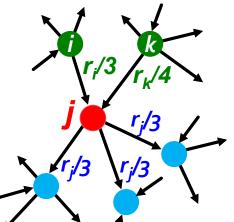

SOLUTIONS

Exercises on Block3: Link Analysis – PageRank Advertising Recommender Systems

Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University http://disa.fi.muni.cz

PageRank (1) – Assignment


For the following graph

Compute the PageRank of each page, assuming no taxation

PageRank (1) – Recap

- Each link's vote is proportional to the importance of its source page
- If page *j* with importance *r_j* has *n* out-links, each link gets *r_j* / *n* votes
- Page j's own importance is the sum of the votes on its in-links

PageRank (1) – Recap

Stochastic adjacency matrix M

Let page i has d_i out-links

If
$$i \to j$$
, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$

- M is a column stochastic matrix
 - Columns sum to 1
- Rank vector r: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_i r_i = 1$

The flow equations can be written

 $r = M \cdot r$

PageRank (1) – Recap

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,...,1/N]^{T}$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$

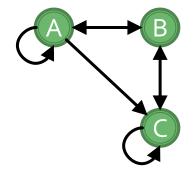
 $d_i \, \ldots \, out$ -degree of node i

• Stop when $|\mathbf{r}^{(t+1)} - \mathbf{r}^{(t)}|_1 < \varepsilon$

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm Can use any other vector norm, e.g., Euclidean

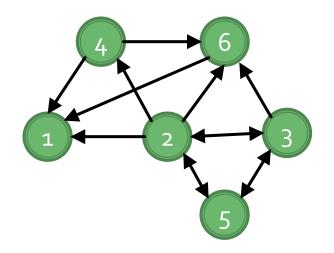
PageRank (1) – Solution

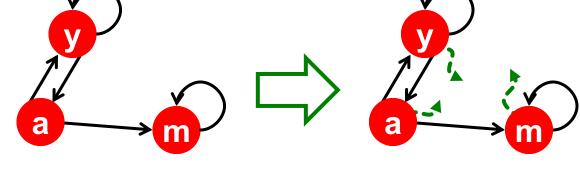
The transition matrix for the graph is:


$$M = \begin{pmatrix} 1/3 & 1/2 & 0\\ 1/3 & 0 & 1/2\\ 1/3 & 1/2 & 1/2 \end{pmatrix}$$

By equation method, we get the result:

$$A = \frac{1}{3}A + \frac{1}{2}B \qquad A = \frac{3}{13}$$
$$B = \frac{1}{3}A + \frac{1}{2}C \qquad \Rightarrow \qquad B = \frac{4}{13} \qquad r = \left(\frac{3}{13} + \frac{4}{13} + \frac{6}{13}\right)^{T}$$
$$C = \frac{1}{3}A + \frac{1}{2}B + \frac{1}{2}C \qquad C = \frac{6}{13}$$


By power-iteration method, we get the following list: $\begin{pmatrix} 0.3333\\ 0.3333\\ 0.3333 \end{pmatrix}, \begin{pmatrix} 0.2777\\ 0.2777\\ 0.2777 \end{pmatrix}, \begin{pmatrix} 0.2314\\ 0.3148\\ 0.4537 \end{pmatrix}, \begin{pmatrix} 0.2345\\ 0.3040\\ 0.4614 \end{pmatrix}, \begin{pmatrix} 0.2301\\ 0.3088\\ 0.4609 \end{pmatrix}, \dots, \begin{pmatrix} 0.2307\\ 0.3076\\ 0.4615 \end{pmatrix}$


For the following graph

Set up the PageRank equations, assuming β = 0.8
 Order nodes by PageRank from highest to lowest

PageRank (2) – Recap

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

PageRank (2) – Recap

- Google's solution that does it all: At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1-β, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \ \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

d_i... out-degree

of node i

PageRank (2) – Recap

PageRank equation [Brin-Page, '98]

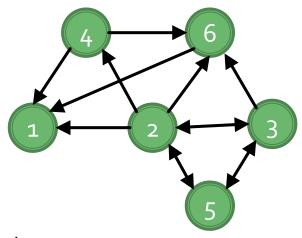
$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix A:

[1/N]_{NxN}...N by N matrix where all entries are 1/N

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem: r = A · r And the Power method still works!
 What is β?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)


PageRank (2) – Solution

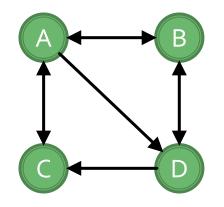
Equations:

- $r_1 = 0.8 \cdot (1/6 \cdot r_1 + 1/2 \cdot r_4 + r_6 + 1/5 \cdot r_2) + 0.2/6$
- $r_2 = 0.8 \cdot (1/6 \cdot r_1 + 1/3 \cdot r_3 + 1/2 \cdot r_5) + 0.2/6$
- $r_3 = 0.8 \cdot (1/6 \cdot r_1 + 1/5 \cdot r_2 + 1/2 \cdot r_5) + 0.2/6$
- $r_4 = 0.8 \cdot (1/6 \cdot r_1 + 1/5 \cdot r_2) + 0.2/6$

•
$$r_5 = 0.8 \cdot (1/6 \cdot r_1 + 1/5 \cdot r_2 + 1/3 \cdot r_3) + 0.2/6$$

 $r_6 = 0.8 \cdot (1/6 \cdot r_1 + 1/5 \cdot r_2 + 1/3 \cdot r_3 + 1/2 \cdot r_4) + 0.2/6$

 Without the need of computing the actual importance from the above stated equations, we can derive order between the following pairs of nodes:


 $r_1 > r_6$ $r_4 < r_5 < r_6$ $r_2 > r_3$ $r_3 > r_5$ $r_6 > r_2$

This implies final order:

$$r_1 > r_6 > r_2 > r_3 > r_5 > r_4$$

For the following graph

 Assuming β = 0.8, compute the topic-sensitive PageRank for the following teleport sets:

- **1)** {A}
- 2) {A, C}

PageRank (3) – Recap

- Random walker has a small probability of teleporting at any step
- Teleport can go to:
 - Standard PageRank: Any page with equal probability
 - To avoid dead-end and spider-trap problems
 - Topic Specific PageRank: A topic-specific set of "relevant" pages (teleport set)
- Idea: Bias the random walk
 - When walker teleports, she pick a page from a set S
 - S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic/query
 - For each teleport set S, we get a different vector r_s

PageRank (3) – Recap

To make this work all we need is to update the teleportation part of the PageRank formulation:

$$A_{ij} = \begin{cases} \beta M_{ij} + (1 - \beta) / |S| & \text{if } i \in S \\ \beta M_{ij} + 0 & \text{otherwise} \end{cases}$$

- A is stochastic!
- We weighted all pages in the teleport set S equally
 - Could also assign different weights to pages!
- Compute as for regular PageRank:
 - Multiply by *M*, then add a vector
 - Maintains sparseness

PageRank (3) – Recap

We just rearranged the PageRank equation $r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_{N}$

• where $[(1-\beta)/N]_N$ is a vector with all N entries $(1-\beta)/N$

- **M** is a **sparse matrix!** (with no dead-ends)
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $\mathbf{r}^{\text{new}} = \beta \mathbf{M} \cdot \mathbf{r}^{\text{old}}$
 - Add a constant value (1-β)/N to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_j r_j^{new} < 1$ and we also have to renormalize r^{new} so that it sums to 1

PageRank (3) – Solution 1/4

The transition matrix for the graph is:

$$M = \begin{pmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{pmatrix} \beta \cdot M = \begin{pmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{pmatrix} \beta = 0.8 = 4/5$$

1) Computing PageRank for teleport set {A} using **equations**:

$$(1-\beta) \cdot \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1/5\\0\\0\\0 \end{pmatrix} \Rightarrow \qquad A = \frac{2}{5}B + \frac{4}{5}C + \frac{1}{5} \\ B = \frac{4}{15}A + \frac{2}{5}D \\ C = \frac{4}{15}A + \frac{2}{5}D \Rightarrow r = \left(\frac{3}{7} \quad \frac{4}{21} \quad \frac{4}{21} \quad \frac{4}{21}\right)^{T} \\ D = \frac{4}{15}A + \frac{2}{5}B \\ A + B + C + D = 1 \end{cases}$$

The transition matrix for the graph is:

$$M = \begin{pmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{pmatrix} \qquad \qquad \beta \cdot M = \begin{pmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{pmatrix}$$

1) Computing PageRank for teleport set {A} using iterations:

$$(1-\beta) \cdot \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1/5\\0\\0\\0 \end{pmatrix} \implies r^{(1)} = \beta \cdot M \cdot r^{(0)} + \begin{pmatrix} 1/5\\0\\0\\0 \end{pmatrix}$$

• We can initialize vector r in different ways; however, the sum of values must equal to 1, e.g., $r^{(0)} = (1 \ 0 \ 0 \ 0)^T$

$$\Rightarrow \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0.2\\0.2666\\0.2666\\0.2666 \end{pmatrix}, \begin{pmatrix} 0.52\\0.16\\0.16\\0.16 \end{pmatrix}, \dots, \begin{pmatrix} 0.4285\\0.1904\\0.1904\\0.1904 \end{pmatrix}$$

The transition matrix for the graph is:

$$M = \begin{pmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{pmatrix} \qquad \qquad \beta \cdot M = \begin{pmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{pmatrix}$$

2) Computing PageRank for teleport set {A,C} using equations:

$$(1-\beta) \cdot \begin{pmatrix} 1/2 \\ 0 \\ 1/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/10 \\ 0 \\ 1/10 \\ 0 \end{pmatrix} \Rightarrow A = \frac{2}{5}B + \frac{4}{5}C + \frac{1}{10}$$
$$B = \frac{4}{15}A + \frac{2}{5}D$$
$$C = \frac{4}{15}A + \frac{2}{5}D + \frac{1}{10} \Rightarrow r = \left(\frac{27}{70} \quad \frac{6}{35} \quad \frac{19}{70} \quad \frac{6}{35}\right)^{T}$$
$$D = \frac{4}{15}A + \frac{2}{5}B$$
$$A + B + C + D = 1$$

The transition matrix for the graph is:

$$M = \begin{pmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{pmatrix} \qquad \qquad \beta \cdot M = \begin{pmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{pmatrix}$$

Computing PageRank for teleport set {A,C} using iterations:

$$(1-\beta)\cdot \begin{pmatrix} 1/2\\0\\1/2\\0 \end{pmatrix} = \begin{pmatrix} 1/10\\0\\1/10\\0 \end{pmatrix} \Rightarrow r^{(1)} = \beta \cdot M \cdot r^{(0)} + \begin{pmatrix} 1/10\\0\\1/10\\0 \end{pmatrix}$$

• We can initialize vector r in different ways; however, the sum of values must equal to 1, e.g., $r^{(0)} = (1 \ 0 \ 0 \ 0)^T$ $(1) \ (0.1) \ (0.5) \ (0.3857)$

$$\Rightarrow \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0.1\\0.2666\\0.3666\\0.2666 \end{pmatrix}, \begin{pmatrix} 0.5\\0.1333\\0.2333\\0.1333 \end{pmatrix}, \dots, \begin{pmatrix} 0.3857\\0.1714\\0.2714\\0.1714 \end{pmatrix}$$

Advertising (1) – Assignment

- Suppose the BALANCE algorithm with bids of 0 or 1 only, to a situation where advertiser
 - A bids on query words x and y
 - B bids on query words x and z
 - Both have a budget of \$2. Decide whether the following sequences of queries are certainly handled optimally by the algorithm:
 - 1) yzyy
 - 2) xyyz
 - 3) xyzx

Advertising (1) – Recap

- BALANCE Algorithm by Mehta, Saberi, Vazirani, and Vazirani
 - For each query, pick the advertiser with the largest unspent budget
 - Break ties arbitrarily (but in a deterministic way)

Advertising (1) – Recap

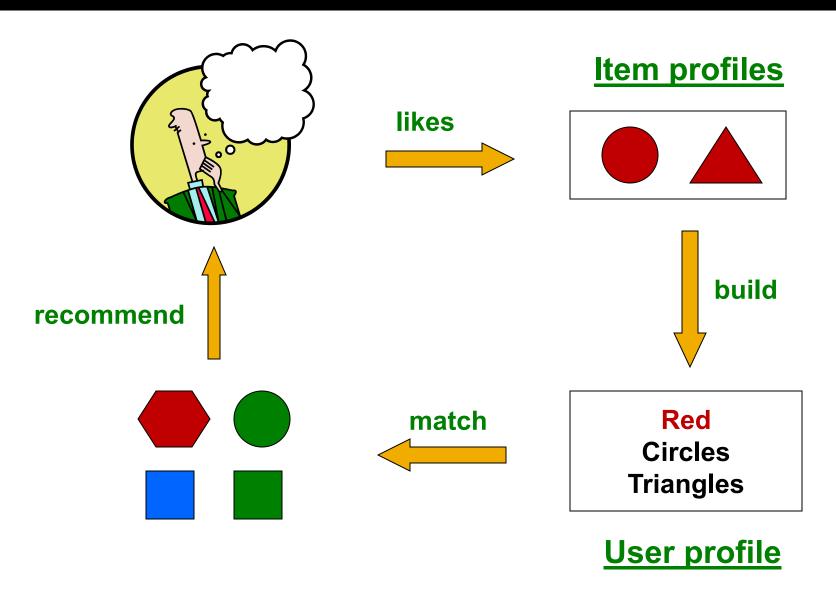
- Two advertisers A and B
 - A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: x x x y y y y
- BALANCE choice: A B A B B B _ _
 - Optimal: A A A A B B B B
- In general: For BALANCE on 2 advertisers
 Competitive ratio = ³/₄

Advertising (1) – Solution

A bids on x and y B bids on x and z budget: \$2

- 1) Input sequence: yzyy
 - Balance choice: yzy (\$3)
 Optimal: yzy (\$3)
 Yes
- 2) Input sequence: xyyz
 - If the x is assigned to A, then the second y cannot ⇒ satisfied, while the optimum assigns all four queries
 - Balance choice: xyz (\$3)
 Optimal: xyyz (\$4)
 No
- 3) Input sequence: xyzx
 - Whichever advertiser is assigned the first x, the ot ⇒er will be assigned the second x, thus using all four queries
 - Balance choice: xyzx (\$4) Optimal: xyzx (\$4) Yes

Recomm. Systems (1) – Assignment


- Bookstore has enough ratings to use a more advanced recommendation system
 - Suppose the mean rating of books is 3.4 stars
 - Alice has rated 350 books and her average rating is
 0.4 stars higher than average users' ratings
 - Animals Farm, is a book title in the bookstore with 250,000 ratings whose average rating is 0.7 higher than global average
 - What is a baseline estimate of Alice's rating for Animals Farms?

Recomm. Systems (1) – Solution

 Baseline estimate of Alice's rating for Animals Farms:

$$r = 3.4 + 0.7 + 0.4 = 4.5$$

Recomm. Systems (2) – Recap

Recomm. Systems (2) – Assignment

Computers A, B and C have the following features:

Feature	Α	В	С
Processor speed	3.06	2.68	2.92
Disk size	500	320	640
Main-memory size	6	4	6

- Assuming features as a vector for each computer, e.g., A's vector is [3.06, 500, 6], we can compute the cosine distance between any two vectors
- Scaling dimensions can prefer some components
- Assume 1 as the scale factor for processor speed, α for the disk size, and β for the main memory size and compute:
 - The cosines of angles between pairs of vectors (in terms of α and β)

Recomm. Systems (2) – Recap

E un obtain Velici Can II		
·		
	Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212)	2
	, · · · · · / · · · · · · · · · · · · ·	-

Recomm. Systems (2) – Solution

Feature	Α	В	С
Processor speed	3.06	2.68	2.92
Disk size	500	320	640
Main-memory size	6	4	6

 The cosines of angles between pairs of vectors (in terms of α and β)

 $\cos(A,B) = \frac{8.2008 + 160000\alpha^2 + 24\beta^2}{\sqrt{9.3636 + 25000\alpha^2 + 36\beta^2} \cdot \sqrt{7.1824 + 102400\alpha^2 + 16\beta^2}}}{\sqrt{7.1824 + 102400\alpha^2 + 24\beta^2}}$ $\cos(B,C) = \frac{7.8256 + 204800\alpha^2 + 24\beta^2}{\sqrt{7.1824 + 102400\alpha^2 + 16\beta^2} \cdot \sqrt{8.5264 + 409600\alpha^2 + 36\beta^2}}}{8.9352 + 320000\alpha^2 + 36\beta^2}}$ $\cos(A,C) = \frac{8.9352 + 32000\alpha^2 + 36\beta^2}{\sqrt{9.3636 + 25000\alpha^2 + 36\beta^2} \cdot \sqrt{8.5264 + 409600\alpha^2 + 36\beta^2}}}{\sqrt{9.3636 + 250000\alpha^2 + 36\beta^2} \cdot \sqrt{8.5264 + 409600\alpha^2 + 36\beta^2}}}$

Recomm. Systems (3) – Assignment

- A user has rated the three computers as follows:
 - A: 4 stars, B: 2 stars, C: 5 stars
- Tasks:
 - 1) Normalize the ratings for this user
 - 2) Compute a user profile for the user, with the following features

Feature	Α	В	С
Processor speed	3.06	2.68	2.92
Disk size	500	320	640
Main-memory size	6	4	6

Recomm. Systems (3) – Solution

- A: 4, B: 2, C: 5 stars
 - 1) Normalized ratings:
 - avg(4+2+5)/3=11/3
 - A: 4-11/3=1/3
 - **B**: 2–11/3=–5/3
 - C: 5-11/3=4/3

2) Computed user profile:

- Processor speed: 3.06 · 1/3-2.68 · 5/3 + 2.92 · 4/3=0.4467
- Disk size: 500 · 1/3-320 · 5/3 + 640 · 4/3=486.6667
- Main-memory size: 6 · 1/3-4 · 5/3 + 6 · 4/3=3.3333

Feature	Α	В	С
Processor speed	3.06	2.68	2.92
Disk size	500	320	640
Main-memory size	6	4	6