SOLUTIONS **Exercises on Block1: Map-Reduce Retrieval Evaluation** Clustering

Advanced Search Techniques for Large Scale Data AnalyticsPavel Zezula and Jan SedmidubskyMasaryk Universityhttp://disa.fi.muni.cz

Map-Reduce (1) - Assignment

- **Suppose our input data to a map-reduce** system are integer values (the keys are not important)
	- \blacksquare The map function takes an integer *i* and produces pairs (p, i) such that p is a prime divisor of i
		- **Example:** $map('any_key', 12) = [(2,12), (3,12)]$
	- **The reduce function is addition**
		- Example: $reduce(p, [i, i, ..., i])$ is $(p, i + i + ... + i)$
- **Compute the output, if the input is the set of** integers 15, 21, 24, 30, 49

Map-Reduce (1) - Recap

- **Map-reduce input:** a set of key-value pairs **value**
- **Programmer specifies two methods:**
	- $Map(k, v) \rightarrow \langle k', v' \rangle^*$
		- **Takes a key-value pair and outputs a set of key-value pairs**
			- E.g., key is the filename, value is a single line in the file
		- **There is one Map call for every** (k, v) **pair**
	- Reduce(k', <v'>*) \rightarrow <k', v">*
		- **All values v' with same key k' are reduced together** and processed in v' order
		- **There is one Reduce function call per unique key** k'

Map-Reduce (1) - Solution

- **Map functions:**
	- \blacksquare $map('any_key', 15) = [(3, 15), (5, 15)]$
	- **map('any_key', 21) = [(3, 21), (7, 21)]**
	- **map(**'any_key', 24) = $[(2, 24), (3, 24)]$
	- **map('any_key', 30) = [(2, 30), (3, 30), (5, 30)]**
	- \blacksquare $map('any_key', 49) = [(7, 49)]$

Reduce functions:

- \blacksquare reduce(2, [24, 30]) = (2, 54)
- \blacksquare reduce(3, [15, 21, 24, 30]) = (3, 90)
- \blacksquare reduce(5, [15, 30]) = (5, 45)
- \blacksquare reduce(7, [21, 49]) = (7, 70)
- Output: (2, 54), (3, 90), (5, 45), (7, 70)

Map-Reduce (2) - Assignment

Suppose we have the following relations R, S:

- **Apply the natural join algorithm**
	- **Apply the Map function to the tuples of relations**
	- **Construct the elements that are input to the Reduce** function

Map-Reduce (2) - Recap

Natural-join algorithm

- **Finding tuples that agree on common attributes, i.e.,** only the attribute B is in both relations R and S
- Description of natural-join algorithm is in textbook in Section 2.3.7

Map-Reduce (2) - Solution

- **Map functions for each tuple (a, b) of R, the key-value pair** value μ (b, (R, a)) is produced and, analogically, for each tuple (b, c) of S, the pair (b, (S, c)) is created:
	- **R:** S:
- - $map(R, (0, 1)) = (1, (R, 0))$ map(S, $(0, 1)) = (0, (S, 1))$
	-
	-

• $map(R, (1, 2)) = (2, (R, 1))$ map(S, $(1, 2)) = (1, (S, 2))$ • $map(R, (2, 3)) = (3, (R, 2))$ map(S, $(2, 3)) = (2, (S, 3))$

- Based on the 4 different keys as the result of all the *map* calls, the following elements are input to the 4 reduce functions:
	- \bullet (0, [(S, 1)])
	- $(1, [(R, 0), (S, 2)])$
	- $(2, [(R, 1), (S, 3)])$
	- $(3, [(R, 2)])$

 $reduce(0, [(S, 1)]) = \{\}$ $reduce(1, [(R, 0), (S, 2)]) = {(0, 1, 2)}$ $reduce(2, [(R, 1), (S, 3)]) = {(1, 2, 3)}$ $reduce(3, [(R, 2)]) = \{\}$

Map-Reduce (3) - Assignment

- **Design MapReduce algorithms that take a** very large file of integers and produce as output:
	- 1)The largest integer;
	- 2)The average of all the integers;
	- 3) The same set of integers, but with each integer appearing only once;
	- 4) The count of the number of distinct integers in the input.
- Suppose that the file is divided into parts that can be read in parallel by map functions

Map-Reduce (3) - Recap

Example of algorithm for counting words

```
map(key, value):
```

```
// key: document name; value: text of the document
 for each word w in value:emit(w, 1)
```

```
reduce(key, values):// key: a word; value: an iterator over counts
      result = 0
for each count v in values:result += v
emit(key, result)
```
Map-Reduce (3) - Solution 1/4

■ 1) The largest integer

■ The idea is to compute a local maximum independently within each map function and then compute the global maximum within a **single** reducer – ensured by using the same "max" key within all map-function calls

```
map(file_id, iterator_over_numbers)max_local = MIN_INTEGER
     for each number n in interator over numbers
               if (n > max_local)max_local = n
     emit('max', max local)
```

```
reduce(key, iterator_over_all_max_values)max_total = MIN_INTEGER
     for each number n in iterator_over_all_max_valuesif (n > max_total)max_total = n
     emit('max', max total)
```
Map-Reduce (3) - Solution 2/4

- 2) The average of all the integers
	- The idea is to compute a local sum and count independently within each map function and then compute the global average within a **single** reducer – ensured by using the same "avg" key within all map-function calls

```
map(file_id, iterator_over_numbers)sum local = 0count local = 0for each number n in interator_over_numberssum_local += n
               count local += 1emit('avg', (sum local, count local))

reduce(key, iterator_over_sum_count_pairs)sum total = 0count\_total = 0for each pair (sum_local, count_local) in iterator_over_sum_count_pairssum_total += sum_local
               count_total += count_localemit('avq', sum total/count total)
```
Map-Reduce (3) - Solution 3/4

- 3) The same set of integers, but with each integer appearing only once
	- The idea is to send each specific number to a single reducer, thus guaranteeing that each reducer emits the given value only once

```
map(file_id, iterator_over_numbers)for each number n in interator over numbers
           emit(n, 1)
```
reduce(key, iterator_over_numbers)

emit(key, 1)

Map-Reduce (3) - Solution 4/4

- 4) The count of the number of distinct integers in the input
	- The idea is to send all the different numbers to a single reducer that eliminates duplicates using the union operation and counts the values

```
map(file_id, iterator_over_numbers)number set = \{\}for each number n in interator over numbers
              number_set = number_set ∪ {n}
     emit('count', number set)
```

```
reduce(key, iterator_over_number_sets)total_number_set = \{\}for each number_set in iterator_over_number_sets
              total_number_set = total_number_set ∪ number_set
    emit('count', |total_number_set|)
```
Retrieval Evaluation (1) - Assignment

- **The algorithm retrieves the six most** convenient documents for each query. We focus on the first relevant document retrieved.
	- 1)Determine a convenient measure for this task
	- 2) Compute the measure on the following four query rankings with relevant/irrelevant objects:
		- $R_1 = \{d_7, d_5, d_3, d_8, d_1\}$
		- $R_2 = \{d_5, d_6, d_3, d_2, d_4\}$
		- $R_3 = \{d_9, d_3, d_4, d_8, d_5\}$
		- $R_4 = \{d_9, d_3, d_1, d_7, d_5\}$
	- 3)How can be the result value interpreted?

Retrieval Evaluation (1) - Recap

- Mean Reciprocal Rank (MRR)
	- A good metric for those cases in which we are interested in the first correct answer
	- **MRR = an average over reciprocal rankings RR**
	- **Definition of RR:**
		- R_i : ranking relative to a query q_i
		- S_{correct(R_i)}: position of the first correct answer in R_i
		- \bullet S_h: threshold for ranking position
		- Then, the reciprocal rank $RR(R_i)$ for query q_i is:

$$
RR(\mathcal{R}_i) = \begin{cases} \frac{1}{S_{correct}(\mathcal{R}_i)} & \text{if } S_{correct}(\mathcal{R}_i) \le S_h \\ 0 & \text{otherwise} \end{cases}
$$

Retrieval Evaluation (1) - Solution

- 1) The Mean Reciprocal Rank (*MRR*) is the most convenient measure for this task
- 2) Results for individual rankings (RR_i):
	- a
M **RR**₁ = 0.25
	- **RR**₂ = 0.5 MRR = 0.27
	- **R** $R_3 = 0.33$
	- **RR**₄ = 0
- 3) The first correct answer is at the 3.7-th position within an algorithm ranking $(1/0.27 = 3.7)$ on average

Retrieval Evaluation (2) - Assignment

- **Assume the following two rankings of** documents (for some query):
	- $R_1 = \{d_7, d_5, d_3, d_8, d_1\}$
	- $R_2 = \{d_5, d_8, d_3, d_1, d_7\}$
- **Based on these rankings compute:**
	- **Spearman rank correlation coefficient**
	- **Kendall Tau coefficient**

Retrieval Evaluation (2) - Recap

- **The Spearman coefficient**
	- **The mostly used rank correlation metric**
	- Based on the differences between the positions of the same document in two rankings
	- Definition:
		- \blacksquare s_{1,j} be the position of a document d_j in ranking R_1
		- S_{2,j} be the position of d_j in ranking R_2
		- K indicates the size of the ranked sets
		- S(R_1, R_2) is the Spearman rank correlation coefficient

$$
S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times \sum_{j=1}^K (s_{1,j} - s_{2,j})^2}{K \times (K^2 - 1)}
$$

Retrieval Evaluation (2) - Solution 1

$$
s_{1,d_7} - s_{2, d_7} = 16
$$

\n
$$
(s_{1,d_5} - s_{2, d_5})^2 = 1
$$

\n
$$
(s_{1,d_3} - s_{2, d_3})^2 = 0
$$

\n
$$
(s_{1,d_8} - s_{2, d_8})^2 = 4
$$

\n
$$
(s_{1,d_1} - s_{2, d_1})^2 = 1
$$

Spearman coefficient: $-1 - [6 * (16 + 1 + 0 + 4 + 1) / 120] = -0.1$

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) ¹⁹

Retrieval Evaluation (2) - Recap

The Kendall Tau coefficient

- When we think of rank correlations, we think of how two rankings tend to vary in similar ways
- **Consider two documents** d_j **and** d_k **and their positions in** rankings $R^{}_1$ and $R^{}_2$
- **Further, consider the differences in rank positions for** these two documents in each ranking, i.e.,

$$
\bullet \ \mathsf{S}_{1,k} - \mathsf{S}_{1,j}
$$

$$
\bullet \quad \mathsf{s}_{2,k} - \mathsf{s}_{2,j}
$$

If these differences have the same sign, we say that the document pair (d_k, d_l) is **concordant (C)** in both rankings; if they have different signs, it is **discordant (D)**

Retrieval Evaluation (2) - Recap

- **The Kendall Tau coefficient**
	- $\mathcal{L}_{\mathcal{A}}$ Definition:
		- $\Delta(R_1, R_2)$: number of discordant document pairs in R_1 and R_2
		- K: the size of the ranked sets

$$
\tau(R_1, R_2) = 1 - \frac{2^{\times} \Delta(R_1, R_2)}{K(K-1)}
$$

Retrieval Evaluation (2) - Solution 2

- R_1 :
	- $(d_7, d_5), (d_7, d_3), (d_7, d_8), (d_7, d_1) \Rightarrow D D D D$
	- $(d_5, d_3), (d_5, d_8), (d_5, d_1) \Rightarrow C$ C C
	- (d_3, d_8) , (d_3, d_1) => D C
	- (d_8, d_1) => C
- R_2 :
	- $(d_5, d_8), (d_5, d_3), (d_5, d_1), (d_5, d_7) \Rightarrow$ C C C D
	- $(d_8, d_3), (d_8, d_1), (d_8, d_7) \Rightarrow D \subset D$
	- $(d_3, d_1), (d_3, d_7) \Rightarrow C$ D
	- (d_1, d_7) => D
- $\Delta(R_1, R_2) = 10$
- **Kendall Tau coefficient:**
	- \blacksquare 1 [(2 * 10) / 20] = 0

Clustering (1) - Assignment

- The Sum Squared Error (SSE) is a common measure of the quality of a cluster
	- **Sum of the squares of the distances between each** of the points of the cluster and the centroid
- **Sometimes, we decide to split a cluster in** order to reduce the SSE
	- **Suppose a cluster consists of the following three** points: (9,5), (2,2) and (4,8)
	- Calculate the reduction in the SSE if we partition the cluster optimally into two clusters

Clustering (1) - Solution

- **Centroid of points is detemined by averaging the values in each** dimension independently => centroid of that three points: (5,5)
	- $[(9,5) (5,5)]^2 = 16$ $[(4,8) (5,5)]^2 = 10$ $[(2,2) (5,5)]^2 = 18$
	- \blacksquare => SSE = 16 + 10 + 18 = 44
- Then, we group the closest two points, i.e., points (9,5) and (4,8), to one cluster and compute its centroid: (6.5,6.5)

 $[(9,5) - (6.5,6.5)]^2 = 8.5$ $[(4,8) - (6.5,6.5)]^2 = 8.5$ => SSE₁ = 8.5 + 8.5 = 17

The second cluster has only one point, which is also centroid

$$
[(2,2)-(2,2)]^2 = 0 \qquad \Rightarrow \text{SSE}_2 = 0
$$

- \blacksquare => SSE = SSE₁ + SSE₂ = 17 + 0 = 17
- \blacksquare The reduction in the SSE:
	- $-44 17 = 27$

Clustering (2) - Assignment

- Perform a hierarchical clustering on points A–F
	- **Using the centroid proximity measure**

There is a tie for which pair of clusters is closest. Follow both choices and identify the clusters.

Clustering (2) - Recap

Hierarchical clustering

■ Key operation – repeatedly combine two nearest clusters

Clustering (2) - Solution

- Centroid proximity measure distance between two clusters is the distance between their centroids
	- 1) {A, B} with centroid at (5,5)
	- 2) {C, F} with centroid at (24.5,13.5)
	- 3) Tie:
		- \blacksquare {A, B, C, F} with centroid at (14.75,9.25) => {A, B, C, E, F}, {D}
		- $\bullet \{C, D, F\}$ with centroid at $(27.33,20) \Rightarrow \{A, B, E\}$, $\{C, D, F\}$