SOLUTIONS

Exercises on Block1:
Map-Reduce
Retrieval Evaluation
Clustering

Advanced Search Techniques for Large Scale Data Analytics
Pavel Zezula and Jan Sedmidubsky
Masaryk University

http://disa.fi.muni.cz

Map-Reduce (1) — Assignment

- Suppose our input data to a map-reduce system are integer values (the keys are not important)
 - The map function takes an integer i and produces pairs (p, i) such that p is a prime divisor of i
 - Example: $map('any_key', 12) = [(2,12), (3,12)]$
 - The reduce function is addition
 - Example: reduce(p, [i, i, ..., i]) is (p, i + i + ... + i)
- Compute the output, if the input is the set of integers 15, 21, 24, 30, 49

Map-Reduce (1) – Recap

- Map-reduce input: a set of key-value pairs
- Programmer specifies two methods:
 - Map(k, v) \rightarrow <k', v'>*
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every (k,v) pair
 - Reduce(k', <v'>*) → <k', v">*
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

Map-Reduce (1) - Solution

Map functions:

- $map('any_key', 15) = [(3, 15), (5, 15)]$
- map('any_key', 21) = [(3, 21), (7, 21)]
- $-map('any_key', 24) = [(2, 24), (3, 24)]$
- $map('any_key', 30) = [(2, 30), (3, 30), (5, 30)]$
- $-map('any_key', 49) = [(7, 49)]$

Reduce functions:

- reduce(2, [24, 30]) = (2, 54)
- reduce(3, [15, 21, 24, 30]) = (3, 90)
- reduce(5, [15, 30]) = (5, 45)
- reduce(7, [21, 49]) = (7, 70)
- Output: (2, 54), (3, 90), (5, 45), (7, 70)

Map-Reduce (2) — Assignment

Suppose we have the following relations R, S:

R		S	
Α	В	В	C
0	1	0	1
1	2	1	2
2	3	2	3

- Apply the natural join algorithm
 - Apply the Map function to the tuples of relations
 - Construct the elements that are input to the Reduce function

Map-Reduce (2) – Recap

- Natural-join algorithm
 - Finding tuples that agree on common attributes, i.e., only the attribute B is in both relations R and S
 - Description of natural-join algorithm is in textbook in Section 2.3.7

Map-Reduce (2) - Solution

 Map functions – for each tuple (a, b) of R, the key-value pair (b, (R, a)) is produced and, analogically, for each tuple (b, c) of S, the pair (b, (S, c)) is created:

```
R: S: map(R, (0, 1)) = (1, (R, 0)) map(S, (0, 1)) = (0, (S, 1)) map(R, (1, 2)) = (2, (R, 1)) map(S, (1, 2)) = (1, (S, 2)) map(R, (2, 3)) = (3, (R, 2)) map(S, (2, 3)) = (2, (S, 3))
```

Based on the 4 different keys as the result of all the map calls, the following elements are input to the 4 reduce functions:

Map-Reduce (3) – Assignment

- Design MapReduce algorithms that take a very large file of integers and produce as output:
 - 1) The largest integer;
 - The average of all the integers;
 - 3) The same set of integers, but with each integer appearing only once;
 - 4) The count of the number of distinct integers in the input.
- Suppose that the file is divided into parts that can be read in parallel by map functions

Map-Reduce (3) – Recap

Example of algorithm for counting words

```
map(key, value):
    // key: document name; value: text of the document
    for each word w in value:
        emit(w, 1)

reduce(key, values):
    // key: a word; value: an iterator over counts
        result = 0
        for each count v in values:
            result += v
        emit(key, result)
```

Map-Reduce (3) — Solution 1/4

- 1) The largest integer
 - The idea is to compute a local maximum independently within each map function and then compute the global maximum within a single reducer – ensured by using the same "max" key within all map-function calls

Map-Reduce (3) — Solution 2/4

- 2) The average of all the integers
 - The idea is to compute a local sum and count independently within each map function and then compute the global average within a single reducer – ensured by using the same "avg" key within all map-function calls

Map-Reduce (3) - Solution 3/4

- 3) The same set of integers, but with each integer appearing only once
 - The idea is to send each specific number to a single reducer, thus guaranteeing that each reducer emits the given value only once

```
map(file_id, iterator_over_numbers)
    for each number n in interator_over_numbers
        emit(n, 1)

reduce(key, iterator_over_numbers)
    emit(key, 1)
```

Map-Reduce (3) - Solution 4/4

- 4) The count of the number of distinct integers in the input
 - The idea is to send all the different numbers to a single reducer that eliminates duplicates using the union operation and counts the values

Retrieval Evaluation (1) — Assignment

- The algorithm retrieves the six most convenient documents for each query. We focus on the first relevant document retrieved.
 - 1) Determine a convenient measure for this task
 - 2) Compute the measure on the following four query rankings with relevant/irrelevant objects:
 - $R_1 = \{d_7, d_5, d_3, d_8, d_1\}$
 - $R_2 = \{d_5, d_6, d_3, d_2, d_4\}$
 - $R_3 = \{d_9, d_3, d_4, d_8, d_5\}$
 - $R_4 = \{d_9, d_3, d_1, d_7, d_5\}$
 - 3) How can be the result value interpreted?

Retrieval Evaluation (1) - Recap

- Mean Reciprocal Rank (MRR)
 - A good metric for those cases in which we are interested in the first correct answer
 - MRR = an average over reciprocal rankings RR
 - Definition of RR:
 - R_i : ranking relative to a query q_i
 - $S_{correct(R_i)}$: position of the first correct answer in R_i
 - S_h : threshold for ranking position
 - Then, the reciprocal rank $RR(R_i)$ for query q_i is:

$$RR(\mathcal{R}_i) = \begin{cases} \frac{1}{S_{correct}(\mathcal{R}_i)} & \text{if } S_{correct}(\mathcal{R}_i) \leq S_h \\ 0 & \text{otherwise} \end{cases}$$

Retrieval Evaluation (1) - Solution

- 1) The Mean Reciprocal Rank (MRR) is the most convenient measure for this task
- 2) Results for individual rankings (RR_i) :

RR₁ = 0.25

$$RR_2 = 0.5$$

 $RR_3 = 0.33$
 $RR_4 = 0$

3) The first correct answer is at the 3.7-th position within an algorithm ranking (1/0.27 = 3.7) on average

Retrieval Evaluation (2) — Assignment

- Assume the following two rankings of documents (for some query):
 - $R_1 = \{d_7, d_5, d_3, d_8, d_1\}$
 - $R_2 = \{d_5, d_8, d_3, d_1, d_7\}$
- Based on these rankings compute:
 - Spearman rank correlation coefficient
 - Kendall Tau coefficient

Retrieval Evaluation (2) — Recap

- The Spearman coefficient
 - The mostly used rank correlation metric
 - Based on the differences between the positions of the same document in two rankings
 - Definition:
 - $s_{1,j}$ be the position of a document d_j in ranking R_1
 - $s_{2,j}$ be the position of d_j in ranking R_2
 - K indicates the size of the ranked sets
 - $S(R_1, R_2)$ is the Spearman rank correlation coefficient

$$S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times \sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{K \times (K^2 - 1)}$$

Retrieval Evaluation (2) — Solution 1

$$(s_{1,d_7} - s_{2,d_7})^2 = 16$$

$$(s_{1,d_5} - s_{2,d_5})^2 = 1$$

$$(s_{1,d_3} - s_{2,d_3})^2 = 0$$

$$(s_{1,d_8} - s_{2,d_8})^2 = 4$$

$$(s_{1,d_1} - s_{2,d_1})^2 = 1$$

Spearman coefficient:

$$-1-[6*(16+1+0+4+1)/120] = -0.1$$

Retrieval Evaluation (2) — Recap

- The Kendall Tau coefficient
 - When we think of rank correlations, we think of how two rankings tend to vary in similar ways
 - Consider two documents d_j and d_k and their positions in rankings R_1 and R_2
 - Further, consider the differences in rank positions for these two documents in each ranking, i.e.,
 - $S_{1,k} S_{1,j}$
 - $s_{2,k} s_{2,j}$
 - If these differences have the same sign, we say that the document pair (d_k, d_j) is **concordant** (**C**) in both rankings; if they have different signs, it is **discordant** (**D**)

Retrieval Evaluation (2) — Recap

- The Kendall Tau coefficient
 - Definition:
 - $\Delta(R_1, R_2)$: number of discordant document pairs in R_1 and R_2
 - K: the size of the ranked sets

$$\tau(R_1, R_2) = 1 - \frac{2^{\times}\Delta(R_1, R_2)}{K(K-1)}$$

Retrieval Evaluation (2) — Solution 2

- R_1 :
 - $(d_7, d_5), (d_7, d_3), (d_7, d_8), (d_7, d_1) => D D D$
 - $(d_5, d_3), (d_5, d_8), (d_5, d_1) => C C C$
 - $(d_3, d_8), (d_3, d_1) => D C$
 - $(d_8, d_1) => C$
- R_2 :
 - $(d_5, d_8), (d_5, d_3), (d_5, d_1), (d_5, d_7) => C C C D$
 - $(d_8, d_3), (d_8, d_1), (d_8, d_7) => D C D$
 - $(d_3, d_1), (d_3, d_7) => C D$
 - $(d_1, d_7) => D$
- $\Delta(R_1, R_2) = 10$
- Kendall Tau coefficient:
 - -1 [(2 * 10) / 20] = 0

Clustering (1) – Assignment

- The Sum Squared Error (SSE) is a common measure of the quality of a cluster
 - Sum of the squares of the distances between each of the points of the cluster and the centroid
- Sometimes, we decide to split a cluster in order to reduce the SSE
 - Suppose a cluster consists of the following three points: (9,5), (2,2) and (4,8)
 - Calculate the reduction in the SSE if we partition the cluster optimally into two clusters

Clustering (1) — Solution

- Centroid of points is determined by averaging the values in each dimension independently => centroid of that three points: (5,5)
 - $[(9,5) (5,5)]^2 = 16 \qquad [(4,8) (5,5)]^2 = 10 \qquad [(2,2) (5,5)]^2 = 18$
 - = > SSE = 16 + 10 + 18 = 44
- Then, we group the closest two points, i.e., points (9,5) and (4,8), to one cluster and compute its centroid: (6.5,6.5)
 - $[(9,5) (6.5,6.5)]^2 = 8.5 [(4,8) (6.5,6.5)]^2 = 8.5 = SSE_1 = 8.5 + 8.5 = 17$
- The second cluster has only one point, which is also centroid
 - $[(2,2) (2,2)]^2 = 0 => SSE_2 = 0$
- \blacksquare => SSE = SSE₁ + SSE₂ = 17 + 0 = 17
- The reduction in the SSE:
 - 44 − 17 = **27**

Clustering (2) – Assignment

- Perform a hierarchical clustering on points A–F
 - Using the centroid proximity measure

There is a tie for which pair of clusters is closest. Follow both choices and identify the clusters.

Clustering (2) — Recap

- Hierarchical clustering
 - Key operation repeatedly combine two nearest clusters

Clustering (2) — Solution

- Centroid proximity measure distance between two clusters is the distance between their centroids
 - 1) {A, B} with centroid at (5,5)
 - 2) {C, F} with centroid at (24.5,13.5)
 - 3) Tie:
 - {A, B, C, F} with centroid at (14.75,9.25) => {A, B, C, E, F}, {D}
 - {C, D, F} with centroid at (27.33,20) => {A, B, E}, {C, D, F}