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Generating PK values
 Typically, a sequence of numbers

 Increasing monotonically

 Example:

 student(učo, first_name, last_name)

 Ad-hoc solution 1:
 Getting current maximum

maxučo := SELECT max(učo) FROM student;

 Incrementing and using in new record
INSERT INTO student 
VALUES (maxučo+1, ‘Mad’, ‘Max’);

Disadvantage:
 Concurrent use  duplicate values
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Generating PK values
 Ad-hoc solution 2:

Combining INSERT and SELECT in a statement
INSERT INTO student VALUES (

(SELECT max(učo) FROM student)+1,
‘Mad’, ‘Max’);

Updates to index are atomic
 Looks promising….

 Nested select may be evaluated on “stale data”

Duplicate values are less probable.
 Improved performance only

 i.e., sending one statement to DB
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Generating PK values
 Solution 2: issues in concurrency

Always when in transaction

Depends on way of locking DB uses:
 SELECT locks data (shared lock)

 Others are blocked

 Locks are always released after commit

 INSERT

 values are correct (no dups), but others are 
waiting
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Generating PK values
 Ad-hoc solution 3:

Auxiliary table
keys(table VARCHAR, id INTEGER)

1. UPDATE keys SET id=id+1 
WHERE table=‘student’;

2. newid := SELECT id FROM keys
WHERE table=‘student’;

 Or one statements:
newid := UPDATE keys SET id=id+1 

WHERE table=‘student’ RETURNING id;

3. INSERT INTO student 
VALUES (newid , ‘Mad’, ‘Max’);
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Generating PK values
 Solution 3:

 Inconvenience in concurrency when in 
transaction:
 UPDATE locks the record in keys

 Locks get released after commit (after INSERT)

 values are correct (no dups), but others are 
waiting

Advantage:
 If combined with Solution 1

 i.e., two consecutive transactions

 values are correct (no dups) and nobody is 
blocked!
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Generating PK values
 Recommended to use DB tools

Data types
 PostgreSQL: SERIAL, BIGSERIAL

 SQLServer: IDENTITY

Sequences
 Oracle, PostgreSQL

Toggle at attribute
 MySQL

 Support for getting last generated number

Good for inserting to tables with foreign keys
 E.g., inserting first item into e-shopping basket

 Creating a new basket & inserting goods
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Generating PK values
 CREATE SEQUENCE …

Numeric sequence generator

 Is parameterized:
 Min / max value, cyclic

 Functions in PostgreSQL

Nextval – generate new value

Currval – get last generated value

Can be imbedded in INSERT
 INSERT INTO table_name

VALUES (nextval(‘sequence_name’), …);
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Generating PK values: Performance

 Example for Solution 3:
 accounts(number, branchnum, balance);

 Clustered index on number

 counter(nextkey);
 One record with value 1

 For generating values of id by Solution 3

 Configuration:
 Transaction isolation: READ COMMITTED

 Only committed data are visible.

 Dual Xeon (550MHz,512Kb), 1GB RAM, 
RAID controller, 4x 18GB drives (10000RPM),
Windows 2000.
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Generating PK values: Performance

 Batch of 100 000 insertions into accounts

 Generating ID values:

 DB support: 

 SQLServer 7 (identity)

 insert into accounts (branchnum, balance) values (94496, 2789);

 Oracle 8i (sequence)

 insert into accounts values (seq.nextval, 94496, 2789);

 Solution 3:
begin transaction

update counter set nextkey = nextKey+1;

:nk := select nextkey from counter;
commit transaction
begin transaction

insert into accounts values( :nk, 94496, 2789);
commit transaction
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Generating PK values
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 X axis:

 Increasing number of parallel insertions

 DB tools outperforms ad-hoc solution.
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Generating PK values

 PostgreSQL

CREATE TABLE product (

id SERIAL PRIMARY KEY, 

title VARCHAR(10)

);

 Internal implementation

 Create new sequence

 product_id_seq

 Attribute id has defaults value:

 nextval(‘product_id_seq’)
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Generating PK values
 PostgreSQL (hand-crafted)

 CREATE SEQUENCE product_id_seq;

 CREATE TABLE product (

id INT PRIMARY KEY

DEFAULT nextval(‘product_id_seq’), 

title VARCHAR(10)

);

 Usage:

 INSERT INTO product (title) 

VALUES (‘Coil’);

 INSERT INTO product (id, title) 

VALUES (DEFAULT, ‘Coil’);
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Processing Spatial Data

 Spatial data

Typically geographic, 2d geometry

 X, Y coordinates

x

y <X1,Y1, Attributes>
<X2,Y2, Attributes>
…
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Processing Spatial Data
 Spatial queries

What city is at position <Xi,Yi>?

What is in neighborhood of 5km from position
<Xi,Yi>?

What is the closest site to <Xi,Yi>?

 Without DB support
How to measure distance? (e.g., for GPS 

coordinates)
 Can create user-defined function

 Index on X, or on XY, …
 May not help for some queries



PA152, Vlastislav Dohnal, FI MUNI, 2022 19

Processing Spatial Data

 Geometric constructs:

 lines, rectangles, polygons, …

 Operations:

 Is point inside a polygon? Do polygons intersect? 

…
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Processing Spatial Data
 DB support is convenient

Special data types and functions/operators
 PostgreSQL

 Types: point, line, box, circle, …

 Functions: area(), center(), length(), …

 Operators: ~= same as, ~ contains, ?# intersects, …

 Index: R-tree

 SQL Server 2008
 Types: point, linestring, polygon, geography, …

 Index: Grid

 Oracle 9i
 Types: SDO_GEOMETRY (SDO_POINT, SDO_LINE,…)

 Index: R-tree, Quad-tree
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Processing Spatial Data
 Quad-tree

Search tree, where each node splits data 
space into 2d regions of equal size
 e.g., 2d data  4 regions

Leaf nodes may be of larger capacity than 1.
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Processing Spatial Data

 Quad-tree

Supports points only

Extension to complex data:

 Item stored in many regions

 Complex objects wrapped 

in rectangle
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Processing Spatial Data

 Grid

Bounded data space: xmin, ymin, xmax, ymax

SQL Server

 Grid of fixed dimensions: 4x4, 8x8, 16x16 cells

 Multiple levels

Zdroj: Microsoft MSDN, http://msdn.microsoft.com/en-us/library/bb964712.aspx
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Processing Spatial Data
 R-tree (Rectangle Tree)

 Extension of B+ trees to d-dimensional data
 Insertion, deletion – almost identical to B+ tree

 Leaves may contain more data items
 List is represented by minimum bounding rectangle (MBR)

 Internal nodes
 References to child nodes and their MBRs

 Node MBRs may overlap  search procedure has to 
follow more colliding tree branches.

 Each data item stored exactly once
 Advantage over Grid and Quad-tree
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Processing Spatial Data
 R-tree

Organizing complex spatial data done by 
wrapping them in MBR (object represented as a 
rectangle)
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Access Control – Authorization

 Analogy to file systems

Objects

 File, directory, …

Subject

 Typically: owner, group, others (all users)

Access Right

 Defined on a an object O for a subject S

 Typically: read, write, execute
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Privileges
 Database systems

 Typically finer granularity than the typical file system

 Varies for objects

 Tables, views, sequences, schema, database, procedures, …

 Views

 an important tool for access control

 Subjects are typically user and group

 Often referred as authorization id or   role

 Subject “others“ is denoted as PUBLIC

 Granting access for PUBLIC means allowing access to anyone.
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Privileges

 For relations/tables:

SELECT

 query the table’s content (i.e. print rows)

 Sometimes can be limited to selects attributes

 INSERT

 Sometimes can be limited to selects attributes

DELETE

UPDATE

 Sometimes can be limited to selects attributes

REFERENCES

 creating foreign keys referencing this table
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We add beers that 
do not appear in 
Beers; leaving 
manufacturer NULL.

Privileges

 Example

 INSERT INTO Beers(name)

SELECT beer FROM Sells

WHERE NOT EXISTS

(SELECT * FROM Beers

WHERE name = beer);

Requirements for privileges:

 INSERT on the table Beers

 SELECT on Sells and Beers
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Privileges

 Views as Access Control

Relation

 Employee(id, name, address, salary)

Want to make salary confidential:

 CREATE VIEW EmpAddress AS

SELECT id, name, address

FROM Employee;

 Privileges:

 Revoke SELECT from table Employee

 Grant SELECT on EmpAddress
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Privileges

 Granting privileges

GRANT <list of privileges>

ON <relation or object>

TO <list of authorization ID’s>;

 You may also grant “grant privilege”

By appending clause “WITH GRANT OPTION“

 GRANT SELECT 

ON TABLE EmpAddress

TO karel

WITH GRANT OPTION
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Privileges

 Example (to be run as owner of sells)

GRANT SELECT, UPDATE(price)

ON sells TO sally;

 User sally can

Read (select) from table sells

Update values in attribute price
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Privileges

 Example (to be run as owner of sells)

GRANT UPDATE ON sells TO sally

WITH GRANT OPTION;

 User sally can

Update values of any attribute in sells

Grant access to other users

 Only UPDATE can be granted, but can be limited 

to some attributes.
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Privileges

 Revoking statement

REVOKE <list of privileges>

ON <relation or object>

FROM <list of authorization ID’s>;

 Listed users can no longer use the 

priviledges.

But they may still have the privilege 

 because they obtained it independently 

from elsewhere.

 Or they are members of a group or 

PUBLIC is applied
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Privileges
 Revoking privileges

Appending to REVOKE statement:
 CASCADE – Now, any grants made by a revokee are 

also not in force, no matter how far the privilege was 
passed

 RESTRICT (implicit) –

 If the privilege has been passed to others, the REVOKE 
fails as a warning

 So something else must be done to “chase the privilege 
down.”

REVOKE GRANT OPTION FOR …
 Removes the “grant option” only.

 Omitting this leads to removing the privilege and also 
the grant option!
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Privileges – Diagram
 Diagram depict privileges granted by a 

grantor to a grantee

Each object has its diagram

Node is specified by
 Role (user / group)

 Granted privilege 

 Flag of ownership or granting option

Edge from X to Y
 X has granted the privilege to Y

root,all,** karel,INSERT,* jana,INSERT, *

jana, INSERT** ownership, * grant option
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Privileges – Diagram
 „root,all “ denotes

user root has privilege all.

 Privilege „all“ on table means

= insert, update, delete, select, references

 Grant option “*“

The privilege can by granted by the user

 Option “**“

Object owner (root node of each diagram)

 Object owner

All is granted by default

Can pass the privileges to other users
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Privileges – Diagram

 Manipulating edges

When A grants P to B, We draw an edge 

from AP * or AP ** to BP.

 Or to BP * if the grant is with grant option.

 If A grants a subprivilege Q of P then the 

edge goes to BQ or BQ *, instead.

 Q can be “UPDATE(a) on R”, 

whereas P is “UPDATE ON R”
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Privileges – Diagram

 Test for access

User C has privilege Q as long as there is a 

path from XP** to OP, OP* nebo OP**, where

 P is superprivilege of Q or the same as Q, and

 O = C or C is a member of group O
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Privileges – Diagram

AP**

A owns the object 
on which P is a 
privilege.

BP*

A: 
GRANT P TO B 
WITH GRANT OPTION

CP*

B: 
GRANT P TO C 
WITH GRANT OPTION

CP

A: 
GRANT P TO C
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Privileges – Diagram

 Revoking privileges

 If A revokes P from B 

 Test whether there is an edge AP  BP.

 If so, edge is deleted.

 If B granted P to someone else, CASCADE

must be appended.

AP** BP* CP*

CP
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Privileges – Diagram

 Revoking privileges

Having deleted an edge, we must check

 each node has a path from the ** node, 

representing ownership.

Any node with no such path represents a 

revoked privilege

 So it is deleted from the diagram including all 

edges from it.
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Privileges – Diagram

AP**

A: 
REVOKE P FROM B 
CASCADE

BP*

Not only does B lose
P*, but C loses P*.
Delete nodes BP* and CP*.

CP*

Even had
C passed P*
to B, both
nodes are
still cut off.

CP

However, C still
has P without grant
option because of
the direct grant.
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Privileges – Diagram

AP**

A: 
REVOKE Q FROM B 
CASCADE

BP*

Not only B loses Q, 
but BP* changes to
BR, so CQ is deleted.

CQ

CP

P = {Q*,R}

BR
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Stored Procedures

 User-defined program implementing an 

activity

E.g., factorial computation, distance between

GPS coords, inserting rows to multiple tables, …

 PostgreSQL

CREATE FUNCTION name ([parameters,…])

[RETURNS type]

…code…
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Stored Procedures

 Example:

Compute average salary without revealing the 

individual salaries

 Table Employee(id, name, address, salary)

PostgreSQL:

 CREATE FUNCTION avgsal() RETURNS real

AS ‘SELECT avg(salary) FROM employee’

LANGUAGE SQL;

User executes the procedure (function):

 SELECT avgsal();
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Stored Procedures

 Example (cont.):

Salaries are not secured

To secure we need to

 REVOKE SELECT ON Employee FROM …

 GRANT EXECUTE ON FUNCTION avgsal() TO …

By running “SELECT avgsal();” the procedure 

is executed with privileges of current user.

 it needs SELECT on Employee!
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Stored Procedures

 Context of execution

Can be set during procedure creation

Types:

 INVOKER – run in the context of user that calls the 

function (typically current user)

 DEFINER– run in the context of the owner of 

function

 „particular user“ – run in the context of the 

selected user

 …
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Stored Procedures

 Execution context 

PostgreSQL

 SECURITY INVOKER

 SECURITY DEFINER

 Solution: set the context to owner

CREATE FUNCTION …. LANGUAGE SQL 

SECURITY DEFINER;

 Assumption: owner has the SELECT privilege to 

Employee
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Attacks to DB system

 Network connection

DB port open to anyone  use firewall

Unsecured connection

 Apply SSL 

 Logging in

Weak password

Limit users to logging in

 Allow selected user accounts, IP addresses and 

databases

Using one generic (admin) DB account
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Attacks to DB system

 SQL injection

Attack by sending SQL commands in place of 

valid data in forms.

Typically related to using only one DB 

account

 which is admin  )-:
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SQL injection – example
 App presents a form to enter string to update 

customer’s note in DB:

 Internally the app use the following DB statement:
UPDATE customer SET note=‘$note’ 

WHERE id=current_user;

 Malicious user enters to the form: 
Vader’; DROP TABLE customer; --

 After variable expansion we get string:
UPDATE customer

SET note=’Vader’; DROP TABLE customer; --’ 

WHERE id=current_user;

All in one line!



SQL Injection: Countermeasures

 Use specific user account

Avoid using admin account

 Check input values

 Input length, escape characters,…

 Functions in programming language

mysql_real_escape_string(), add_slashes()

$dbh->quote($string)

 Functions in DB

quote_literal(str)
 returns a string str suitably quoted to be used as a 

string literal in an SQL statement
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SQL Injection: Countermeasures

 Prepared statements

Parsed statements prepared in DB

 i.e., compiled templates ready for use

Values are then substituted

 Parameters do not need to be quoted then

May be used repetitively

Example:

PA152, Vlastislav Dohnal, FI MUNI, 2022 56

$st = $dbh->prepare("SELECT * FROM emp WHERE name LIKE ?");

$st->execute(array( "%$_GET[name]%“ ));



SQL Injection: Countermeasures

 Prepared statements at server-side

The same concept, but stored in DB

Typically in procedural languages in DB

PostgreSQL
 PREPARE emp_row(text)  AS SELECT * FROM emp

WHERE name LIKE $1;
EXECUTE emp_row(‘%John%’);

 Query is planned in advance

Planning time can be amortized

But: the plan is generic!
 i.e., without any optimization induced by knowing the 

parameter

Lasts only for the duration of the current db session
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Prepared Statements: Performance

 Prepared execution yields better 

performance when the query is executed 

more than once:

No compilation

No access to 

catalog.

 Experiment performed on Oracle8iEE on 

Windows 2000.
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Attacking Views
 Views protect data rows…

 if permissions are correctly set

 E.g., student(studentid, firstname, lastname, fieldofstudy)
 CREATE OR REPLACE VIEW studentssme AS  SELECT * FROM student 

WHERE fieldofstudy = 'N-SSME‘;

 But, creating a “cheap” function
 CREATE OR REPLACE FUNCTION test(name text, study text) 

RETURNS boolean AS $$
begin
raise notice 'Name: %, Study: %', name, study;
return true;

end;
$$  LANGUAGE plpgsql VOLATILE  COST 0.00001;

 The query leaks other students in a side channel…
 SELECT * FROM studentssme WHERE test(lastname, fieldofstudy)

 NOTICE:  Name: Nový, Study: N-AplInf
NOTICE:  Name: Dlouhý, Study: N-Inf
NOTICE:  Name: Svoboda, Study: N-AplInf
NOTICE:  Name: Starý, Study: N-SSME
NOTICE:  Name: Lukáš, Study: N-SSME
…

 Countermeasures: 
 ban creating new DB objects

 use security_barrier in Pg.conf or in create view
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Lecture Takeaways
 Primary key value generation

 Extensions to more complex data with 

indexing support

 Securing DB 

Avoid using admin account for general use

Mind “no-action” revoke command and 

recheck the resulting graph of grants.
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