SOLUTIONS

Exercises on Block2:

Finding Frequent Item Sets Finding Similar Items Searching in Data Streams

Advanced Search Techniques for Large Scale Data Analytics

Pavel Zezula and Jan Sedmidubsky

Masaryk University

http://disa.fi.muni.cz

Frequent Item Sets (1) – Assignment

- Suppose 100 items (numbered 1 to 100) and 100 baskets (numbered 1 to 100)
 - Item i is in basket b if and only if i divides b with no remainder, i.e., item 1 is in all the baskets, item 2 is in all fifty of the even-numbered baskets, etc.

Tasks:

- 1) Identify the frequent items when the support threshold is set to 5
- 2) Compute the confidence of these association rules
 - a) $\{5, 7\} \rightarrow 2$
 - b) $\{2, 3, 4\} \rightarrow 5$

Frequent Item Sets (1) — Recap

 Simplest question: Find sets of items that appear together "frequently" in baskets

Support for item set I: Number of baskets containing all items in I

 (Often expressed as a fraction of the total number of baskets)

 Given a support threshold s, then sets of items that appear in at least s baskets are called frequent itemsets

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of {Beer, Bread} = 2

Frequent Item Sets (1) — Recap

- Association Rules:
 - If-then rules about the contents of baskets
- $\{i_1, i_2, ..., i_k\} \rightarrow j$ means: "if a basket contains all of $i_1, ..., i_k$ then it is *likely* to contain j"
- In practice there are many rules, want to find significant/interesting ones!
- **Confidence** of this association rule is the probability of j given $I = \{i_1, ..., i_k\}$

$$conf(I \rightarrow j) = \frac{support(I \cup j)}{support(I)}$$

Frequent Item Sets (1) - Solution

- 1) 20 frequent items: **1–20**
- 2) Association rules:
 - The baskets containing both items 5 and 7 are baskets 35 and 70, in which only basket 70 also contains item 2.
 Hence, the confidence of the rule {5, 7} → 2 is 1/2.
 - b) The baskets whose numbers are the multiples of 12 contain item set {2, 3, 4} as a subset there are 8 such baskets. The baskets whose numbers are the multiples of 60 contain item set {2, 3, 4, 5} as a subset there is 1 such basket. Hence, the confidence of the rule {2, 3, 4} → 5 is 1/8.

Frequent Item Sets (2) – Assignment

- Consider the following twelve baskets, each of them contains 3 of 6 items (1 through 6):
 - **1**, 2, 3} {2, 3, 4} {3, 4, 5} {4, 5, 6}
 - **1**, 3, 5} {2, 4, 6} {1, 3, 4} {2, 4, 5}
 - **3**, 5, 6} {1, 2, 4} {2, 3, 5} {3, 4, 6}
- Suppose the support threshold is 4. On the first pass of the PCY algorithm, a hash table with 11 buckets is used, and the set {i, j} is hashed to bucket i×j mod 11:
 - 1) Compute the support for each item and each pair of items
 - 2) Which pairs hash to which buckets?
 - 3) Which buckets are frequent?
 - 4) Which pairs are counted on the second pass?

Frequent Item Sets (2) — Recap

PCY Algorithm – First Pass

```
FOR (each basket):

FOR (each item in the basket):

add 1 to item's count;

FOR (each pair of items):

hash the pair to a bucket;

add 1 to the count for that bucket;
```

Few things to note:

- Pairs of items need to be generated from the input file; they are not present in the file
- We are not just interested in the presence of a pair, but we need to see whether it is present at least s (support) times

Frequent Item Sets (2) — Recap

- Observation: If a bucket contains a frequent pair, then the bucket is surely frequent
- However, even without any frequent pair, a bucket can still be frequent ⁽²⁾
 - So, we cannot use the hash to eliminate any member (pair) of a "frequent" bucket
- But, for a bucket with total count less than s, none of its pairs can be frequent [©]
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)
- Pass 2:
 Only count pairs that hash to frequent buckets

Frequent Item Sets (2) — Solution 1/4

- Compute the support for each item and each pair of items
 - Support for each item:

```
item 1 2 3 4 5 6 support 4 6 8 8 6 4
```

Support for each pair of items:

Frequent Item Sets (2) — Solution 2/4

- 2) Which pairs hash to which buckets?
 - The set {i, j} is hashed to bucket no.: i×j mod 11

```
pair {1, 2} {1, 3} {1, 4} {1, 5} {1, 6} {2, 3} {2, 4} {2, 5}
bucket 2 3 4 5 6 6 8 10
pair {2, 6} {3, 4} {3, 5} {3, 6} {4, 5} {4, 6} {5, 6}
bucket 1 4 7 9 2 8
```

Frequent Item Sets (2) - Solution 3/4

- 3) Which buckets are frequent?
 - Bucket support sum of supports of pairs belonging to the given bucket:

```
      bucket
      0
      1
      2
      3
      4
      5
      6
      7

      support
      0
      5
      5
      3
      6
      1
      3
      2

      bucket
      8
      9
      10

      support
      6
      3
      2
```

The frequent buckets are those with support above 4, i.e., buckets: 1, 2, 4, 8

Frequent Item Sets (2) — Solution 4/4

- 4) Which pairs are counted on the second pass
 - As only pairs in frequent buckets will be counted on the second pass of PCY, they are:

```
\{1, 2\}, \{1, 4\}, \{2, 4\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{4, 6\}, \{5, 6\}
```

Finding Similar Items (1) — Assignment

- Compute the Jaccard similarities of each pair of the following three sets:
 - \blacksquare A = {1, 2, 3, 4}
 - $B = \{2, 3, 5, 7\}$
 - $C = \{2, 4, 6\}$

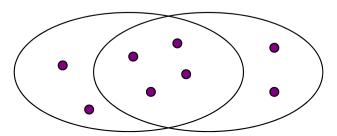
Finding Similar Items (1) — Solution

- sim(A, B) = 2/6 = 1/3
- sim(A, C) = 2/5
- sim(B, C) = 1/6

Finding Similar Items (2) — Assignment

- Consider two documents A and B
 - If their 3-shingle resemblance is 1 (using Jaccard similarity), does that mean that A and B are identical?
 - If so, prove it. If not, give a counterexample.

Finding Similar Items (2) — Recap


- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
 - Option: Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

Finding Similar Items (2) — Recap

- Document D₁ is a set of its k-shingles C₁=S(D₁)
- Equivalently, each document is a
 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the

Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

Finding Similar Items (2) – Solution

- No, the documents A and B need not be identical
 - Counterexample:
 - A: abab
 - 3-shingles: S(A) = {aba, bab}
 - B: baba
 - 3-shingles: S(B) = {bab, aba}
 - $sim(A, B) = | S(A) \cap S(B) | / | S(A) \cup S(B) | = 1$

Finding Similar Items (3) – Assignment

- Consider two documents A and B
 - Each document's number of token is O(n)
 - It does not matter whether tokens are characters or words
 - What is the runtime complexity of computing A and B's k-shingle resemblance (using Jaccard similarity)?
 - Assume that comparison of two k-shingles to assess their equivalence is O(k)
 - Express your answer in terms of n and k, where n >> k

Finding Similar Items (3) – Solution

- Time to create shingles: O(n)
- Time to find intersection (using the brute force algorithm): $O(k \cdot n^2)$
 - n shingles in each document
- Time to find union (using the intersection): O(n)
- Total time: $O(k \cdot n^2)$

Finding Similar Items (4) – Assignment

For the matrix

Element	D1	D ₂	D ₃	D ₄
0	0	1	0	1
1	0	1	0	0
2	1	0	0	1
3	0	0	1	0
4	0	0	1	1
5	1	0	0	0

- 1) Compute the minhash signature for each column (document) using the following hash functions:
 - $h_1(x) = 2x + 1 \mod 6$
 - $h_2(x) = 3x + 2 \mod 6$
 - $h_3(x) = 5x + 2 \mod 6$
- 2) Which of these hash functions are true permutations?
- 3) How close are the estimated Jaccard similarities for the six pairs of columns to the true Jaccard similarities?

Finding Similar Items (4) – Recap

- Rows = elements (e.g., shingles)
- Columns = sets (e.g., documents)
 - 1 in row e (shingle) and column s (document) if and only if e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- Each document is a column:
 - Example: $sim(C_1, C_2) = ?$
 - Size of intersection = 3; size of union = 6,
 Jaccard similarity (not distance) = 3/6
 - $d(C_1,C_2) = 1 (Jaccard similarity) = 3/6$

Documents

	1	1	1	0				
	1	1	0	1				
Ŋ	0	1	0	1				
ပါ။၊ပြုငေ	0	0	0	1				
ס	1	0	0	1				
	1	1	1	0				
	1	0	1	0				

Finding Similar Items (4) – Recap

Min-Hashing

2nd element of the permutation is the first to map to a 1

Example

Permutation π Input matrix (Shingles x Documents)

Signature matrix M

2	4	3	1	0	1 _ K	0		
3	2	4	1/	0	0	A		
7	1	7	0	yl	0	1		
6	3	2	0	1	0	1		
1	6	6	O	1	О	1		
5	7	1	1	О	1	0		
4	5	5	1	0	1	0		

												8	88	88										8	88	88									88	88							88		
												8	88	88										8	88	88	88								81	88							88	48	
							®	▩	8			81	88	88	ı	100						▩	≋ i	81	88	88	88	8				▩			81	88	ı		188		₩		88	88	ä
	8	8	88	M			⊠	▩	88			8 1	88	88	188	189						▩	≋ ;	88	88	88	88	飋	8			▩			81	88	188			.88	₩.		200	40	ä
	8	8	ᡂ	86	88		8	<u> </u>	8			8 1	88	88	L	d						<u> </u>		8	88	88	488	Ø	78			<u> </u>			81	88	188		2	8	<u> </u>		88	48	
	8			ø,	2		8	▩	8			88	88	88	18							▩		8	88	88	88	8	28			▩			88	88	188		ı	8	88		88	38	
	8		×	d	▩		8	8	<u> </u>		8	8 1	88	88	18	1						8		8	88	88	98	di	8			8	<u> </u>		81	88	I	8	188	8			88	40	ä
		8.	200	000	鰛							8	88	88	K 000	X 000	108							81	88	888	0 100	200	닖						881	88	188	186	0000	000			88	48	
	8								8			8	88	88	188	188								81	88	88	888					8			81	88	188						88	48	
												88	88	88	88	88								8	88	88	88								88	88	188						88	40	
												8	88	88	188	188								81	88	888	888	188							881	88	188						88	48	
88	8	88	88	88	88	88)	88	88	881	881	88)	88	88	89	100	98	188	988	88	880	88	88	884	8	98	888	80	88	88	888	88	88	881	881	88	98	400	100	100	88	888	888	988	980	B
												н												9												н									
												4												9												4									
												н												8												н									
												н												4												н									
		8	2	۰	쯩							н				•								4												н									
				9	В							н				н								я			17	A								Ŧ		Н	8	н					
			夏	/	셣							н				н								4			//		я							н				B					
		7	e		7							н				٠								н		н	4	15								н		н							
												н												н				H	8							н									
												ı																i i	6							н									
												н												8		P										н									
												н												8	1	1	и									н									
	7		_		_			_											_	_	_	_				7	u			_															ī
od			88	***	88	201	91	***	201	201	01		o la	910	400	100	100	100	2		2		001		SIV.	6	N S	100	100	***	100		831	000	946		100	100	100	100	000	001		-100	h
												8													₹.	48																			
																								8	W											П									
												8													48																				
			쬻									8			18									7	88		818												100	188					
			2									8				800	ì						₩	N				Ĭ											ø	a	78				
			8	8								8				17	Á						9	8				8												7	A				
			8	Ü								8			12	•							1	8				8											2						
		8.			J.							8										7	A	8			1		J																
												8										7		8																					
												8									87	A																							
												8									7			8																					
												ğ								1000				88																					

4th element of the permutation is the first to map to a 1

Finding Similar Items (4) - Solution 1+2/3

- 1) Compute the minhash signature for each column using the following hash functions:
 - $h_1(x) = 2x + 1 \mod 6$
 - $h_2(x) = 3x + 2 \mod 6$
 - $h_3(x) = 5x + 2 \mod 6$

Hashes are computed on element IDs:

Element	D1	D2	D ₃	D ₄	$h_1(x)$	$h_2(x)$	$h_3(x)$	N	Minh.	ash si	ignat	ure.		
0	0	1	0	1	1	2	2	•	_					
1	0	1	0	0	3	5	1		D1	D2	D3	D ₄		
2	1	0	0	1	5	2	о Г	\\	5	1	1	1		
3	0	0	1	0	1		_		2	2	2	2		
3						5	5		0	1	4	0		
4	0	0	1	1	3	2	4		(rows	corre	snond	1 to		
5	1	0	0	0	5	5	3		(rows correspond hash functions)					

Which of these hash functions are true permutations: h_3 only

Finding Similar Items (4) – Solution 3/3

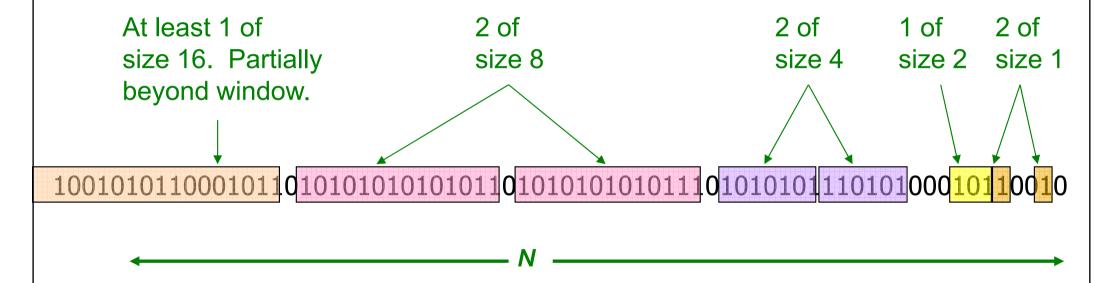
3) How close are the estimated Jaccard similarities for the six pairs of columns (documents) to the true Jaccard similarities?

Jaccard similarities	D1 / D2	D1/D3	D1 / D4	D2 / D3	D2 / D4	D3 / D4
on						
Original documents	0	0	0.25	0	0.25	0.25
Minhash signatures	0.33	0.33	0.67	0.67	0.67	0.67

- => the estimated Jaccard similarities are not close to the true ones at all
 - To make the estimated similarity closer to the true one, there is a need of more and better (i.e., resulting in true permutations) hash functions

Data Streams (1) — Assignment

- Suppose we are maintaining a count of 1s using the DGIM method
 - Each bucket is represented by (i, t)
 - i the number of 1s in the bucket
 - t the bucket timestamp (time of the most recent 1)
- Consider the following properties:
 - Current time is 200
 - Window size is 60
 - Current buckets are:
 - **16** (16, 148) (8, 162) (8, 177) (4, 183) (2, 192) (1, 197) (1, 200)
 - At the next ten clocks (201 through 210), the stream has 0101010101
- What will the sequence of buckets be at the end of these ten inputs?


DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
 - (A) The timestamp of its end [O(log N) bits]
 - (B) The number of 1s between its beginning and end [O(log log N) bits]
- Constraint on buckets:
 Number of 1s must be a power of 2
 - That explains the O(log log N) in (B) above

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets
- Buckets disappear when their
 end-time is > N time units in the past

Example: Bucketized Stream

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time
- 2 cases: Current bit is 0 or 1
- If the current bit is 0:
 no other changes are needed

Updating Buckets (2)

- If the current bit is 1:
 - (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
 - (2) If there are now three buckets of size 1,
 combine the oldest two into a bucket of size 2
 - (3) If there are now three buckets of size 2,
 combine the oldest two into a bucket of size 4
 - (4) And so on ...

Updating buckets (example):

Current state of the stream:

Bit of value 1 arrives

001010110001011 010101010101011 010101010111 01010101 110101010 10110 0 101 1 0 1

Two orange buckets get merged into a yellow bucket

001010110001011 010101010101011 010101010111 01010101 110101 000 1011001 01

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

Data Streams (1) — Solution

- There are 5 occurrences of 1s in the upcoming stream 01010101. Each one updates the buckets to be:
 - (1) Combine the oldest two buckets of size 1
 (16, 148) (8, 162) (8, 177) (4, 183) (2, 192) (1, 197) (1, 200) (1, 202)

 (16, 148) (8, 162) (8, 177) (4, 183) (2, 192) (2, 200) (1, 202)
 - (2) No combination needed
 (16, 148) (8, 162) (8, 177) (4, 183) (2, 192) (2, 200) (1, 202) (1, 204)
 - (3) Combine the oldest two buckets of size 1, and then oldest two buckets of size 2
 (16, 148) (8, 162) (8, 177) (4, 183) (2, 192) (2, 200) (1, 202) (1, 204) (1, 206)
 - => (16, 148) (8, 162) (8, 177) (4, 183) (2, 192) (2, 200) (2, 204) (1, 206)
 - => (16, 148) (8, 162) (8, 177) (4, 183) (4, 200) (2, 204) (1, 206)
 - (4) No combination needed; window size is 60, so (16, 148) should be dropped (16, 148) (8, 162) (8, 177) (4, 183) (4, 200) (2, 204) (1, 206) (1, 208)
 - => (8, 162) (8, 177) (4, 183) (4, 200) (2, 204) (1, 206) (1, 208)
 - (5) Combine the oldest two buckets of size 1
 (8, 162) (8, 177) (4, 183) (4, 200) (2, 204) (1, 206) (1, 208) (1, 210)
 - => (8, 162) (8, 177) (4, 183) (4, 200) (2, 204) (2, 208) (1, 210)