Nios Il Gen2 Hardware Development Tutorial

2014.09.22

AN-717 @ Subscribe C] Send Feedback

This tutorial describes the system development flow for the Altera® Nios® II processor.
Using the Quartus® II software and the Nios IT Embedded Design Suite (EDS), you can:

« build a Nios II hardware system design

o create a software program that runs on the Nios II system and interfaces with components on Altera
development boards

Building embedded systems in FPGAs involves system requirements analysis, hardware design tasks, and
software design tasks. This tutorial guides you through the basics of each topic, with special focus on the
hardware design steps.

Software and Hardware Requirements

The following are the requirements for the tutorial:

o Altera Quartus II software version 14.0 or later—The software must be installed on a Windows or
Linux computer that meets the Quartus II minimum requirements.

 Nios II EDS version 14.0 or later.
o Design files for the design example—Refer related information below for the design example file.

You can build the design example with any Altera development board or your own custom board that
meets the following requirements:

o The board must have either Altera MAX® 10, Stratix® series, Cyclone® series, or Arria® series FPGA.

o The FPGA must contain a minimum of 2800 logic elements (LE) or adaptive lookup tables (ALUT).

o The FPGA must contain a minimum of 40 M9K memory blocks.

« An oscillator must drive a constant clock frequency to an FPGA pin. The maximum frequency limit
depends on the speed grade of the FPGA. Frequencies of 50 MHz or less should work for most boards;
higher frequencies might work.

« FPGA I/O pins can optionally connect to eight or fewer LEDs to provide a visual indicator of processor
activity.

o The board must have a JTAG connection to the FPGA that provides a programming interface and
communication link to the Nios II system. The JTAG connection can be a dedicated 10-pin JTAG
header for an Altera USB-Blaster " download cable (revision B or higher) or a USB connection with
USB-Blaster circuitry embedded on the board.

Note: Refer to the documentation for your board that describes clock frequencies and pinouts. For Altera
development boards, refer to the related information below.

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 'tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.
AIEIE%A
®

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=AN-717
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(AN-717%202014.09.22)%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

AN-717

2 OpenCore Plus Evaluation 2014.09.22

Related Information

o Altera Development Kits Documentation
» Altera Software Installation and Licensing

OpenCore Plus Evaluation

You can perform this tutorial on hardware without a license. With Altera's free OpenCore Plus evaluation
feature, you can perform the following actions:

« Simulate the behavior of a Nios II processor within your system

o Verify the functionality of your design

« Evaluate the size and speed of your design quickly and easily

+ Generate time-limited device programming files for designs that include Nios II processors
o Program a device and verify your design in hardware

You need to purchase a license for the Nios II processor only when you are completely satisfied with its
functionality and performance, and want to use your design in production.

Related Information

OpenCore Plus Evaluation of Megafunctions
Provides more information about OpenCore Plus.

Nios Il Design Example

The design example you build in this tutorial demonstrates a small Nios II system for control applications,
that displays character I/O output and blinks LEDs in a binary counting pattern. This Nios II system can
also communicate with a host computer, allowing the host computer to control logic inside the FPGA.

The example Nios II system contains the following components:
» Nios II/e processor core

« On-chip memory

o Timer

o« JTAG UART

o 8-bit parallel I/O (PIO) pins to control the LEDs
+ System identification component

Altera Corporation Nios Il Gen2 Hardware Development Tutorial

C] Send Feedback

http://http://www.altera.com/literature/lit-devkits.jsp
http://www.altera.com/literature/manual/quartus_install.pdf
http://http://www.altera.com/literature/an/an320.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717
2014.09.22

Figure 1: Nios Il Design Example Block Diagram

Nios Il Design Example 3

The block diagram shows the relationship between the host computer, the target board, the FPGA, and

the Nios II system.

Target Board
Altera FPGA
Nios Il System
Debu
Instr
. contro Nios Il/s Data o
E core =
: <
E e
= JTAG g "
Character | UART £ :
/0 £
— Timer :’% Oﬂmip
Other logic
Clock
oscillator

Other logic can exist within the FPGA alongside the Nios II system. In fact, most FPGA designs with a
Nios II system also include other logic. A Nios II system can interact with other on-chip logic, depending
on the needs of the overall system. This design example does not include other logic in the FPGA.

Nios Il Gen2 Hardware Development Tutorial

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. AN-717
4 Nios Il System Development Flow 2014.09.22

Nios Il System Development Flow

Figure 2: Nios Il System Development Flow

Analyze system
requirements

' .

< | Custom instruction

Nios Il cores Define and generate

Custom hardware
modules

and standard system in Qsys and custom
peripherals peripheral logic
-
—
~e—

Integrate Qsys system
into Quartus Il project

Develop software with
the Nios Il Software
Build Tools for Eclipse

<€—| and peripheral

'

'

Assign pin locations,
timing requirements and
other design constraints

Download software
executable to Nios Il
system on target board

l

;

Compile hardware design

Run and debug software

for target board on target board
Download FPGA design Refine software
to target board and hardware

The Nios II development flow consists of three types of development:

 hardware design steps

software design steps

system design steps, involving both hardware and software

Altera hardware
abstraction layer

drivers
_/

—
S —

User (/C++
a(rplication code
and custom libraries
_/

The design steps in this tutorial focus on hardware development, and provide only a simple introduction
to software development.

Altera Corporation Nios Il Gen2 Hardware Development Tutorial

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717 . .
2014.09.22 Analyzing System Requirements 5

Analyzing System Requirements

The development flow begins with predesign activity which includes an analysis of the application
requirements, such as the following questions:

« What computational performance does the application require?

« How much bandwidth or throughput does the application require?
« What types of interfaces does the application require?

o Does the application require multithreaded software?

Based on the answers to these questions, you can determine the concrete system requirements, such as:

o Which Nios II processor core to use: smaller or faster.

« What components the design requires and how many of each kind.

o Which real-time operating system (RTOS) to use, if any.

o Where hardware acceleration logic can dramatically improve system performance. For example:

« Could adding a DMA component eliminate wasted processor cycles copying data?
« Could a custom instruction replace the critical loop of a DSP algorithm?

Analyzing these topics involve both the hardware and software point of view.

Defining and Generating the System in Qsys

After analyzing the system hardware requirements, you use Qsys to specify the Nios II processor core(s),
memory, and other components your system requires. Qsys automatically generates the interconnect logic
to integrate the components in the hardware system.

You can select from a list of standard processor cores and components provided with the Nios IT EDS.
You can also add your own custom hardware to accelerate system performance. You can add custom
instruction logic to the Nios II core which accelerates CPU performance, or you can add a custom
component which offloads tasks from the CPU. This tutorial covers adding standard processor and
component cores, and does not cover adding custom logic to the system.

The primary outputs of Qsys are the following file types:

Table 1: Qsys Primary Output File Types

Qsys Design File (.qsys) Contains the hardware contents of the Qsys system

SOPC Information File (.sopcinfo) Contains a description of the contents of the .gsys file in
Extensible Markup Language File (.xml) format. The Nios II
EDS uses the .sopcinfo file to create software for the target
hardware.

Hardware description language (HDL) files | Are the hardware design files that describe the Qsys system.
The Quartus II software uses the HDL files to compile the
overall FPGA design into an SRAM Object File (.sof).

Related Information

Volume 1: Design and Synthesis of the Quartus II Handbook
Provides more information about Qsys and developing custom components

Nios Il Gen2 Hardware Development Tutorial Altera Corporation

C] Send Feedback

http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717
6 Integrating the Qsys System into the Quartus Il Project 2014.09.22

Integrating the Qsys System into the Quartus Il Project

After generating the Nios II system using Qsys, you integrate it into the Quartus II project. Using the
Quartus II software, you perform all tasks required to create the final FPGA hardware design.

Using the Quartus II software, you can:

« assign pin locations for I/O signals

o specify timing requirements

« apply other design constraints

« compile the Quartus II project to produce a .sof to configure the FPGA

You download the .sof to the FPGA on the target board using an Altera download cable, such as the USB-
Blaster. After configuration, the FPGA behaves as specified by the hardware design, which in this case is a
Nios II processor system.

Developing Software with the Nios Il Software Build Tools for Eclipse

You can perform all software development tasks for your Nios II processor system using the Nios II
Software Build Tools (SBT) for Eclipse™.

After you generate the system with Qsys, you can begin designing your C/C++ application code
immediately with the Nios II SBT for Eclipse. Altera provides component drivers and a hardware abstrac-
tion layer (HAL) which allows you to write Nios II programs quickly and independently of the low-level
hardware details. In addition to your application code, you can design and reuse custom libraries in your
Nios II SBT for Eclipse projects.

To create a new Nios II C/C++ application project, the Nios II SBT for Eclipse uses information from
the .sopcinfo file. You also need the .sof file to configure the FPGA before running and debugging the
application project on target hardware.

The Nios I SBT for Eclipse can produce several outputs, listed below. Not all projects require all of these
outputs.

Table 2: Nios Il SBT for Eclipse Outputs

The Nios II SBT for Eclipse can produce several outputs but not all projects require all of these outputs.

system.h file o Defines symbols for referencing the hardware in the
system.

o The Nios I SBT for Eclipse automatically create this file
when you create a new board support package (BSP).

Executable and Linking Format File (.elf) Is the result of compiling a C/C++ application project, that
you can download directly to the Nios II processor.

Hexadecimal (Intel-Format) File (-hex) « Contains initialization information for on-chip

memories.

o The Nios II SBT for Eclipse generate these initialization
files for on-chip memories that support initialization of
contents.

Altera Corporation Nios Il Gen2 Hardware Development Tutorial

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717
2014.09.22 Running and Debugging Software on the Target Board 7

I R [= R

Flash memory programming data « Boot code and other arbitrary data you might write to

flash memory.

o The flash programmer adds appropriate boot code to
allow your program to boot from flash memory.

o The Nios I SBT for Eclipse includes a flash programmer
to allow you to write your program or arbitrary data to
flash memory.

This tutorial focuses on downloading only the .elf directly to the Nios II system.

Running and Debugging Software on the Target Board

The Nios II SBT for Eclipse has the capability to download software to a target board, and run or debug
the program on hardware. The Nios II SBT for Eclipse debugger allows you to start and stop the
processor, step through code, set breakpoints, and analyze variables as the program executes.

Varying the Development Flow

The development flow is not strictly linear. The following lost the common variations:

« Refining the Software and Hardware
o [teratively Creating a Nios II System
o Verifying the System with Hardware Simulation Tools

Refining the Software and Hardware

After running software on the target board, you might discover that the Nios II system requires higher
performance. In this case, you can:

« return to software design steps to make improvements to the software algorithm; or
« return to hardware design steps to add acceleration logic

If the system performs multiple mutually exclusive tasks, you might even decide to use two (or more)
Nios II processors that divide the workload and improve the performance of each individual processor.

Iteratively Creating a Nios Il System

A common technique for building a complex Nios II system is to start with a simpler Qsys system, and
iteratively add to it. At each iteration, you can verify that the system performs as expected. You might
choose to verify the fundamental components of a system, such as the processor, memory, and communi-
cation channels, before adding more complex components. When developing a custom component or a
custom instruction, first integrate the custom logic into a minimal system to verify that it works as
expected; then integrate the custom logic into a more complex system.

Nios Il Gen2 Hardware Development Tutorial Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717

8 Creating the Design Example 2014.09.22

Verifying the System with Hardware Simulation Tools

You can perform hardware simulation of software executing on the Nios II system, using tools such as the
ModelSim® RTL simulator. Hardware simulation is useful to meet certain needs, including the following
cases:

 To verify the cycle-accurate performance of a Nios II system before target hardware is available.

« To verify the functionality of a custom component or a Nios II custom instruction before trying it on
hardware.

If you are building a Nios II system based on the standard components provided with the Nios II EDS, the

easiest way to verify functionality is to download the hardware and software directly to a development
board.

Creating the Design Example

First, you must install the Quartus II software and the Nios II EDS. You must also download tutorial
design files from the Altera web site. The design files provide a ready-made Quartus II project to use as a
starting point.

Install the Design Files
Perform the following steps to set up the design environment:

1. Locate the zipped design files on the Altera web site.

2. Unzip the contents of the zip file to a directory on your computer. Do not use spaces in the directory
path name.

The remainder of this tutorial refers to this directory as the <design files directory>.

Analyze System Requirements
The system requirements are derived from the following goals of the tutorial design example:

» Demonstrate a simple Nios II processor system that you can use for control applications.
 Build a practical, real-world system, while providing an educational experience.
« Demonstrate the most common and effective techniques to build practical, custom Nios II systems.

o Build a Nios II system that works on any board with an Altera FPGA. The entire system must use only
on-chip resources, and not rely on the target board.

o The design should conserve on-chip logic and memory resources so it can fit in a wide range of target
FPGAs.

Altera Corporation Nios Il Gen2 Hardware Development Tutorial

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717
2014.09.22 Start the Quartus Il Software and Open the Example Project 9

These goals lead to the following design decisions:
o The Nios II system uses only the following inputs and outputs:

 One clock input, which can be any constant frequency.
« Eight optional outputs to control LEDs on the target board.
« The design uses the following components:

 Nios II/f core with 2 KB of instruction cache with static branch prediction
« 20 KB of on-chip memory

o Timer

o« JTAG UART

« Eight output-only parallel I/O (PIO) pins

o System ID component

Related Information

Embedded Peripheral IP User Guide
Provides more information about the JTAG UART, timer, system ID peripheral, and PIO.

Start the Quartus Il Software and Open the Example Project

The Quartus II project serves as an easy starting point for the Nios II development flow. The Quartus II
project contains all settings and design files required to create the .sof. To open the Quartus II project,
perform the following steps:

1. Start the Quartus II software.

2. Click Open Existing Project on the splash screen, or, on the File menu, click Open Project.
The Open Project dialog box appears.

3. Browse to the <design files directory>.
4. Select the file nios2_quartus2_project.qpf and click Open.
5. To display the Block Diagram File (.bdf) nios2_quartus2_project.bdf, perform the following steps:

a. On the File menu, click Open.
The Open dialog box appears.

b. Browse to the <design files directory>.
c. Select nios2_quartus2_project.bdf and click Open.
The .bdf contains an input pin for the clock input and eight output pins to drive LEDs on the board.

Next, you create a new Qsys system, which you ultimately connect to these pins.

Create a New Qsys System

You use Qsys to generate the Nios II processor system, adding the desired components, and configuring
how they connect together. To create a new Qsys system, click Qsys on the Tools menu in the Quartus II
software. Qsys starts and displays the System Contents tab.

Define the System in Qsys

You use Qsys to define the hardware characteristics of the Nios II system, such as which Nios II core to
use, and what components to include in the system. Qsys does not define software behavior, such as
where in memory to store instructions or where to send the st derr character stream.

Nios Il Gen2 Hardware Development Tutorial Altera Corporation

C] Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717
10 Specify Target FPGA and Clock Settings 2014.09.22

The Qsys design process does not need to be linear. The design steps in this tutorial are presented in the
most straightforward order for a new user to understand. However, you can perform Qsys design steps in
a different order.

Specify Target FPGA and Clock Settings
To specify target FPGA and clock settings, perform the following steps:

1. On the Project Settings tab, select the Device Family that matches the Altera FPGA you are targeting.
If a warning appears stating the selected device family does not match the Quartus project settings,
ignore the warning. You specify the device in the Quartus project settings later in this tutorial.

2. In the documentation for your board, look up the clock frequency of the oscillator that drives the
FPGA.

3. On the Clock Settings tab, double-click the clock frequency in the MHz column for cl k_0. cl k_0 is
the default clock input name for the Qsys system. The frequency you specify for cl k_0 must match the
oscillator that drives the FPGA.

4. Type the clock frequency and press Enter.

Next, you begin to add hardware components to the Qsys system. As you add each component, you
configure it appropriately to match the design specifications.

Related Information

Altera Development Kits Documentation

Add the On-Chip Memory

Processor systems require at least one memory for data and instructions. This design example uses one 20
KB on-chip memory for both data and instructions. To add the memory, perform the following steps:

1. On the IP Catalog tab (to the left of the System Contents tab), expand Basic Functions, expand On-
Chip Memory, and then click On-Chip Memory (RAM or ROM).

2. Click Add.
The On-Chip Memory (RAM or ROM) parameter editor appears.

3. In the Block type list, select Auto.
4. In the Total memory size box, type 20480 to specify a memory size of 20 KB.

Do not change any of the other default settings.
5. Click Finish. You return to Qsys.

6. Click the System Contents tab.
An instance of the on-chip memory appears in the system contents table.

7. In the Name column of the system contents table, right-click the on-chip memory and click Rename.
8. Type onchi p_memand press Enter.
You must type these tutorial component names exactly as specified. Otherwise, the tutorial programs
written for this Nios II system fail in later steps. In general, it is a good habit to give descriptive names
to hardware components. Nios II programs use these symbolic names to access the component
hardware. Therefore, your choice of component names can make Nios II programs easier to read and
understand.

Add the Nios Il Processor Core

You will add the Nios II/f core and configure it to use 2 KB of on-chip instruction cache memory, no data
cache and use static branch prediction. For this tutorial, the Nios II/f core is configured to provide a

Altera Corporation Nios Il Gen2 Hardware Development Tutorial

C] Send Feedback

http://http://www.altera.com/literature/lit-devkits.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717
2014.09.22

Add the JTAG UART 11

balanced trade-off between performance and resource utilization. To add a Nios II/f core to the system,
perform the following steps:

1. On the IP Catalog tab, expand Processors and Peripherals, and then click Nios IT Gen2 Processor.

2. Click Add.
The Nios II Processor parameter editor appears, displaying the Core Nios II tab.

3. In the Main Tab under Select an Implementation, select Nios II/f.

4. Click Finish and return to the Qsys System Contents tab.
The Nios II core instance appears in the system contents table. Ignore the exception and reset vector
error messages. You resolve these errors in future steps.

5. In the Name column, right-click the Nios II processor and click Rename.

6. Type cpu and press Enter.

7. In the Connections column, connect the cl k port of the clk_0 clock source to both the cl k1 port of
the on-chip memory and the clk port of the Nios II processor by clicking the hollow dots on the
connection line. The dots become solid indicating the ports are connected.

8. Connect the cl k_reset port of the clk_0 clock source to both the r eset 1 port of the on-chip memory
and the r eset _n port of the Nios II processor.

9. Connect the s1 port of the on-chip memory to both the dat a_mast er portandi nstruction_naster
port of the Nios II processor.

10.Double-click the Nios II processor row of the system contents table to reopen the Nios II Processor
parameter editor.

11.Under Reset Vector in Vectors tab, select onchip_mem.s1 in the Reset vector memory list and type
0xO0 in the Reset vector offset box.

12.Under Exception Vector, select onchip_mem.s1 in the Exception vector memory list and type 0x20
in the Exception vector offset box.

13.Click the Caches and Memory Interfaces tab.

14.In the Instruction cache list, select 2 Kbytes.

15.Choose None for Data Cache size and do not change other default settings.

16.In Advanced Features tab, select Static branch prediction type.

17.Click Finish. You will return to the Qsys System Contents tab.

Do not change any settings on the MMU and MPU Settings and JTAG Debug tabs.

Add the JTAG UART

The JTAG UART provides a convenient way to communicate character data with the Nios II processor
through the USB-Blaster download cable. To add the JTAG UART, perform the following steps:

1. On the IP Catalog tab, expand Interface Protocols, expand Serial, and then click JTAG UART.
2. Click Add.
The JTAG UART parameter editor appears and do not change the default settings.

3. Click Finish and return to the Qsys System Contents tab.
The JTAG UART instance appears in the system contents table.

4. In the Name column, right-click the JTAG UART and click Rename.
5. Typej t ag_uart and press Enter.

Nios Il Gen2 Hardware Development Tutorial Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717

12 Add the Interval Timer 2014.09.22

6. Connect the cl k port of the clk_0 clock source to the cl k port of the JTAG UART.

7. Connect the cl k_r eset port of the clk_0 clock source to the r eset port of the JTAG UART.

8. Connect the dat a_mast er port of the Nios II processor to the aval an_j t ag_sl| ave port of the JTAG
UART.

Theinstruction_nast er port of the Nios II processor does not connect to the JTAG UART because
the JTAG UART is not a memory device and cannot send instructions to the Nios II processor.

Related Information

Embedded Peripheral IP User Guide
Provides more information about the JTAG UART, timer, system ID peripheral, and PIO.

Add the Interval Timer

Most control systems use a timer component to enable precise calculation of time. To provide a periodic
system clock tick, the Nios Il HAL requires a timer. To add the timer, perform the following steps:

1. On the IP Catalog tab, expand Processors and Peripherals, expand Peripherals, and then click
Interval Timer.

2. Click Add.
The Interval Timer parameter editor appears.

3. Click Finish return to the Qsys System Contents tab.
The interval timer instance appears in the system contents table.

In the Name column, right-click the interval timer and click Rename.

Typesys_cl k_ti mer and press Enter.

Connect the cl k port of the clk_0 clock source to the cl k port of the interval timer.

Connect the cl k_r eset port of the clk_0 clock source to the r eset port of the interval timer.

® NG

Connect the dat a_nast er port of the Nios II processor to the s1 port of the interval timer.

Related Information

Embedded Peripheral IP User Guide
Provides more information about the JTAG UART, timer, system ID peripheral, and PIO.

Add the System ID Peripheral

The system ID peripheral safeguards against accidentally downloading software compiled for a different
Nios II system. If the system includes the system ID peripheral, the Nios II SBT for Eclipse can prevent
you from downloading programs compiled for a different system. To add system ID peripheral, perform
the following steps:

1. On the IP Catalog tab, expand Basic Functions, expand Simulations; Debug and Verifications and
then click System ID Peripheral.

2. Click Add.
The System ID Peripheral parameter editor appears and do not change the default setting.

3. Click Finish and return to the Qsys System Contents tab.
The system ID peripheral instance appears in the system contents table.

4. In the Name column, right-click the system ID peripheral and click Rename.
5. Type sysi d and press Enter.

Altera Corporation Nios Il Gen2 Hardware Development Tutorial

C] Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717

2014.09.22 Add the PIO 13
6. Connect the cl k port of the clk_0 clock source to the cl k port of the system ID peripheral.
7. Connect the cl k_reset port of the clk_0 clock source to the r eset port of the system ID peripheral.
8. Connect the dat a_mast er port of the Nios II processor to the cont r ol _sl ave port of the system ID
peripheral.
Related Information
Embedded Peripheral IP User Guide
Provides more information about the JTAG UART, timer, system ID peripheral, and PIO.
Add the PIO

PIO signals provide an easy method for Nios II processor systems to receive input stimuli and drive
output signals. Complex control applications might use hundreds of PIO signals which the Nios II
processor can monitor. This design example uses eight PIO signals to drive LEDs on the board. To add
the PIO, perform the following steps:

Note: Perform these steps even if your target board doesn't have LEDs.

1. On the IP Catalog tab, expand Processors and Peripherals, expand Peripherals, and then click PIO .

2. Click Add.
The PIO (Parallel I/O) parameter editor appears and do not change the default settings.

3. Click Finish and return to the Qsys System Contents tab.
The PIO instance appears in the system contents table.

In the Name column, right-click the PIO and click Rename.

Type | ed_pi 0 and press Enter.

Connect the cl k port of the clk_0 clock source to the cl k port of the PIO.

Connect the cl k_r eset port of the clk_0 clock source to the r eset port of the PIO.

Connect the dat a_nast er port of the Nios II processor to the s1 port of the PIO.

In the external_connection row, click Click to export in the Export column to export the PIO ports.

° XSG

Related Information

Embedded Peripheral IP User Guide
Provides more information about the JTAG UART, timer, system ID peripheral, and PIO.

Specify Base Addresses and Interrupt Request Priorities

To specify how the components added in the design to interact to form a system, you need assign base
addresses for each slave component, and assign interrupt request (IRQ) priorities for the JTAG UART
and the interval timer.

Nios Il Gen2 Hardware Development Tutorial Altera Corporation

C] Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717
14 Generate the Qsys System 2014.09.22

Qsys provides the Assign Base Addresses command which makes assigning component base addresses
easy. For many systems, including this design example, Assign Base Addresses is adequate. However, you
can adjust the base addresses to suit your needs. Below are some guidelines for assigning base addresses:

 Nios II processor cores can address a 31-bit address span. You must assign base address between
0x00000000 and 0x7FFFFFFF.

Note: The Use most-significant address bit in processor to bypass data cache option is enable by
default. If disabled, the Nios II processor cores supports full 32-bit address.

« Nios II programs use symbolic constants to refer to addresses. You do not have to choose address
values that are easy to remember.

o Address values that differentiate components with only a one-bit address difference produce more
efficient hardware. You do not have to compact all base addresses into the smallest possible address
range, because this can create less efficient hardware.

« Qsys does not attempt to align separate memory components in a contiguous memory range. For
example, if you want an on-chip RAM and an off-chip RAM to be addressable as one contiguous
memory range, you must explicitly assign base addresses.

Qsys also provides an Assign Interrupt Numbers command which connects IRQ signals to produce valid
hardware results. However, assigning IRQs effectively requires an understanding of how software
responds to them. Because Qsys does not know the software behavior, Qsys cannot make educated
guesses about the best IRQ assignment.

The Nios II HAL interprets low IRQ values as higher priority. The timer component must have the
highest IRQ priority to maintain the accuracy of the system clock tick.

To assign appropriate base addresses and IRQs, perform the following steps:

1. On the System menu, click Assign Base Addresses to make Qsys assign functional base addresses to
each component in the system. Values in the Base and End columns might change, reflecting the
addresses that Qsys reassigned.

In the IRQ column, connect the Nios II processor to the JTAG UART and interval timer.
Click the IRQ value for the jtag_uart component to select it.

Type 16 and press Enter to assign a new IRQ value.

Click the IRQ value for the sys_clk_timer component to select it.

S Uk W

Type 1 and press Enter to assign a new IRQ value.

Generate the Qsys System
To generate the Qsys system, perform the following steps:
1. Click the Generation tab.

2. Select None in both the Create simulation model and Create testbench Qsys system lists.

Because this tutorial does not cover the hardware simulation flow, you can select these settings to
shorten generation time.

3. Click Generate. Click Yes when the Save changes? dialog box appears.
4. Typefirst_ni 0s2_syst emin the File name box and click Save.

Altera Corporation Nios Il Gen2 Hardware Development Tutorial

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717
2014.09.22 Integrate the Qsys System into the Quartus Il Project 15
The Generate dialog box appears and system generation process begins. The generation process can
take several minutes. When generation completes, Qsys will prompt: Cr eat e HDL desi gn
files for synthesis.
5. Click Close to close the dialog box.
6. On the File menu, click Exit to close Qsys and return to the Quartus II software.

You are ready to integrate the system into the Quartus IT hardware project and use the Nios IT SBT for
Eclipse to develop software.

Integrate the Qsys System into the Quartus Il Project
To complete the hardware design, you need to perform the following tasks:

« Instantiate the Qsys system module in the Quartus II project.
 Assign FPGA device and pin locations.

« Compile the Quartus II project.

« Verify timing.

Instantiate the Qsys System Module in the Quartus Il Project

Qsys outputs a design entity called the system module. The tutorial design example uses the block
diagram method of design entry, so you instantiate a system module symbol first_nios2_system into
the .bdf.

Note: How you instantiate the system module depends on the design entry method of the overall Quartus
IT project. For example, if you were using Verilog HDL for design entry, you would instantiate the
Verilog module first_nios2_system defined in the file first_nios2_system.v.

To instantiate the system module in the .bdf, perform the following steps:

1. Double-click in the empty space to the right of the input and output wires.
The Symbol dialog box appears.
2. Under Libraries, expand Project.

3. Click first_nios2_system.
The Symbol dialog box displays the first_nios2_system symbol.

4. Click OK. You return to the .bdf schematic. The first_nios2_system symbol tracks with your mouse
pointer.

5. Position the symbol so the pins on the symbol align with the wires on the schematic.

6. Click to anchor the symbol in place.

7. If your target board does not have LEDs that the Nios II system can drive, you must delete the
LEDG(7..0] pins. To delete the pins, perform the following steps:
a. Click the output symbol LEDG[7..0] to select it.
b. On your keyboard, press Delete.

8. To save the completed .bdf, click Save on the File menu.

Add IP Variation File
You can add the Quartus II IP File (.qip) to the your Quartus II project by performing the following steps:

1. On the Assignments menu, click Settings.
The Settings dialog box appears.

2. Under Category, click Files.

Nios Il Gen2 Hardware Development Tutorial Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717

16 Assign FPGA Device 2014.09.22

6.
7.

The Files page appears.

Next to File name, click the browse (...) button.

In the Files of type list, select Script Files (*.tcl, *.sdc, *.qip).

Browse to locate <design files directory>/first_nios2_system/synthesis/ first_nios2_system.qip and click
Open to select the file.

Click Add to include first_nios2_system.qip in the project.

Click OK to close the Settings dialog box.

Assign FPGA Device

Before assigning FPGA pin locations to match the pinouts of your board, you need to first assign a
specific target device. To assign the device, perform the following steps:

1.

5.

On the Assignments menu, click Device.

The Device dialog box appears.

In the Family list, select the FPGA family that matches your board.

If prompted to remove location assignments, do so.

Under Target device, select Specific device selected in Available devices list.
Under Available devices, select the exact device that matches your board.

If prompted to remove location assignments, do so.

Click OK to accept the device assignment.

Assign FPGA Pin Locations

Before assigning the FPGA pins, you must know the pin layout for the board. You also must know other
requirements for using the board, refer to related information below. To assign the FPGA pin locations,
perform the following steps:

1.

On the Processing menu, point to Start, and click Start Analysis & Elaboration to prepare for
assigning pin locations.

The analysis starts by displaying adat a not avai | abl e message and can take several minutes. A
confirmation message box appears when analysis and elaboration completes.

Click OK.

On the Assignments menu, click Pin Planner.

The Quartus II Pin Planner appears.

In the Node Name column, locate PLD_CLOCKINPUT.

In the PLD_CLOCKINPUT row, double-click in the Location cell to access a list of available pin
locations.

Select the appropriate FPGA pin that connects to the oscillator on the board.
If your design fails to work, recheck your board documentation for this step first.

In the PLD _CLOCKINPUT row, double-click in the I/O Standard cell to access a list of available I/O
standards.

Select the appropriate I/O standard that connects to the oscillator on the board.

If you connected the LED pins in the board design schematic, repeat steps 4 to 8 for each of the LED
output pins (LEDGI[0], LEDGI[1], LEDG[2], LEDG[3], LEDG[4], LEDG[5], LEDG[6], LEDG[7]) to
assign appropriate pin locations.

10.0n the File menu, click Close to save the assignments.

11.0n the Assignments menu, click Device.

Altera Corporation

Nios Il Gen2 Hardware Development Tutorial

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717

2014.09.22 Set Timing U/

The Device dialog box appears.

12.Click Device and Pin Options.
The Device and Pin Options dialog box appears.

13.Click the Unused Pins page.

14.In the Reserve all unused pins list, select As input tri-stated with weak pull-up. With this setting, all
unused I/O pins on the FPGA enter a high-impedance state after power-up.
Unused pins are set as input tri-stated with weak pull-up to remove contention which might damage
the board. Depending on the board, you might have to make more assignments for the project to
function correctly. You can damage the board if you fail to account for the board design. Consult with
the maker of the board for specific contention information.

15.Click OK to close the Device and Pin Options dialog box.

16.Click OK to close the Device dialog box.

Related Information

Altera Development Kits Documentation

Set Timing

To ensure the design meets timing, perform the following steps:

1. On the File menu, click Open.

2. In the Files of type list, select Script Files (*.tcl, *.sdc, *.qip).

3. Browse to locate <design files directory>/hw_dev_tutorial.sdc and click Open. The file opens in the text
editor.

4. Locate the following cr eat e_cl ock command:cr eat e_cl ock -nane sopc_cl k -peri od
20 [get_ports PLD_CLOCKI NPUT]

5. Change the period setting from 20 to the clock period (1/frequency) in nanoseconds of the oscillator
driving the clock pin.

6. On the File menu, click Save.

7. On the Assignments menu, click Settings.
The Settings dialog box appears.

8. Under Category, click TimeQuest Timing Analyzer.

9. Next to File name, click the browse (...) button.

10.Browse to locate <design files directory>/hw_dev_tutorial.sdc and click Open to select the file.
11.Click Add to include hw_dev_tutorial.sdc in the project.

12.Turn on Enable multicorner timing analysis during compilation.

13.Click OK.

Compile the Quartus Il Project and Verify Timing

To create a .sof file, you have to compile the hardware design and then it download to the board. After the
compilation completes, you must analyze the timing performance of the FPGA design to verify that the
design will work in hardware. To compile the Quartus II project, perform the following steps:

1. On the Processing menu, click Start Compilation.

Nios Il Gen2 Hardware Development Tutorial Altera Corporation

C] Send Feedback

http://http://www.altera.com/literature/lit-devkits.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. AN-717
18 Download the Hardware Design to the Target FPGA 2014.09.22

The Tasks window and percentage and time counters in the lower-right corner display progress. The
compilation process can take several minutes. When compilation completes, a dialog box displays the
message "Full Compilation was successful.”

Click OK. The Quartus II software displays the Compilation Report tab.

Expand the TimeQuest Timing Analyzer category in the compilation report.

Click Multicorner Timing Analysis Summary.

Verify that the Worst-case Slack values are positive numbers for Setup, Hold, Recovery, and
Removal.

DAL

If any of these values are negative, the design might not operate properly in hardware. To meet timing,
adjust Quartus II assignments to optimize fitting, or reduce the oscillator frequency driving the FPGA.

Download the Hardware Design to the Target FPGA
To download the .sof to the target board, perform the following steps:

1. Connect the board to the host computer with the download cable, and apply power to the board.

2. On the Tools menu in the Quartus II software, click Programmer.
The Quartus II Programmer appears and automatically displays the appropriate configuration file
(nios2_quartus2_project.sof).

3. Click Hardware Setup in the upper left corner of the Quartus II Programmer to verify your download
cable settings.
The Hardware Setup dialog box appears.

4. Select the appropriate download cable in the Currently selected hardware list.

If the appropriate download cable does not appear in the list, you must first install drivers for the cable.
5. Click Close.
6. In the nios2_quartus2_project.sof row, turn on Program/Configure.

7. Click Start.
The Progress meter sweeps to 100% as the Quartus II software configures the FPGA.

At this point, the Nios II system is configured and running in the FPGA, but it does not yet have a
program in memory to execute.

Related Information
Altera Programming Cables Documentation

Develop Software Using the Nios Il SBT for Eclipse
Developing software using the Nios II SBT for Eclipse consists the following tasks:

« Create new Nios II C/C++ application and BSP projects.
« Compile the projects.

To perform these steps, you must have the .sopcinfo file you created earlier in this tutorial. Refer to related
information for more information.

Note: This tutorial presents only the most basic software development steps to demonstrate software
running on the hardware system you created in previous sections.

Related Information
Define the System in Qsys on page 9

Altera Corporation Nios Il Gen2 Hardware Development Tutorial

C] Send Feedback

http://http://www.altera.com/literature/lit-cables.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717
2014.09.22

Create a New Nios Il Application and BSP from Template 19

Create a New Nios Il Application and BSP from Template

To create new Nios II C/C++ application and BSP projects, perform the following steps:

1.

7.
8.
9.

Start the Nios II SBT for Eclipse. On Windows computers, click Start, point to Programs, Altera, Nios
IT EDS <version>, and then click Nios II <version> Software Build Tools for Eclipse. On Linux
computers, run the executable file <Nios Il EDS install path>/bin/eclipse-nios2.

If the Workspace Launcher dialog box appears, click OK to accept the default workspace location.

On the Window menu, point to Open Perspective, and then either click Nios II, or click Other and
then click Nios II to ensure you are using the Nios II perspective.

On the File menu, point to New, and then click Nios IT Application and BSP from Template.

The Nios II Application and BSP from Template wizard appears.

Under Target hardware information, next to SOPC Information File name, browse to locate the
<design files directory>.

Select first_nios2_system.sopcinfo and click Open.

Nios IT Application and BSP from Template wizard will show the current information for the SOPC
Information File name and CPU name fields.

In the Project name box, type count _bi nary.
In the Templates list, select Count Binary
Click Finish.

The Nios II SBT for Eclipse creates and displays the following new projects in the Project Explorer view,
typically on the left side of the window:

count_binary—Your C/C++ application project

count_binary_bsp—A board support package that encapsulates the details of the Nios II system
hardware

Compile the Project

You have to compile the project to produce an executable software image. For the tutorial design example,
you must first adjust the project settings to minimize the memory footprint of the software, because your
Nios II hardware system contains only 20 KB of memory. To adjust the project settings and compile the
project, perform the following steps:

1.

In the Project Explorer view, right-click count_binary_bsp and click Properties. The Properties for
count_binary_bsp dialog box appears.

Click the Nios IT BSP Properties page. The Nios II BSP Properties page contains basic software build
settings.

Though not needed for this tutorial, note the BSP Editor button in the lower right corner of the dialog
box. You use the Nios II BSP Editor to access advanced BSP settings.

Adjust the following settings to reduce the size of the compiled executable:

a. Turn on enable_reduced_device_drivers.

b. Turn off enable_gprof.

c. Turn on enable_small_c_library.

d. Turn off enable_sim_optimize.

Click OK.

The BSP regenerates, the Properties dialog box closes, and you return to the Nios II SBT for Eclipse.
In the Project Explorer view, right-click the count_binary project and click Build Project.

Nios Il Gen2 Hardware Development Tutorial Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-717

20 Run the Program on Target Hardware 2014.09.22

The Build Project dialog box appears, and the Nios II SBT for Eclipse begins compiling the project. When
compilation completes,a count _bi nary buil d conpl et e message appears in the Console view.

Run the

Program on Target Hardware

To download the software executable to the target board, perform the following steps:

1.

Right-click the count_binary project, point to Run As, and then click Nios IT Hardware.

If the Run Configurations dialog box appears, verify that Project name and ELF file name contain
relevant data, then click Run.

The Nios IT SBT for Eclipse downloads the program to the FPGA on the target board and the program
starts running. When the target hardware starts running the program, the Nios II Console view
displays character I/O output. If you connected LEDs to the Nios II system in previous section, then
the LEDs blink in a binary counting pattern.

Click the Terminate icon (the red square) on the toolbar of the Nios II Console view to terminate the
run session and the Nios II SBT for Eclipse will disconnect from the target hardware.

You can edit the count_binary.c program in the Nios II SBT for Eclipse text editor and repeat these two
steps to witness your changes executing on the target board. If you rerun the program, buffered
characters from the previous run session might display in the Console view before the program begins
executing.

Related Information

Integrate the Qsys System into the Quartus II Project on page 15

Document Revision History

I N S

September 2014 \ 2014.09.22 ‘Initial release.

Altera Corporation

Nios Il Gen2 Hardware Development Tutorial

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Nios II Gen2 Hardware Development Tutorial
	Software and Hardware Requirements
	OpenCore Plus Evaluation
	Nios II Design Example
	Nios II System Development Flow
	Analyzing System Requirements
	Defining and Generating the System in Qsys
	Integrating the Qsys System into the Quartus II Project
	Developing Software with the Nios II Software Build Tools for Eclipse
	Running and Debugging Software on the Target Board
	Varying the Development Flow

	Creating the Design Example
	Install the Design Files
	Analyze System Requirements
	Start the Quartus II Software and Open the Example Project
	Create a New Qsys System
	Define the System in Qsys
	Specify Target FPGA and Clock Settings
	Add the On-Chip Memory
	Add the Nios II Processor Core
	Add the JTAG UART
	Add the Interval Timer
	Add the System ID Peripheral
	Add the PIO
	Specify Base Addresses and Interrupt Request Priorities
	Generate the Qsys System

	Integrate the Qsys System into the Quartus II Project
	Instantiate the Qsys System Module in the Quartus II Project
	Add IP Variation File
	Assign FPGA Device
	Assign FPGA Pin Locations
	Set Timing
	Compile the Quartus II Project and Verify Timing

	Download the Hardware Design to the Target FPGA
	Develop Software Using the Nios II SBT for Eclipse
	Create a New Nios II Application and BSP from Template
	Compile the Project

	Run the Program on Target Hardware

	Document Revision History

