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� Suppose our input data to a map-reduce � Suppose our input data to a map-reduce 

system are integer values (the keys are not system are integer values (the keys are not 

important)

� The map function takes an integer i and produces � The map function takes an integer i and produces 

pairs (p, i) such that p is a prime divisor of i

� Example: map(‘any_key’, 12) = [(2,12), (3,12)]

� The reduce function is addition� The reduce function is addition

� Example: reduce(p, [i , i , ..., i]) is (p, i + i + ... + i)

� Compute the output, if the input is the set of � Compute the output, if the input is the set of 

integers 15, 21, 24, 30, 49integers 15, 21, 24, 30, 49
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� Map-reduce input: a set of key-value pairs� Map-reduce input: a set of key-value pairs

� Programmer specifies two methods:� Programmer specifies two methods:

� Map(k, v) → <k’, v’>*

� Takes a key-value pair and outputs a set of key-value pairs� Takes a key-value pair and outputs a set of key-value pairs

� E.g., key is the filename, value is a single line in the file

� There is one Map call for every (k,v) pair� There is one Map call for every (k,v) pair

� Reduce(k’, <v’>*) → <k’, v’’>*� Reduce(k’, <v’>*) → <k’, v’’>*

� All values v’ with same key k’ are reduced together 

and processed in v’ orderand processed in v’ order

� There is one Reduce function call per unique key k’
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� Map functions:� Map functions:
� map(‘any_key’, 15) = [(3, 15), (5, 15)]

� map(‘any_key’, 21) = [(3, 21), (7, 21)]� map(‘any_key’, 21) = [(3, 21), (7, 21)]

� map(‘any_key’, 24) = [(2, 24), (3, 24)]

� map(‘any_key’, 30) = [(2, 30), (3, 30), (5, 30)]� map(‘any_key’, 30) = [(2, 30), (3, 30), (5, 30)]

� map(‘any_key’, 49) = [(7, 49)]

Reduce functions:� Reduce functions:
� reduce(2, [24, 30]) = (2, 54)reduce(2, [24, 30]) = (2, 54)

� reduce(3, [15, 21, 24, 30]) = (3, 90)

� reduce(5, [15, 30]) = (5, 45)

� reduce(7, [21, 49]) = (7, 70)� reduce(7, [21, 49]) = (7, 70)

� Output: (2, 54), (3, 90), (5, 45), (7, 70)� Output: (2, 54), (3, 90), (5, 45), (7, 70)
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� Suppose we have the following relations R, S:� Suppose we have the following relations R, S:

R SR S
A B

0 1

B C

0 10 1

1 2

2 3

0 1

1 2

2 3

� Apply the natural join algorithm

2 3 2 3

� Apply the natural join algorithm

� Apply the Map function to the tuples of relationsApply the Map function to the tuples of relations

� Construct the elements that are input to the Reduce 

functionfunction
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� Natural-join algorithm� Natural-join algorithm

� Finding tuples that agree on common attributes, i.e., � Finding tuples that agree on common attributes, i.e., 

only the attribute B is in both relations R and S

� Description of natural-join algorithm is in textbook � Description of natural-join algorithm is in textbook 

in Section 2.3.7
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� Map functions – for each tuple (a, b) of R, the key-value pair � Map functions – for each tuple (a, b) of R, the key-value pair 
(b, (R, a)) is produced and, analogically, for each tuple (b, c) 
of S, the pair (b, (S, c)) is created:of S, the pair (b, (S, c)) is created:
� R: S:

� map(R, (0, 1)) = (1, (R, 0)) map(S, (0, 1)) = (0, (S, 1))

� map(R, (1, 2)) = (2, (R, 1)) map(S, (1, 2)) = (1, (S, 2))� map(R, (1, 2)) = (2, (R, 1)) map(S, (1, 2)) = (1, (S, 2))

� map(R, (2, 3)) = (3, (R, 2)) map(S, (2, 3)) = (2, (S, 3))

� Based on the 4 different keys as the result of all the map
calls, the following elements are input to the 4 reduce 
functions:
calls, the following elements are input to the 4 reduce 
functions:
� (0, [(S, 1)]) reduce(0, [(S, 1)]) = {}

� (1, [(R, 0), (S, 2)]) reduce(1, [(R, 0), (S, 2)]) = {(0, 1, 2)}� (1, [(R, 0), (S, 2)]) reduce(1, [(R, 0), (S, 2)]) = {(0, 1, 2)}

� (2, [(R, 1), (S, 3)]) reduce(2, [(R, 1), (S, 3)]) = {(1, 2, 3)}

� (3, [(R, 2)]) reduce(3, [(R, 2)]) = {}� (3, [(R, 2)]) reduce(3, [(R, 2)]) = {}
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� Design MapReduce algorithms that take a � Design MapReduce algorithms that take a 
very large file of integers and produce as 
output:output:

1) The largest integer;1) The largest integer;

2) The average of all the integers;

3) The same set of integers, but with each integer 3) The same set of integers, but with each integer 
appearing only once;

4) The count of the number of distinct integers in 4) The count of the number of distinct integers in 
the input.

Suppose that the file is divided into parts 
the input.

� Suppose that the file is divided into parts 
that can be read in parallel by map functionsthat can be read in parallel by map functions
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� Example of algorithm for counting words� Example of algorithm for counting words

map(key, value):
// key: document name; value: text of the document

for each word w in value:for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0result = 0
for each count v in values:

result += vresult += v
emit(key, result)
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� 1) The largest integer� 1) The largest integer

� The idea is to compute a local maximum independently 

within each map function and then compute the global within each map function and then compute the global 

maximum within a single reducer – ensured by using the 

same “max” key within all map-function callssame “max” key within all map-function calls

map(file_id, iterator_over_numbers)

max_local = MIN_INTEGER

for each number n in interator_over_numbers

if (n > max_local)

max_local = nmax_local = n

emit(‘max’, max_local)

reduce(key, iterator_over_all_max_values)

max_total = MIN_INTEGER

for each number n in iterator_over_all_max_values

if (n > max_total)

max_total = nmax_total = n

emit(‘max’, max_total)

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 10



� 2) The average of all the integers� 2) The average of all the integers

� The idea is to compute a local sum and count independently 

within each map function and then compute the global within each map function and then compute the global 

average within a single reducer – ensured by using the same 

“avg” key within all map-function calls“avg” key within all map-function calls

map(file_id, iterator_over_numbers)

sum_local = 0

count_local = 0

for each number n in interator_over_numbers

sum_local += nsum_local += n

count_local += 1

emit(‘avg’, (sum_local, count_local))

reduce(key, iterator_over_sum_count_pairs)

sum_total = 0

count_total = 0

for each pair (sum_local, count_local) in iterator_ over_sum_count_pairs

sum_total += sum_localsum_total += sum_local

count_total += count_local

emit(‘avg’, sum_total/count_total)
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� 3) The same set of integers, but with each integer � 3) The same set of integers, but with each integer 

appearing only once

� The idea is to send each specific number to a single reducer, 

thus guaranteeing that each reducer emits the given value 

only onceonly once

map(file_id, iterator_over_numbers)

for each number n in interator_over_numbers

emit(n, 1)emit(n, 1)

reduce(key, iterator_over_numbers)reduce(key, iterator_over_numbers)

emit(key, 1)
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� 4) The count of the number of distinct integers in the � 4) The count of the number of distinct integers in the 

input

� The idea is to send all the different numbers to a single 

reducer that eliminates duplicates using the union operation 

and counts the valuesand counts the values

map(file_id, iterator_over_numbers)map(file_id, iterator_over_numbers)

number_set = {}

for each number n in interator_over_numbers

number_set = number_set ∪ {n}number_set = number_set ∪ {n}

emit(‘count’, number_set)

reduce(key, iterator_over_number_sets)reduce(key, iterator_over_number_sets)

total_number_set = {}

for each number_set in iterator_over_number_sets

total_number_set = total_number_set ∪ number_settotal_number_set = total_number_set ∪ number_set

emit(‘count’, |total_number_set|)
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� The algorithm retrieves the six most � The algorithm retrieves the six most 

convenient documents for each query. We convenient documents for each query. We 

focus on the first relevant document retrieved.

1) Determine a convenient measure for this task1) Determine a convenient measure for this task

2) Compute the measure on the following four 2) Compute the measure on the following four 

query rankings with relevant/irrelevant objects:
� R1 = {d7, d5, d3, d8, d1}� R1 = {d7, d5, d3, d8, d1}

� R2 = {d5, d6, d3, d2, d4}

� R3 = {d9, d3, d4, d8, d5}� R3 = {d9, d3, d4, d8, d5}

� R4 = {d9, d3, d1, d7, d5}

3) How can be the result value interpreted?3) How can be the result value interpreted?
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� Mean Reciprocal Rank (MRR)� Mean Reciprocal Rank (MRR)

� A good metric for those cases in which we are � A good metric for those cases in which we are 

interested in the first correct answer

� MRR = an average over reciprocal rankings RR� MRR = an average over reciprocal rankings RR

� Definition of RR:� Definition of RR:

� Ri: ranking relative to a query qi

� Scorrect(Ri)
: position of the first correct answer in Ri� Scorrect(Ri)
: position of the first correct answer in Ri

� Sh: threshold for ranking position

� Then, the reciprocal rank RR(R ) for query q is:� Then, the reciprocal rank RR(Ri) for query qi is:
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1) The Mean Reciprocal Rank (MRR) is the most 1) The Mean Reciprocal Rank (MRR) is the most 

convenient measure for this task

2) Results for individual rankings (RRi):

� RR1 = 0.25� RR1 = 0.25

� RR2 = 0.5

� RR = 0.33
MRR = 0.27

� RR3 = 0.33

� RR4 = 0

MRR = 0.27

3) The first correct answer is at the 3.7-th position 

within an algorithm ranking (1/0.27 = 3.7) on within an algorithm ranking (1/0.27 = 3.7) on 

average
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� Assume the following two rankings of � Assume the following two rankings of 

documents (for some query):documents (for some query):

� R1 = {d7, d5, d3, d8, d1}

� R = {d , d , d , d , d }� R2 = {d5, d8, d3, d1, d7}

� Based on these rankings compute:� Based on these rankings compute:

� Spearman rank correlation coefficient

� Kendall Tau coefficient� Kendall Tau coefficient
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� The Spearman coefficient� The Spearman coefficient

� The mostly used rank correlation metric� The mostly used rank correlation metric

� Based on the differences between the positions of 

the same document in two rankingsthe same document in two rankings

� Definition:� Definition:

� s1,j be the position of a document dj in ranking R1

� s2,j be the position of dj in ranking R2� s2,j be the position of dj in ranking R2

� K indicates the size of the ranked sets

� S(R , R ) is the Spearman rank correlation coefficient� S(R1, R2) is the Spearman rank correlation coefficient
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� (s – s )2 = 16� (s1,d7
– s2, d7

)2 = 16

� (s1,d5
– s2, d5

)2 = 1� (s1,d5
– s2, d5

) = 1

� (s1,d3
– s2, d3

)2 = 0

� (s – s )2 = 4� (s1,d8
– s2, d8

)2 = 4

� (s1,d1
– s2, d1

)2 = 1(s1,d1
– s2, d1

) = 1

� Spearman coefficient:� Spearman coefficient:

� 1 – [6 * (16 + 1 + 0 + 4 + 1) / 120] = –0.1
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� The Kendall Tau coefficient� The Kendall Tau coefficient

� When we think of rank correlations, we think of how two 

rankings tend to vary in similar waysrankings tend to vary in similar ways

� Consider two documents dj and dk and their positions in Consider two documents dj and dk and their positions in 

rankings R1 and R2

� Further, consider the differences in rank positions for  � Further, consider the differences in rank positions for  

these two documents in each ranking, i.e.,

� s1,k – s1,j� s1,k – s1,j

� s2,k – s2,j

� If these differences have the same sign, we say that the  � If these differences have the same sign, we say that the  

document pair (dk, dj) is concordant (C) in both rankings; if 

they have different signs, it is discordant (D)they have different signs, it is discordant (D)
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� The Kendall Tau coefficient� The Kendall Tau coefficient

� Definition:

� ∆(R1, R2): number of discordant document pairs in R1 and R2

� K: the size of the ranked sets

τ (R1 , R2 ) = 1 −
2×∆ (R 1 ,R 2 )

K (K−1)K (K−1)
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� R :� R1:

� (d7, d5), (d7, d3), (d7, d8), (d7, d1) => D D D D

� (d , d ), (d , d ), (d , d ) => C C C� (d5, d3), (d5, d8), (d5, d1) => C C C

� (d3, d8), (d3, d1) => D C

� (d , d ) => C� (d8, d1) => C

� R2:

� (d5, d8), (d5, d3), (d5, d1), (d5, d7) => C C C D� (d5, d8), (d5, d3), (d5, d1), (d5, d7) => C C C D

� (d8, d3), (d8, d1), (d8, d7) => D C D

� (d3, d1), (d3, d7) => C D� (d3, d1), (d3, d7) => C D

� (d1, d7) => D

� ∆(R1, R2) = 10

� Kendall Tau coefficient:� Kendall Tau coefficient:

� 1 – [ (2 * 10) / 20 ] = 0
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� The Sum Squared Error (SSE) is a common � The Sum Squared Error (SSE) is a common 

measure of the quality of a clustermeasure of the quality of a cluster

� Sum of the squares of the distances between each 

of the points of the cluster and the centroidof the points of the cluster and the centroid

� Sometimes, we decide to split a cluster in 

order to reduce the SSEorder to reduce the SSE

� Suppose a cluster consists of the following three � Suppose a cluster consists of the following three 

points: (9,5), (2,2) and (4,8)

� Calculate the reduction in the SSE if we partition � Calculate the reduction in the SSE if we partition 

the cluster optimally into two clustersthe cluster optimally into two clusters
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� Centroid of points is detemined by averaging the values in each � Centroid of points is detemined by averaging the values in each 

dimension independently => centroid of that three points: (5,5)

� [(9,5) – (5,5)]2 = 16        [(4,8) – (5,5)]2 = 10        [(2,2) – (5,5)]2 = 18� [(9,5) – (5,5)]2 = 16        [(4,8) – (5,5)]2 = 10        [(2,2) – (5,5)]2 = 18

� => SSE = 16 + 10 + 18 = 44

� Then, we group the closest two points, i.e., points (9,5) and 

(4,8), to one cluster and compute its centroid: (6.5,6.5)(4,8), to one cluster and compute its centroid: (6.5,6.5)

� [(9,5) – (6.5,6.5)]2 = 8.5   [(4,8) – (6.5,6.5)]2 = 8.5     => SSE1 = 8.5 + 8.5 = 17

� The second cluster has only one point, which is also centroid� The second cluster has only one point, which is also centroid

� [(2,2) – (2,2)]2 = 0        => SSE2 = 0

� => SSE = SSE1 + SSE2 = 17 + 0 = 17� => SSE = SSE1 + SSE2 = 17 + 0 = 17

� The reduction in the SSE:� The reduction in the SSE:

� 44 – 17 = 27
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� Perform a hierarchical clustering on points A–F� Perform a hierarchical clustering on points A–F
� Using the centroid proximity measure

[33, 33]D

E [5, 27]

[33, 33]D

[21, 21]C

[28, 6]

[10, 10]B
F

There is a tie for which pair of clusters is closest. 

[0, 0]A

F

� There is a tie for which pair of clusters is closest. 
Follow both choices and identify the clusters.
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� Hierarchical clustering� Hierarchical clustering

� Key operation – repeatedly combine two nearest clusters� Key operation – repeatedly combine two nearest clusters
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� Centroid proximity measure – distance between two � Centroid proximity measure – distance between two 

clusters is the distance between their centroids

1) {A, B} with centroid at (5,5)1) {A, B} with centroid at (5,5)

2) {C, F} with centroid at (24.5,13.5)

3) Tie:3) Tie:

� {A, B, C, F} with centroid at (14.75,9.25) => {A, B, C, E, F}, {D}

� {C, D, F} with centroid at (27.33,20) => {A, B, E}, {C, D, F}� {C, D, F} with centroid at (27.33,20) => {A, B, E}, {C, D, F}
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