, title)

VALUES (DEFAULT, ‘Coil’);

PA152, Vlastislav Dohnal, FI MUNI, 2022 16

Contents

 Generating IDs

 Spatial data

Data types, indexing

 DB security

Access control in DB

Stored procedures

Attack on DB

PA152, Vlastislav Dohnal, FI MUNI, 2022 17

Processing Spatial Data

 Spatial data

Typically geographic, 2d geometry

 X, Y coordinates

x

y <X1,Y1, Attributes>
<X2,Y2, Attributes>
…

PA152, Vlastislav Dohnal, FI MUNI, 2022 18

Processing Spatial Data
 Spatial queries

What city is at position <Xi,Yi>?

What is in neighborhood of 5km from position
<Xi,Yi>?

What is the closest site to <Xi,Yi>?

 Without DB support
How to measure distance? (e.g., for GPS

coordinates)
 Can create user-defined function

 Index on X, or on XY, …
 May not help for some queries

PA152, Vlastislav Dohnal, FI MUNI, 2022 19

Processing Spatial Data

 Geometric constructs:

 lines, rectangles, polygons, …

 Operations:

 Is point inside a polygon? Do polygons intersect?

…

PA152, Vlastislav Dohnal, FI MUNI, 2022 20

Processing Spatial Data
 DB support is convenient

Special data types and functions/operators
 PostgreSQL

 Types: point, line, box, circle, …

 Functions: area(), center(), length(), …

 Operators: ~= same as, ~ contains, ?# intersects, …

 Index: R-tree

 SQL Server 2008
 Types: point, linestring, polygon, geography, …

 Index: Grid

 Oracle 9i
 Types: SDO_GEOMETRY (SDO_POINT, SDO_LINE,…)

 Index: R-tree, Quad-tree

PA152, Vlastislav Dohnal, FI MUNI, 2022 21

Processing Spatial Data
 Quad-tree

Search tree, where each node splits data
space into 2d regions of equal size
 e.g., 2d data  4 regions

Leaf nodes may be of larger capacity than 1.

PA152, Vlastislav Dohnal, FI MUNI, 2022 22

Processing Spatial Data

 Quad-tree

Supports points only

Extension to complex data:

 Item stored in many regions

 Complex objects wrapped

in rectangle

PA152, Vlastislav Dohnal, FI MUNI, 2022 23

Processing Spatial Data

 Grid

Bounded data space: xmin, ymin, xmax, ymax

SQL Server

 Grid of fixed dimensions: 4x4, 8x8, 16x16 cells

 Multiple levels

Zdroj: Microsoft MSDN, http://msdn.microsoft.com/en-us/library/bb964712.aspx

PA152, Vlastislav Dohnal, FI MUNI, 2022 24

Processing Spatial Data
 R-tree (Rectangle Tree)

 Extension of B+ trees to d-dimensional data
 Insertion, deletion – almost identical to B+ tree

 Leaves may contain more data items
 List is represented by minimum bounding rectangle (MBR)

 Internal nodes
 References to child nodes and their MBRs

 Node MBRs may overlap  search procedure has to
follow more colliding tree branches.

 Each data item stored exactly once
 Advantage over Grid and Quad-tree

PA152, Vlastislav Dohnal, FI MUNI, 2022
25

Processing Spatial Data
 R-tree

Organizing complex spatial data done by
wrapping them in MBR (object represented as a
rectangle)

PA152, Vlastislav Dohnal, FI MUNI, 2022 26

Contents

 Generating IDs

 Spatial data

Data types, indexing

 DB security

Access control in DB

Stored procedures

Attack on DB

PA152, Vlastislav Dohnal, FI MUNI, 2022 27

Access Control – Authorization

 Analogy to file systems

Objects

 File, directory, …

Subject

 Typically: owner, group, others (all users)

Access Right

 Defined on a an object O for a subject S

 Typically: read, write, execute

PA152, Vlastislav Dohnal, FI MUNI, 2022 28

Privileges
 Database systems

 Typically finer granularity than the typical file system

 Varies for objects

 Tables, views, sequences, schema, database, procedures, …

 Views

 an important tool for access control

 Subjects are typically user and group

 Often referred as authorization id or role

 Subject “others“ is denoted as PUBLIC

 Granting access for PUBLIC means allowing access to anyone.

PA152, Vlastislav Dohnal, FI MUNI, 2022

29

Privileges

 For relations/tables:

SELECT

 query the table’s content (i.e. print rows)

 Sometimes can be limited to selects attributes

 INSERT

 Sometimes can be limited to selects attributes

DELETE

UPDATE

 Sometimes can be limited to selects attributes

REFERENCES

 creating foreign keys referencing this table

PA152, Vlastislav Dohnal, FI MUNI, 2022 30

We add beers that
do not appear in
Beers; leaving
manufacturer NULL.

Privileges

 Example

 INSERT INTO Beers(name)

SELECT beer FROM Sells

WHERE NOT EXISTS

(SELECT * FROM Beers

WHERE name = beer);

Requirements for privileges:

 INSERT on the table Beers

 SELECT on Sells and Beers

PA152, Vlastislav Dohnal, FI MUNI, 2022 31

Privileges

 Views as Access Control

Relation

 Employee(id, name, address, salary)

Want to make salary confidential:

 CREATE VIEW EmpAddress AS

SELECT id, name, address

FROM Employee;

 Privileges:

 Revoke SELECT from table Employee

 Grant SELECT on EmpAddress

PA152, Vlastislav Dohnal, FI MUNI, 2022 32

Privileges

 Granting privileges

GRANT <list of privileges>

ON <relation or object>

TO <list of authorization ID’s>;

 You may also grant “grant privilege”

By appending clause “WITH GRANT OPTION“

 GRANT SELECT

ON TABLE EmpAddress

TO karel

WITH GRANT OPTION

PA152, Vlastislav Dohnal, FI MUNI, 2022 33

Privileges

 Example (to be run as owner of sells)

GRANT SELECT, UPDATE(price)

ON sells TO sally;

 User sally can

Read (select) from table sells

Update values in attribute price

PA152, Vlastislav Dohnal, FI MUNI, 2022 34

Privileges

 Example (to be run as owner of sells)

GRANT UPDATE ON sells TO sally

WITH GRANT OPTION;

 User sally can

Update values of any attribute in sells

Grant access to other users

 Only UPDATE can be granted, but can be limited

to some attributes.

PA152, Vlastislav Dohnal, FI MUNI, 2022 35

Privileges

 Revoking statement

REVOKE <list of privileges>

ON <relation or object>

FROM <list of authorization ID’s>;

 Listed users can no longer use the

priviledges.

But they may still have the privilege

 because they obtained it independently

from elsewhere.

 Or they are members of a group or

PUBLIC is applied

PA152, Vlastislav Dohnal, FI MUNI, 2022 36

Privileges
 Revoking privileges

Appending to REVOKE statement:
 CASCADE – Now, any grants made by a revokee are

also not in force, no matter how far the privilege was
passed

 RESTRICT (implicit) –

 If the privilege has been passed to others, the REVOKE
fails as a warning

 So something else must be done to “chase the privilege
down.”

REVOKE GRANT OPTION FOR …
 Removes the “grant option” only.

 Omitting this leads to removing the privilege and also
the grant option!

PA152, Vlastislav Dohnal, FI MUNI, 2022 37

Privileges – Diagram
 Diagram depict privileges granted by a

grantor to a grantee

Each object has its diagram

Node is specified by
 Role (user / group)

 Granted privilege

 Flag of ownership or granting option

Edge from X to Y
 X has granted the privilege to Y

root,all,** karel,INSERT,* jana,INSERT, *

jana, INSERT** ownership, * grant option

PA152, Vlastislav Dohnal, FI MUNI, 2022 38

Privileges – Diagram
 „root,all “ denotes

user root has privilege all.

 Privilege „all“ on table means

= insert, update, delete, select, references

 Grant option “*“

The privilege can by granted by the user

 Option “**“

Object owner (root node of each diagram)

 Object owner

All is granted by default

Can pass the privileges to other users

PA152, Vlastislav Dohnal, FI MUNI, 2022 39

Privileges – Diagram

 Manipulating edges

When A grants P to B, We draw an edge

from AP * or AP ** to BP.

 Or to BP * if the grant is with grant option.

 If A grants a subprivilege Q of P then the

edge goes to BQ or BQ *, instead.

 Q can be “UPDATE(a) on R”,

whereas P is “UPDATE ON R”

PA152, Vlastislav Dohnal, FI MUNI, 2022 40

Privileges – Diagram

 Test for access

User C has privilege Q as long as there is a

path from XP** to OP, OP* nebo OP**, where

 P is superprivilege of Q or the same as Q, and

 O = C or C is a member of group O

PA152, Vlastislav Dohnal, FI MUNI, 2022 41

Privileges – Diagram

AP**

A owns the object
on which P is a
privilege.

BP*

A:
GRANT P TO B
WITH GRANT OPTION

CP*

B:
GRANT P TO C
WITH GRANT OPTION

CP

A:
GRANT P TO C

PA152, Vlastislav Dohnal, FI MUNI, 2022 42

Privileges – Diagram

 Revoking privileges

 If A revokes P from B

 Test whether there is an edge AP  BP.

 If so, edge is deleted.

 If B granted P to someone else, CASCADE

must be appended.

AP** BP* CP*

CP

PA152, Vlastislav Dohnal, FI MUNI, 2022 43

Privileges – Diagram

 Revoking privileges

Having deleted an edge, we must check

 each node has a path from the ** node,

representing ownership.

Any node with no such path represents a

revoked privilege

 So it is deleted from the diagram including all

edges from it.

PA152, Vlastislav Dohnal, FI MUNI, 2022 44

Privileges – Diagram

AP**

A:
REVOKE P FROM B
CASCADE

BP*

Not only does B lose
P*, but C loses P*.
Delete nodes BP* and CP*.

CP*

Even had
C passed P*
to B, both
nodes are
still cut off.

CP

However, C still
has P without grant
option because of
the direct grant.

PA152, Vlastislav Dohnal, FI MUNI, 2022 45

Privileges – Diagram

AP**

A:
REVOKE Q FROM B
CASCADE

BP*

Not only B loses Q,
but BP* changes to
BR, so CQ is deleted.

CQ

CP

P = {Q*,R}

BR

PA152, Vlastislav Dohnal, FI MUNI, 2022 46

Contents

 Generating IDs

 Spatial data

Data types, indexing

 DB security

Access control in DB

Stored procedures

Attack on DB

PA152, Vlastislav Dohnal, FI MUNI, 2022 47

Stored Procedures

 User-defined program implementing an

activity

E.g., factorial computation, distance between

GPS coords, inserting rows to multiple tables, …

 PostgreSQL

CREATE FUNCTION name ([parameters,…])

[RETURNS type]

…code…

PA152, Vlastislav Dohnal, FI MUNI, 2022 48

Stored Procedures

 Example:

Compute average salary without revealing the

individual salaries

 Table Employee(id, name, address, salary)

PostgreSQL:

 CREATE FUNCTION avgsal() RETURNS real

AS ‘SELECT avg(salary) FROM employee’

LANGUAGE SQL;

User executes the procedure (function):

 SELECT avgsal();

PA152, Vlastislav Dohnal, FI MUNI, 2022 49

Stored Procedures

 Example (cont.):

Salaries are not secured

To secure we need to

 REVOKE SELECT ON Employee FROM …

 GRANT EXECUTE ON FUNCTION avgsal() TO …

By running “SELECT avgsal();” the procedure

is executed with privileges of current user.

 it needs SELECT on Employee!

PA152, Vlastislav Dohnal, FI MUNI, 2022 50

Stored Procedures

 Context of execution

Can be set during procedure creation

Types:

 INVOKER – run in the context of user that calls the

function (typically current user)

 DEFINER– run in the context of the owner of

function

 „particular user“ – run in the context of the

selected user

 …

PA152, Vlastislav Dohnal, FI MUNI, 2022 51

Stored Procedures

 Execution context

PostgreSQL

 SECURITY INVOKER

 SECURITY DEFINER

 Solution: set the context to owner

CREATE FUNCTION …. LANGUAGE SQL

SECURITY DEFINER;

 Assumption: owner has the SELECT privilege to

Employee

PA152, Vlastislav Dohnal, FI MUNI, 2022 52

Attacks to DB system

 Network connection

DB port open to anyone  use firewall

Unsecured connection

 Apply SSL

 Logging in

Weak password

Limit users to logging in

 Allow selected user accounts, IP addresses and

databases

Using one generic (admin) DB account

PA152, Vlastislav Dohnal, FI MUNI, 2022 53

Attacks to DB system

 SQL injection

Attack by sending SQL commands in place of

valid data in forms.

Typically related to using only one DB

account

 which is admin)-:

PA152, Vlastislav Dohnal, FI MUNI, 2022 54

SQL injection – example
 App presents a form to enter string to update

customer’s note in DB:

 Internally the app use the following DB statement:
UPDATE customer SET note=‘$note’

WHERE id=current_user;

 Malicious user enters to the form:
Vader’; DROP TABLE customer; --

 After variable expansion we get string:
UPDATE customer

SET note=’Vader’; DROP TABLE customer; --’

WHERE id=current_user;

All in one line!

SQL Injection: Countermeasures

 Use specific user account

Avoid using admin account

 Check input values

 Input length, escape characters,…

 Functions in programming language

mysql_real_escape_string(), add_slashes()

$dbh->quote($string)

 Functions in DB

quote_literal(str)
 returns a string str suitably quoted to be used as a

string literal in an SQL statement

PA152, Vlastislav Dohnal, FI MUNI, 2022 55

SQL Injection: Countermeasures

 Prepared statements

Parsed statements prepared in DB

 i.e., compiled templates ready for use

Values are then substituted

 Parameters do not need to be quoted then

May be used repetitively

Example:

PA152, Vlastislav Dohnal, FI MUNI, 2022 56

$st = $dbh->prepare("SELECT * FROM emp WHERE name LIKE ?");

$st->execute(array("%$_GET[name]%“));

SQL Injection: Countermeasures

 Prepared statements at server-side

The same concept, but stored in DB

Typically in procedural languages in DB

PostgreSQL
 PREPARE emp_row(text) AS SELECT * FROM emp

WHERE name LIKE $1;
EXECUTE emp_row(‘%John%’);

 Query is planned in advance

Planning time can be amortized

But: the plan is generic!
 i.e., without any optimization induced by knowing the

parameter

Lasts only for the duration of the current db session
PA152, Vlastislav Dohnal, FI MUNI, 2022 57

Prepared Statements: Performance

 Prepared execution yields better

performance when the query is executed

more than once:

No compilation

No access to

catalog.

 Experiment performed on Oracle8iEE on

Windows 2000.
PA152, Vlastislav Dohnal, FI MUNI, 2022 58

0

0.2

0.4

0.6

0 1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s
/s

e
c
)

No. of repetitions

direct

prepared

Attacking Views
 Views protect data rows…

 if permissions are correctly set

 E.g., student(studentid, firstname, lastname, fieldofstudy)
 CREATE OR REPLACE VIEW studentssme AS SELECT * FROM student

WHERE fieldofstudy = 'N-SSME‘;

 But, creating a “cheap” function
 CREATE OR REPLACE FUNCTION test(name text, study text)

RETURNS boolean AS $$
begin
raise notice 'Name: %, Study: %', name, study;
return true;

end;
$$ LANGUAGE plpgsql VOLATILE COST 0.00001;

 The query leaks other students in a side channel…
 SELECT * FROM studentssme WHERE test(lastname, fieldofstudy)

 NOTICE: Name: Nový, Study: N-AplInf
NOTICE: Name: Dlouhý, Study: N-Inf
NOTICE: Name: Svoboda, Study: N-AplInf
NOTICE: Name: Starý, Study: N-SSME
NOTICE: Name: Lukáš, Study: N-SSME
…

 Countermeasures:
 ban creating new DB objects

 use security_barrier in Pg.conf or in create view

PA152, Vlastislav Dohnal, FI MUNI, 2022 59

Lecture Takeaways
 Primary key value generation

 Extensions to more complex data with

indexing support

 Securing DB

Avoid using admin account for general use

Mind “no-action” revoke command and

recheck the resulting graph of grants.

PA152, Vlastislav Dohnal, FI MUNI, 2022 60

