
S

Sample Complexity

7Generalization Bounds

Samuel’s Checkers Player

Definition
Samuel’s Checkers Player is the �rst machine learn-

ing system that received public recognition. It pio-

neered many important ideas in game playing and

machine learning. �e two main papers describing his

research (Samuel, , ) became landmark papers

in Arti�cial Intelligence. In one game, the resulting pro-

gram was able to beat one of America’s best players of

the time.

Description of the Learning System
Samuel’s checkers player featured a wide variety of

learning techniques. First, his checkers player remem-

bered positions that it frequently encountered during

play. �is simple form of rote learning allowed it to
save time, and to search deeper in subsequent games

whenever a stored position was encountered on the

board or in some line of calculation. Next, it featured

the �rst successful application of what is now known

as 7Reinforcement Learning for tuning the weights of
its evaluation function. �e program trained itself by

playing against a stable copy of itself. A�er each move,

the weights of the evaluation function were adjusted in

a way that moved the evaluation of the root position

a�er a quiescence search closer to the evaluation of the

root position a�er searching several moves deep. �is

technique is a variant of what is nowadays known as

7Temporal-Di�erence Learning and commonly used
in successful game-playing programs. Samuel’s program

not only tuned the weights of the evaluation but also

employed on-line 7Feature Selection for constructing
the evaluation function with the terms that seem to be

themost signi�cant for evaluating the current board sit-

uation. 7Feature Construction was recognized as the
key problem that still needs to be solved. Later, Samuel

changed his evaluation function from a linear combina-

tion of terms into a structure that closely resembled a

-layer 7Neural Network. �is structure was trained
with7Preference Learning from several thousand posi-
tions from master games.

Cross References
7Machine Learning and Game Playing

Recommended Reading
Samuel, A. L. (). Some studies in machine learning using the

game of checkers. IBM Journal of Research and Development,
(), –.

Samuel, A. L. (). Some studies in machine learning using the

game of checkers. II – recent progress. IBM Journal of Research
and Development, (), –.

Saturation

7Bottom Clause

SDP

7Symbolic Dynamic Programming

Search Bias

7Learning as Search

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC 

 S Search Engines: Applications of ML

Search Engines: Applications of ML

Eric Martin

University of New South Wales,

Sydney, NSW, Australia

Definition
Search engines provide users with Internet resources –

links to web sites, documents, text snippets, images,

videos, etc. – in response to queries. �ey use tech-

niques that are part of the �eld of information retrieval,

and rely on statistical and pattern matching methods.

Search engines have to take into account many key

aspects and requirements of this speci�c instance of

the information retrieval problem. First, the fact is that

they have to be able to process hundreds of millions of

searches a day and answer queries in a matter of mil-

liseconds. Second, the resources on the World Wide

Web are constantly updated, with information being

continuously added, removed or changed – the overall

contents changing by up to % a week – in a pool con-

sisting of billions of documents.�ird, the users express

possibly semantically complex queries in a language

with limited expressive power, and o�en not make use

or proper use of available syntactic features of that lan-

guage – for instance, the boolean or operator occurs in
less than % of queries.

Motivation and Background
Web searching is technically initiated by sending a

query to a search engine but the whole search process

starts earlier, in the mind of the person who conducts

the search. To be successful, the process needs to pro-

vide users with words, text snippets, images, or movies

that ful�ll the users’ quest for information.�us, though

a search is technically the implementation of a pro-

cedure that maps a query to some digital material, it

spans a larger spectrum of activities, from a psycholog-

ical trigger to a psychological reward. For a given set

of digital material that, if provided, would be deemed

perfectly satisfactory by a number of users looking for

the same information, di�erent users will issue di�er-

ent queries. �is might be because they have varying

skills at conveying what they are a�er in the form of a

few words. �is, in turn, might be because their under-

standing of the technology prompts them to formulate

what they are a�er in a form that, rightly or wrongly,

they consider appropriate for a computing device to

process. �at might be for a number of di�erent rea-

sons that all point to the fact that the quality of the

search is not determined by its adequacy to the query,

but by its adequacy to the psychological trigger that pro-

duced the query. �is especially makes Web searching

challenging and exciting area in the �eld of7information
retrieval.

In Broder (), it is suggested that web queries can

be classi�ed in three classes:

● Navigational queries expect the search to return
a particular url. For instance, http://www.cityrail.

info is probably the expected result to the query

Cityrail for a Sydneysider.
● Transactional queries expect the search to return
links to sites that o�er further interaction, for exam-

ple for online shopping or to download music. For

instance, http://www.magickeys.com/books/, where

books for young children are available for download,

is probably a good result to the query children
stories.

● Informational queries expect the search to reveal
the information, that is, the correct answer to a

question. �is information can be immediately pro-

vided in the page where the results of the search

are displayed, for instance, Bern for the query
capital of switzerland. Or it can be pro-
vided in the pages accessible from the �rst links

returned by the search, as for instance Italy that is
easily found in the web page accessed from the �rst

link returned in response to the query football
world champion 1982.

Answering an informational query with the informa-

tion itself, rather than with links to documents where

the information is to be found, is one of the most dif-

�cult challenges that search engines developers have

started addressing.

Structure of the Learning System
�e general structure of a search engine can be illus-

trated as follows:

http://www.cityrail.info
http://www.cityrail.info
http://www.magickeys.com/books/

Search Engines: Applications of ML S 

S

User

Parsing Postfilering

Repository Matching Postprocessing

Ranking

Qu
er
y

Documents

Results

A 7string matching algorithm is applied to the parsed
query issued by the user and to an indexed representa-

tion of a set of documents, resulting in a ranked subset

of the latter. �is ranked set of documents can be sub-

jected to a postprocessing procedure whose aim is to

improve the results by either re�ning the query or by

analyzing the documents further, possibly over many

iterations, until the results stabilize and can be returned

to the user, following a post�ltering procedure to display

the information appropriately.

Retrieval Methods
�e existence of hyperlinks between documents distin-

guishes search engines from other information retrieval

applications. All techniques developed in the �eld

of information retrieval are potentially relevant for

extracting information from the web, but bene�ts from

a proper analysis of the cross-reference structure. �at

is, to measure the degree of relevance of a document

to a given query, one can take advantage of a prior

ranking of all documents independent of that query

or any other, following a sophisticated version of the

PageRank (Page, Brin, Motwani, & Winograd, )

link analysis algorithm. One of the simplest versions of

the algorithm recursively de�nes the PageRank PR(T)

of a pageT which pagesT, . . . ,Tn point to, amongst the

c, . . . , cn pages T, . . . ,Tn point to, respectively, as

 − d
N

+ d(T/c +⋯ + Tn/cn),

where N is the total number of pages and d, a damping
factor, represents the probability that a user decides to
follow a link rather than randomly visit another page;

normalizing the solution so that the PageRanks of all

pages add up to , PR(T) then represents the probability

that a user visits T by clicking on a link.

Boolean retrieval is one of the simplest methods to
retrieve a set of documents that match exactly a query

expressed as a boolean combination of keywords. �e

match is facilitated by using an inverted �le indexing
structure which associates every possible keyword with

links to the documents in which it occurs. If extra infor-

mation is kept on the occurrences of keywords in docu-

ments (number of occurrences, part of the document in

which they occur, font size and font type used for their

display, etc.) then the results can also be ranked. But

best match models, as opposed to exact match models,
are better suited to producing ranked results.�e vector
spacemodel is one of the earliest andmost studiedmod-
els of this kind. It represents documents and queries as

vectors over a space each of whose dimensions repre-

sents a possible keyword, and measures the similarity

between the vectors q⃗ and d⃗ whether it occurs at least
once in query and document, respectively, record for

each keyword as the cosine of the angle formed by q⃗ and
d⃗, namely,

q⃗d⃗
∥q⃗∥∥d⃗∥

,

that is all the most closer to  that query and document

have more in common. �e term-frequency-inverse-
document-frequency (tf-idf) model re�nes the encoding
given by d⃗ by replacing a value of  in the ith dimen-
sion, indicating the existence of an occurrence of the ith
keyword in d⃗, with

c log(
N
c

) ,

where c is the number of occurrences of the ith key-
word in the document, N is the total number of docu-
ments, and c is the number of documents in the whole
collection that contain at least one occurrence of the

ith keyword; so more importance is given to keywords
that occur more and that occur “almost exclusively” in

the document under consideration. One of the most

obvious issues with this approach is that the number of

dimensions is huge and the vectors are sparse. Another

important issue is that set of vectors determined by the

set of keywords is not orthogonal, and not even linearly

independent, because two given keywords can be syn-

onyms (sick and ill), not semantically related (garlic and

manifold), or more or less semantically related (wheel

and tire).

 S Search Engines: Applications of ML

�e extended vector space model (Robertson,
Walker, & Beaulieu, b) addresses this issue assum-

ing that the similarity between two keywords is cap-

tured by the symmetric di�erence between the set of

documents that contain a keyword and the set of doc-

uments that contain the other, ranging from identical

sets (similar keywords) to disjoint sets (unrelated key-

words). Let D, . . . ,DN′ be an enumeration of the quo-

tient relation over the set of all documents such that two

documents are equivalent if they contain precisely the

same keywords (so N′ is at most equal to N, the num-
ber of documents in the whole collection). Conceive of

an N′-dimensional vector space S of which D, . . . ,DN′

is a basis. Associate the ith keyword with the vector
v⃗i of S de�ned as /

√
w +⋯ +wN′(w, . . . ,wN′) where

for all nonzero k ≤ N′, wk is the number of occur-

rences of the ith keyword in all documents that belong
to class Dk. �en associate a document with the vector

d⃗ of S de�ned as αv⃗ + ⋯ + αN′′ ⃗vN′′ where N′′ is the

number of keywords and for all nonzero k ≤ N′′, αk is

the number of occurrences of the ith keyword in that
document, and associate a query with the vector q⃗ of
S de�ned as βv⃗ + ⋯ + βN′′ ⃗vN′′ where for all nonzero
k ≤ N′′, βk is equal to  if the ith keyword occurs in the
query, and to  otherwise.�e similarity between q⃗ and
d⃗ is then measured as described for the simple vector
space method.

�e topic-based vector space model (Becker &
Kuropka, ) also replaces the original vector space

with a di�erent vector space of a di�erent dimen-

sion, addressing the issue of nonorthogonality between

keywords thanks to fundamental topics, assumed to
be pairwise independent, using ontologies; the fun-

damental topics then provide the vector basis which

is a linear combination of a given keyword. So the

topic-based vector space model conceives of the mean-

ing of words as the semantic relationships that emerge

from the common use of a language by the mem-

bers of a given community, whereas the extended vec-

tor space model conceives of the meaning of words

as the syntactic relationship of term co-occurrence

with respect to the repository of documents being

processed.

Probabilistic retrieval frameworks aim at estimat-
ing the probability that a given document is relevant

to a given query. Given a keyword w, denote by p+w
the probability that w occurs in a document relevant

to w, and denote by p−w the probability that w occurs
in a document not relevant to w. Many probabilis-
tic retrieval frameworks then de�ne the relevance of a

document to a query as follows, where w, . . . ,wn are

the keywords that occur both in the query and in the

document:
n

∑
i=
log(

p+wi
( − p−wi

)

p−wi
( − p+wi

)
) .

�is quantity increases all the more that the document

containsmore words that aremore likely to occur in rel-

evant documents, and more words less likely to occur

in irrelevant documents. Di�erent frameworks suggest

di�erent ways to evaluate the values of p+wi
and p−wi

. For

instance, pi is sometimes assumed to be constant and
p−wi
de�ned as ni/N whereN is the total number of doc-

uments and ni the number of documents in which wi

occurs, capturing the fact that a document containing a

keyword appearing in few other documents is likely to

be relevant to that keyword, in which case the previous

formula can be rewritten

c
n

∑
i=
log(

N − ni
ni

)

for some constant c. More sophisticated methods have
been developed to better estimate the probabilities,

such as theOkapi weighting document score (Robertson,
Walker, & Beaulieu, a) which de�nes the relevance

of a document to a query as

n

∑
i=
log(

N − ni + .
ni + .

)
(k + )ci

(k( − b) + b(l/β)) + ci

×
(k + )di
k + di

,

where the notation is as above, with the addition of ci
to denote the number of occurrences of wi in the docu-

ment, di to denote the number of occurrences of wi in

the query, l to denote the number of bytes in the doc-
ument, β to denote the average number of bytes in a
document, and b, k, and k to denote constants.

Query Classification
�e development of e�ective methods of information

retrieval from web resources requires a good under-

standing of users’ needs andpractice. InMarkev (a),

the following questions are identi�ed as being especially

relevant towards gaining such an understanding.

Search Engines: Applications of ML S 

S

▸ What characterizes the queries that end users submit to

online IR systems? What search features do people use?

What features would enable them to improve on the

retrievals they have in hand? What features are hardly

ever used? What do end users do in response to the

system’s retrievals?

�is chapter indicates that many of the basic features

of information retrieval systems are poorly used. For

instance, less than , , and % of queries make use

of the and, or, and not boolean operators, respectively,
and less than % of queries of enclosing quotes; the

wrong syntax is o�en used, resulting in incorrect use of

advanced search features in one third of the cases; less

than % of queries take advantage of7relevance feed-
back. Based on those �ndings, the second part (Markev,

b) of the article suggests two dozen new research
questions for researchers in information retrieval, while
noting that about % of users are satis�ed with their

search experience.

Evaluating search satisfaction has received lots of

attention. In Fox, Karnawat, Mydland, Dumais, and

White (), both explicit and implicitmeasures of sat-

isfaction are collected. Explicit measures are obtained

by prompting the user to evaluate a search result as sat-

isfying, partially satisfying, or not satisfying, and simi-

larly to evaluate satisfaction gained from a whole search

session. Implicit measures are obtained by recording

mouse and keyboard actions, time spent on a page,

scrolling actions and durations, number of visits to

a page, position of page in results list, number of

queries submitted, number of results visited, etc. A

Bayesian model can be used to infer the relationships

between explicit and implicit measures of satisfaction.

�is chapter reports on two 7Bayesian networks that
were built to predict satisfaction for individual page vis-

its and satisfaction for entire search sessions – w.r.t.

the feedback obtained from both kinds of prompts

– with evidence that a combination of well chosen

implicit satisfaction measures can be a good predictor

of explicit satisfaction. Referring to the categorization of

web queries in Broder () as user goals, it is proposed
in Lee, Liu, and Cho () to build click distributions
by sorting results to a query following the numbers

of clicks they received from all users, and suggested

that highly skewed distributions should correspond

to navigational queries, while �at distributions should

correspond to informational queries. �e same kind

of considerations are also applied to anchor-link distri-
butions, the anchor-link distribution of a query being
de�ned as the function that maps a URL to the number

of times that URL is the destination of an anchor that

has the same text as the query.

Finer techniques of query classi�cation are pro-

posed in Beitzel, Jensen, Lewis, Chowdhury, and

Frieder (), where is a rule-based automatic classier

is produced from selectional preferences. A query con-
sisting of at least two keywords is split into a head

x and a tail y, and then converted into a forward
pair (x,u) and a backward pair (u, y), where u repre-
sents a category, that is, a generic term that refers to

a list of semantically related words in a thesaurus. For

instance, the query “interest rate” can (only) be split

into (interest, rate) and converted to the forward pair

(interest, personal �nance) where “personal �nance”

denotes the list consisting of the terms “banks,” “rates,”

“savings,” etc.; so the �rst keyword – “interest” – pro-

vides context for the second one. Given a large query

log, themaximum likelihood estimate (MLE) of P(u/x),
the probability that a query decomposed as (x, z) is
such that z belongs to category u, is de�ned as the quo-
tient between the number of queries in the log that have

(x,u) as a forward pair and the number of queries in the
log that can be decomposed as (x, z). �is allows one to
write a forward rule of the form “x Y classi�ed as uwith
weight p,” where p is the MLE of P(u/x), provided that
the selectional preference strength of x be above some
given threshold.�e rule can then be applied to incom-

ing queries, such as “interest only loan” by matching

a �nal or initial segment of the query – depending on

whether forward or backward rules are under consid-

eration – and suggest possible classi�cations; with the

running example, “interest only loan” would then be

classi�ed as “personal �nance with weight p” if a for-
ward rule of the form “interest Y classi�ed as personal
�nance with weight p” had been discovered. Such a
classi�cation can then be used to rewrite the query, or

to send it to an appropriate database-backend if many

domain-speci�c databases are available.

Cross References
7Bayesian Methods
7Classi�cation

 S Self-Organizing Feature Maps

7Covariance Matrix
7Rule Learning
7Text Mining

Recommended Reading
Becker, J., & Kuropka, D. (). Topic-based vector space model.

In W. Abramowicz & G. Klein (Eds.), Proceedings of the
sixth international conference on business information systems
(pp. –). Colorado Springs, CO.

Beitzel, S. M., Jensen, E. C., Lewis, D. D., Chowdhury, A., &

Frieder, O. (). Automatic classification of web queries

using very large unlabeled query logs. ACM Transactions on
Information Systems, (), . ISSN: -

Broder, A. (). A taxonomy of web search. SIGIR Forum, (),
–.

Fox, S., Karnawat, K., Mydland, M., Dumais, S., & White, T. ().

Evaluating implicit measures to improve web search. ACM
Transactions on Information Systems, (), –.

Lee, U., Liu, Z., & Cho, J. (). Automatic identification of user

goals in web search. In WWW ’: In Proceedings of the th
international conference on World Wide Web (pp. –). New
York: ACM Press.

Markev, K. (a). Twenty-five years of end-user searching, part :

Research findings. Journal of the American Society for Informa-
tion Science and Technology, (), –.

Markev, K. (b). Twenty-five years of end-user searching, part :

Future research directions. Journal of the American Society for
Information Science and Technology, (), –.

Page, L., Brin, S., Motwani, R., & Winograd, T. (). The pager-
ank citation ranking: Bringing order to the web. Technical report.
Stanford, CA: Stanford University Press.

Robertson, S. E., Walker, S., & Beaulieu, M. (a). Okapi at trec-

: Automatic ad hoc, filtering, VLC and filtering tracks. In

E. Voorhees & D. Harman (Eds.), In Proceedings of the seventh
text retrieval conference (pp. –). Gaithersburg, MD.

Robertson, S. E., Walker, S., & Beaulieu, M. (b). On model-

ing of information retrieval concepts in vector spaces. ACM
Transactions on Database Systems, (), –.

Self-Organizing Feature Maps

7Self-Organizing Maps

Self-Organizing Maps

Samuel Kaski

Helsinki University of Technology, Finland

Synonyms
Kohonen maps; Self-organizing feature maps; SOM

Definition
Self-organizing map (SOM), or Kohonen Map, is a

computational data analysis method which produces

nonlinear mappings of data to lower dimensions. Alter-

natively, the SOM can be viewed as a 7clustering algo-
rithm which produces a set of clusters organized on a

regular grid. �e roots of SOM are in neural compu-

tation (see 7neural networks); it has been used as an
abstract model for the formation of ordered maps of

brain functions, such as sensory feature maps. Several

variants have been proposed, ranging from dynamic

models to Bayesian variants. �e SOM has been used

widely as an engineering tool for data analysis, process

monitoring, and information visualization, in numer-

ous application areas.

Motivation and Background
�e SOM (Kohonen, , ) was originally intro-

duced in the context of modeling of how the spatial

organization of brain functions forms. Formation of

feature detectors selective to certain sensory inputs,

such as orientation-selective visual neurons, had earlier

been modeled by 7competitive learning in neural net-
works, and some models of how the feature detectors

become spatially ordered had been published (von der

Malsburg, ). �e SOM introduced an adaptation
kernel or neighborhood function that governs the adap-
tation in such networks; while in plain competitive

learning only the winning neuron that best matches

the inputs adapts, in SOM all neurons within a local

neighborhood of the winner learn. �e neighborhood

is determined by the neighborhood function.�e SOM

is an algorithm for computing such ordered mappings.

While some of the motivation of the SOM comes

from neural computation, its main uses have been as a

practical data analysis method.�e SOM can be viewed

as a topographic vector quantizer, a nonlinear projec-

tionmethod, or a clusteringmethod. In particular, it is a

clustering-type algorithm that orders the clusters. Alter-

natively, it is a nonlinear projection-type algorithm that

clusters, or more speci�cally quantizes, the data.

�e SOM was very popular in the s and still is;

it is intuitively relatively easily understandable, yet hard

to analyze thoroughly. It connects many research tradi-

tions and works well in practice. An impressive set of

variants have been published over the years, of which

Self-Organizing Maps S 

S

probabilistic variants (e.g., Bishop, Svensén, &Williams

() and Heskes ()) are perhaps closest to the

currentmainstreammachine learning.While there cur-

rently are excellent alternative choices for many of the

speci�c tasks SOMshave been applied for over the years,

even the basic SOMalgorithm is still viable as a versatile

engineering tool in data-analysis tasks.

Structure of Learning System
�e SOM consists of a regular grid of nodes (Fig. ).

A model of data has been attached to each node. For
vector-valued data x = [x, . . . , xd]T, themodels are vec-
tors in the same space; the model at the ith node is
mi = [mi, . . . ,mid]. �emodels de�ne a mapping from

the grid to the data space. �e coordinates on the grid

are uniquely determined by the index i of a node, and
the model mi gives the location in the data space. �e

whole grid becomes mapped into an “elastic net” in the

data space. While being a mapping from the grid to

the input space, the SOM de�nes a projection from the

input space to the discrete grid locations as well; each

data point is projected to the node having the closest

model.

�e original online SOM algorithm updates the

model vectors toward the current input vector at time t,

mi(t + ) =mi(t) + hci(t)(x(t) −mi(t)) .

Here c is the index of the unit having the closest model
vector to x(t), and hci(t) is the neighborhood function
or adaptation kernel.�e kernel is a decreasing function

of the distance between the units i and c on the grid; it
forces neighboring units to adapt toward similar input

samples.�e height and width of h are decreasing func-
tions of time t. In an iteration over time and over the
di�erent inputs, the model vectors become ordered and

specialize to represent di�erent regions of the input

space.

�e online version of7K-means clustering is a spe-
cial case of the SOM learning rule, where only the clos-

est model vector is adapted. �at is, the neighborhood

function is hci(t) = α(t) for i = c and hci =  otherwise.
Here α(t) is the adaptation coe�cient, a decreasing
scalar. In short, K-means and SOM use the prototypes

in the same way, but in SOM the prototypes have an

inherent order that stems from �xing them onto a grid

and updating the prototypes to represent both the data

mapped to themselves and to their neighbors.

A neural interpretation of the SOM adaptation pro-

cess is that the nodes are feature detector neurons

or processing modules that in a 7competitive learn-
ing process become specialized to represent di�erent

kinds of inputs. �e neighborhood function is a plas-

ticity kernel that forces neighboring neurons to adapt

at the same time. �e kernel transforms the discrete

set of feature detectors into feature maps analogous to

ordered brain maps of sensor inputs, and more gener-

ally to maps of more abstract properties of the input

data.

A third interpretation of the SOM is as a vector

quantizer. �e task of a vector quantizer is to encode

inputs with indexes of prototypes, o�en called code-

book vectors, such that a distortion measure is mini-

mized. If there is noise that may change the indexes, the

i mi

SOM grid Data space

Self-Organizing Maps. Figure . A schematic diagram showing how the SOM grid of units (circles on the left, neigh-

bors connected with lines) corresponds to an “elastic net” in the data space. The mapping from the grid locations,

determined by the indices i, to the data space is given by the model vectors mi attached to the units i

 S Semantic Mapping

distribution of the noise should be used as the neighbor-

hood function, and then the distortion becomes mini-

mized by a variant of SOM (Luttrell, ). In summary,

the SOM can be viewed as an algorithm for producing

codebooks ordered on a grid.

While it has turned out to be hard to rigorously ana-

lyze the properties of the SOM algorithm (Fort, ),

its �xed points may be informative. In a �xed point the

models must ful�ll

mi =
∑x hc(x),ix
∑x hc(x),i

,

that is, each model vector is in the centroid of data

projected to it and its neighbors. �e de�nition of a

principal curve (Hastie, Tibshirani, & Friedman, ),
a nonlinear generalization of principal components (see

7principle components analysis), essentially is that the
curve goes through the centroid of data projected to it.

Hence, one interpretation of the SOM is a discretized,

smoothed, nonlinear generalization of principal com-

ponents. In short, SOMs aim to describe the variation

in the data nonlinearly with their discrete grids.

Finally, a popular prototype-based classi�er,

7learning vector quantization (LVQ) (Kohonen, ),
can be loosely interpreted as a variant of SOMs,

although it does not have the neighborhood function

and hence, the prototypes do not have an order.

Programs and Data
�e SOM has been implemented in several commercial

packages and as freeware. Two examples, SOM_PAK

written in C andMatlab SOMToolbox (http://www.cis.

hut.�/research/so�ware) came from Kohonen’s group.

Applications
�e SOM can be used as a nonlinear dimensionality

reduction method, by projecting each data vector into

the grid location having the closest model vector. An

image of the grid can be used for information visual-
ization. Since all grid locations are clusters, the SOM
display actually visualizes an ordered set of clusters, or a

quantized image of the principalmanifold in data.More

speci�cally, the SOM units can be thought of as sub-

clusters, and data clusters may form larger areas on the

SOM grid.

SOM-based visualizations can be used for illustrat-

ing the proximity relationships of data vectors, such as

documents in the WEBSOM document maps (Koho-

nen et al., ), or monitoring the change of a sys-

tem such as an industrial process or the utterances

of a speaker, as a trajectory on the SOM display.

More applications can be found in a collected bibli-

ography (the latest one is Pöllä, Honkela, & Kohonen

(in press)).

Cross References
7ART
7Competitive Learning
7Dimensionality Reduction
7Hebbian Learning
7K-means Clustering
7Learning Vector Quantization

Recommended Reading
Bishop, C. M., Svensén, M., & Williams, C. K. I. (). GTM: The

generative topographic mapping. Neural Computation, , –
.

Fort, J. C. (). SOM’s mathematics. Neural Networks, , –.
Hastie, T., Tibshirani, R., & Friedman, J. (). The elements of

statistical learning. New York: Springer.
Heskes, T. (). Self-organizing maps, vector quantization, and

mixture modeling. IEEE Transactions on Neural Networks, ,
–.

Kohonen, T. (). Self-organized formation of topologically cor-

rect feature maps. Biological Cybernetics, , –.
Kohonen, T. (). Self-organizing maps (rd ed.). Berlin: Springer.
Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J.,

Paatero, V., et al. (). Self organization of a massive doc-

ument collection. IEEE Transactions on Neural Networks, ,
–.

Luttrell, S. P. (). A Bayesian analysis of self-organizing maps.

Neural Computation, , –.
Pöllä, M., Honkela, T., & Kohonen, T. (). Bibliography of self-

organizing map (SOM) papers: - addendum. Report

TKK-ICS-R, Helsinki University of Technology, Department

of Information and Computer Science, Espoo, Finland.

von der Malsburg, C. (). Self-organization of orientation sensi-

tive cells in the striate cortex. Kybernetik, , –.

Semantic Mapping

7Text Visualization

http://www.cis.hut.fi/research/software
http://www.cis.hut.fi/research/software

Semi-Naive Bayesian Learning S 

S

Semi-Naive Bayesian Learning

Fei Zheng, Geoffrey I. Webb

Monash University,

Clayton, Melbourne,

Victoria, Australia

Definition
Semi-naive Bayesian learning refers to a �eld of
7Supervised Classi�cation that seeks to enhance the
classi�cation and conditional probability estimation

accuracy of7naive Bayes by relaxing its attribute inde-
pendence assumption.

Motivation and Background
�e assumption underlying 7naive Bayes is that
attributes are independent of each other, given the

class. �is is an unrealistic assumption for many

applications. Violations of this assumption can render

naive Bayes’ classi�cation suboptimal. �ere have been

many attempts to improve the classi�cation accuracy

and probability estimation of naive Bayes by relax-

ing the attribute independence assumption while at

the same time retaining much of its simplicity and

e�ciency.

Taxonomy of Semi-Naive Bayesian
Techniques
Semi-naive Bayesian methods can be roughly subdi-

vided into �ve high-level strategies for relaxing the

independence assumption.

● �e �rst strategy forms an attribute subset by delet-

ing attributes to remove harmful interdependencies

and applies conventional naive Bayes to this attribute

subset.

● �e second strategy modi�es naive Bayes by adding

explicit interdependencies between attributes.

● �e third strategy accommodates violations of the

attribute independence assumption by applying

naive Bayes to a subset of training set. Note that

the second and third strategies are not mutually

exclusive.

● �e fourth strategy performs adjustments to the

output of naive Bayes without altering its direct

operation.

● �e ��h strategy introduces hidden variables to

naive Bayes.

Methods That Apply Naive Bayes to a
Subset of Attributes
Due to the attribute independence assumption, the

accuracy of naive Bayes is o�en degraded by the

presence of strongly correlated attributes. Irrelevant

attributes may also degrade the accuracy of naive Bayes,

in e�ect increasing variance without decreasing bias.

Hence, it is useful to remove both strongly correlated

and irrelevant attributes.

Backward sequential elimination (Kittler, ) is

an e�ective wrapper technique to select an attribute

subset and has been pro�tably applied to naive Bayes.

It begins with the complete attribute set and iteratively

removes successive attributes. On each iteration, naive

Bayes is applied to every subset of attributes that can be

formed by removing one further attribute.�e attribute

whose deletion most improves training set accuracy

is then removed, and the process repeated. It termi-

nates the process when subsequent attribute deletion

does not improve training set accuracy. Conventional

naive Bayes is then applied to the resulting attribute

subset.

One extreme type of interdependencies between

attributes results in a value of one being a generaliza-

tion of a value of the other. For example,Gender=female
is a generalization of Pregnant=yes. Subsumption res-
olution (SR) (Zheng & Webb, ) identi�es at clas-

si�cation time pairs of attribute values such that one

appears to subsume (be a generalization of) the other

and delete the generalization. It uses the criterion ∣Txi ∣ =

∣Txi ,xj ∣ ≥ u to infer that attribute value xj is a general-
ization of attribute value xi, where ∣Txi ∣ is the number

of training cases with value xi, ∣Txi ,xj ∣ is the number

of training cases with both values, and u is a user-
speci�ed minimum frequency. When SR is applied

to naive Bayes, the resulting classi�er acts as naive

Bayes except that it deletes generalization attribute-

values at classi�cation time if a specialization is

detected.

 S Semi-Naive Bayesian Learning

Methods That Alter Naive Bayes by
Allowing Interdependencies between
Attributes
Interdependencies between attributes can be addressed

directly by allowing an attribute to depend on other

non-class attributes. Sahami () introduces the ter-

minology of the z-dependence Bayesian classi�er, in
which each attribute depends upon the class and atmost

z other attributes. Figure  depictsmethods in this group
from the7Bayesian Network perspective.
In Fig. a, each attribute depends on the class and

at most one another attribute.7Tree Augmented Naive
Bayes (TAN) (Friedman, Geiger, &Goldszmidt, ) is

a representative one-dependence classi�er. It e�ciently

�nds a directed spanning tree by maximizing the log-

likelihood and employs this tree to perform classi�ca-

tion. SuperParent TAN (Keogh & Pazzani, ) is an

e�ective variant of TAN.

A SuperParent one-dependence classi�er (Fig. b)

is a special case of one-dependence classi�ers, in

which an attribute called the SuperParent (X in this
graph), is selected as the parent of all the other

attributes. 7Averaged One-Dependence Estimators
(AODE) (Webb, Boughton, & Wang, ) selects

a restricted class of one-dependence classi�ers and

aggregates the predictions of all quali�ed classi�ers

within this class. Maximum a posteriori linear mixture

of generative distributions (MAPLMG) (Cerquides &

Mántaras, ) extends AODE by assigning a weight

to each one-dependence classi�er.

Two z-dependence classi�ers (z ≥ ) are NBTree

(Kohavi, ) and lazy Bayesian rules (LBR) (Zheng

& Webb, ), both of which may add any num-

ber of non-class-parents for an attribute. In Fig. c,

attributes in {Xiq+ , . . . ,Xin} depend on all the attributes

in {Xi , . . . ,Xiq}.�emain di�erence between these two

methods is that NBTree builds a single tree for all train-

ing instances while LBR generates a Bayesian rule for

each test instance.

Methods That Apply Naive Bayes to a
Subset of the Training Set
Another e�ective approach to accommodating viola-

tions of the conditional independence assumption is

to apply naive Bayes to a subset of the training set, as

it is possible that the assumption, although violated in

the whole training set, may hold or approximately hold

in a subset of the training set. NBTree and LBR use a

local naive Bayes to classify an instance and can also be

classi�ed into this group. Locally weighted naive Bayes

(LWNB) (Frank, Hall, & Pfahringer, ) applies naive

Bayes to a neighborhood of the test instance, in which

each instance is assigned a weight decreasing linearly

with the Euclidean distance to the test instance. �e

number of instances in the subset is determined by a

user-speci�ed parameter. Only those instances whose

weights are greater than zero are used for classi�cation.

Methods That Calibrate Naive Bayes’
Probability Estimates
Methods in this group make adjustments to the distor-

tion in estimated posterior probabilities resulting from

violations of independence assumption. Isotonic regres-

sion (IR) (Zadrozny & Elkan, ) is a nonparametric

calibration method which produces a monotonically

increasing transformation of the probability outcome

Y

X1 X2 Xi Xi+1 Xn

Y

X1 X2 Xi Xi+1 Xn
Xiq+1 Xiq+2 Xin

XiqXi2Xi1

Y

Semi-Naive Bayesian Learning. Figure . Bayesian Network. (a) one-dependence classifier, (b) SuperParent one-

dependence classifier and (c) z-dependence classifier (z ≥ )

Semi-Naive Bayesian Learning S 

S

of naive Bayes. It uses a pair-adjacent violators algo-

rithm (Ayer, Brunk, Ewing, Reid, & Silverman, )

to perform calibration. To classify a test instance, IR

�rst �nds the interval in which the estimated poste-

rior probability �ts and predicts the isotonic regres-

sion estimate of this interval as the calibrated posterior

probability. Adjusted probability naive Bayesian classi-

�cation (Webb & Pazzani, ) makes adjustments to

class probabilities, using a simple hill-climbing search

to �nd adjustments that maximize the 7leave-one-out
cross validation accuracy estimate. Starting with the

conditional attribute-value frequency table generated

by naive Bayes, iterative Bayes (Gama, ) iteratively

updates the frequency table by cycling through all train-

ing instances.

Methods That Introduce Hidden Variables
to Naive Bayes
Creating hidden variables or joining attributes is

another e�ective approach to relaxing the attribute

independence assumption. Backward sequential elim-

ination and joining (BSEJ) (Pazzani, ) extends BSE

by creating new Cartesian product attributes. It con-

siders joining each pair of attributes and creates new

Cartesian product attributes if the action improves

leave-one-out cross validation accuracy. It deletes origi-

nal attributes and also new Cartesian product attributes

during a hill-climbing search. �is process of joining

or deleting is repeated until there is no further accu-

racy improvement. Hierarchical naive Bayes (Zhang,

Nielsen, & Jensen, ) uses conditional mutual infor-

mation as a criterion to create a hidden variable whose

value set is initialized to the Cartesian product over

all the value sets of its children. Values of a hidden

variable are then collapsed by maximizing conditional

log-likelihood via the 7minimum description length
principle (Rissanen, ).

Selection Between Semi-Naive Bayesian
Methods
No algorithm is universally optimal in terms of gener-

alization accuracy. General recommendations for selec-

tion between semi-naive Bayesian methods is provided

based on7bias-variance tradeo� together with charac-
teristics of the application to which they are applied.

Error can be decomposed into bias and variance

(see7bias variance decomposition). Biasmeasures how
closely a learner is able to approximate the decision sur-

faces for a domain and variancemeasures the sensitivity

of a learner to random variations in the training data.

Unfortunately, we cannot, in general, minimize bias

and variance simultaneously. �ere is a bias-variance

tradeo� such that bias typically decreaseswhen variance

increases and vice versa. Data set size usually interacts

with bias and variance and in turn a�ects error. Since

di�erences between samples are expected to decrease

with increasing sample size, di�erences between mod-

els formed from those samples are expected to decrease

and hence variance is expected to decrease. �erefore,

the bias proportion of error may be higher on large data

sets than on small data sets and the variance proportion

of error may be higher on small data sets than on large

data sets. Consequently, low bias algorithms may have

advantage in error on large data sets and low variance

algorithms may have advantage in error on small data

sets (Brain &Webb, ).

Zheng & Webb () compare eight semi-naive

Bayesian methods with naive Bayes. �ese methods

are BSE, FSS, TAN, SP-TAN, AODE, NBTree, LBR,

and BSEJ. NBTree, SP-TAN, and BSEJ have relatively

high training time complexity, while LBR has high clas-

si�cation time complexity. BSEJ has very high space

complexity. NBTree and BSEJ have very low bias and

high variance. Naive Bayes and AODE have very low

variance. AODE has a signi�cant advantage in error

over other semi-naive Bayesian algorithms tested, with

the exceptions of LBR and SP-TAN. It achieves a

lower error for more data sets than LBR and SP-TAN

without SP-TAN’s high training time complexity and

LBR’s high test time complexity. Subsequent researches

(Cerquides & Mántaras, ; Zheng & Webb, )

show that MAPLMG and SR can in practice signif-

icantly improve both classi�cation accuracy and the

precision of conditional probability estimates of AODE.

However, MAPLMG imposes very high training time

overheads on AODE, while SR imposes no extra train-

ing time overheads and onlymodest test time overheads

on AODE.

Within the prevailing computational complexity

constraints, we suggest using the lowest bias semi-naive

Bayesianmethod for large training data and lowest vari-

ance semi-naive Bayesian method for small training

 S Semi-Supervised Learning

data. An appropriate tradeo� between bias and variance

should be sought for intermediate size training data. For

extremely small data, naive Bayes may be superior and

for large data NBTree and BSEJ may be more appealing

options if their computational complexity satis�es the

computational constraints of the application context.

AODE achieves very low variance, relatively low bias

and low training time and space complexity. MAPLMG

and SR further enhance AODE by substantially reduc-

ing bias and error and improving probability prediction

with modest time complexity. Consequently, they may

prove competitive over a considerable range of classi�-

cation tasks. Furthermore, MAPLMG may excel if the

primary consideration is attaining the highest possible

classi�cation accuracy and SRmay have an advantage if

one wishes e�cient classi�cation.

Cross References
7Bayesian Network
7Naive Bayes

Recommended Reading
Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., & Silverman, E.

(). An empirical distribution function for sampling with

incomplete information. The Annals of Mathematical Statistics,
(), –.

Brain, D., & Webb, G. I. (). The need for low bias algorithms

in classification learning from large data sets. In Proceedings of
the Sixteenth European Conference on Principles of Data Mining
and Knowledge Discovery (pp. –). Berlin: Springer-Verlag.

Cerquides, J., & Mántaras, R. L. D. (). Robust Bayesian linear

classifier ensembles. In Proceedings of the Sixteenth European
Conference on Machine Learning, pp. –.

Frank, E., Hall, M., & Pfahringer, B. (). Locally weighted naive

Bayes. In Proceedings of the Nineteenth Conference on Uncer-
tainty in Artificial Intelligence, Acapulco, Mexico (pp. –).
San Francisco, CA: Morgan Kaufmann.

Friedman, N., Geiger, D., & Goldszmidt, M. (). Bayesian net-

work classifiers. Machine Learning, (), –.
Gama, J. (). Iterative Bayes. Theoretical Computer Science,

(), –.
Keogh, E. J., & Pazzani, M. J. (). Learning augmented

Bayesian classifiers: A comparison of distribution-based and

classification-based approaches. In Proceedings of the Inter-
national Workshop on Artificial Intelligence and Statistics,
pp. –.

Kittler, J., (). Feature selection and extraction. In T. Y. Young

& K. S. Fu (Eds.), Handbook of Pattern Recognition and Image
Processing. New York: Academic Press.

Kohavi, R. (). Scaling up the accuracy of naive-Bayes classifiers:

A decisiontree hybrid. In Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Mining,
pp. –.

Pazzani, M. J. (). Constructive induction of Cartesian prod-

uct attributes. In ISIS: Information. Statistics and Induction in
Science, Melbourne, Australia, (pp. –). Singapore: World
Scientific.

Rissanen, J. (). Modeling by shortest data description. Automat-
ica, , –.

Sahami, M. (). Learning limited dependence Bayesian classi-

fiers. In Proceedings of the Second International Conference on
Knowledge Discovery in Databases (pp. –) Menlo Park:
AAAI Press.

Webb, G. I., & Pazzani, M. J. (). Adjusted probability naive

Bayesian induction. In Proceedings of the Eleventh Australian
Joint Conference on Artificial Intelligence, Sydney, Australia
(pp. –). Berlin: Springer.

Webb, G. I., Boughton, J., & Wang, Z. (). Not so naive

Bayes: Aggregating onedependence estimators.Machine Learn-
ing, (), –.

Zadrozny, B., & Elkan, C. (). Transforming classifier scores into

accurate multiclass probability estimates. In Proceedings of the
Eighth International Conference on Knowledge Discovery and
Data Mining, Edmonton, Alberta, Canada (pp. –). New
York: ACM Press.

Zhang, N. L., Nielsen, T. D., & Jensen, F. V. (). Latent vari-

able discovery in classification models. Artificial Intelligence in
Medicine, (), –.

Zheng, Z., & Webb, G. I. (). Lazy learning of Bayesian rules.

Machine Learning, (), –.
Zheng, F., & Webb, G. I. (). A comparative study of semi-

naive Bayes methods in classification learning. In Proceedings
of the Fourth Australasian Data Mining Conference, Sydney,
pp. –.

Zheng, F., & Webb, G. I. (). Efficient lazy elimination for

averaged-one dependence estimators. In Proceedings of the
Twenty-third International Conference on Machine Learning
(pp. –). New York: ACM Press.

Semi-Supervised Learning

Xiaojin Zhu

University of Wisconsin-Madison,

Madison, WI, USA

Synonyms
Co-training; Learning from labeled and unlabeled data;

Transductive learning

Definition
Semi-supervised learning uses both labeled and unla-

beled data to perform an otherwise7supervised learn-
ing or7unsupervised learning task.
In the former case, there is a distinction between

inductive semi-supervised learning and transductive

Semi-Supervised Learning S 

S

learning. In inductive semi-supervised learning, the

learner has both labeled training data {(xi, yi)}li = 
iid
∼

p(x, y) and unlabeled training data {xi}l+ui = l+
iid
∼ p(x),

and learns a predictor f : X ↦ Y , f ∈ F where F is

the hypothesis space. Here x ∈ X is an input instance,

y ∈ Y its target label (discrete for 7classi�cation or
continuous for7regression), p(x, y) the unknown joint
distribution and p(x) its marginal, and typically l ≪ u.
�e goal is to learn a predictor that predicts future test

data better than the predictor learned from the labeled

training data alone. In transductive learning, the set-

ting is the same except that one is solely interested in

the predictions on the unlabeled training data {xi}l+ui = l+,

without any intention to generalize to future test data.

In the latter case, an unsupervised learning task

is enhanced by labeled data. For example, in semi-

supervised clustering (a.k.a. 7constrained clustering)
one may have a few must-links (two instances must be

in the same cluster) and cannot-links (two instances

cannot be in the same cluster) in addition to the unla-

beled instances to be clustered; in semi-supervised

7dimensionality reduction one might have the target
low-dimensional coordinates on a few instances.

�is entry will focus on the former case of learning

a predictor.

Motivation and Background
Semi-supervised learning is initially motivated by its

practical value in learning faster, better, and cheaper.

In many real world applications, it is relatively easy to

acquire a large amount of unlabeled data {x}. For exam-
ple, documents can be crawled from the Web, images

can be obtained from surveillance cameras, and speech

can be collected from broadcast. However, their corre-

sponding labels {y} for the prediction task, such as sen-
timent orientation, intrusion detection, and phonetic

transcript, o�en requires slow human annotation and

expensive laboratory experiments. �is labeling bottle-

neck results in a scarce of labeled data and a surplus

of unlabeled data. �erefore, being able to utilize the

surplus unlabeled data is desirable.

Recently, semi-supervised learning also �nds appli-

cations in cognitive psychology as a computational

model for human learning. In human categoriza-

tion and concept forming, the environment provides

unsupervised data (e.g., a child watching surrounding

objects by herself) in addition to labeled data from a

teacher (e.g., Dad points to an object and says “bird!”).

�ere is evidence that human beings can combine

labeled and unlabeled data to facilitate learning.

�ehistory of semi-supervised learning goes back to

at least the s, when self-training, transduction, and

Gaussian mixtures with the expectation-maximization

(EM) algorithm �rst emerged. It enjoyed an explosion

of interest since the s, with the development of new

algorithms like co-training and transductive support

vector machines, new applications in natural language

processing and computer vision, and new theoretical

analyses. More discussions can be found in section ..

in Chapelle, Zien, and Schölkopf ().

Theory
Unlabeled data {xi}l+ui = l+ by itself does not carry any

information on the mapping X ↦ Y . How can it help

us learn a better predictor f :X ↦ Y? Balcan and Blum
pointed out in  that the key lies in an implicit

ordering of f ∈ F induced by the unlabeled data. Infor-
mally, if the implicit ordering happens to rank the target

predictor f ∗ near the top, then one needs less labeled
data to learn f ∗. �is idea will be formalized later
on using PAC learning bounds. In other contexts, the

implicit ordering is interpreted as a prior overF or as a

regularizer.

A semi-supervised learning method must address

two questions: what implicit ordering is induced by the

unlabeled data, and how to algorithmically �nd a pre-

dictor near the top of this implicit ordering and �ts

the labeled data well. Many semi-supervised learning

methods have been proposed, with di�erent answers to

these two questions (Abney, ; Chapelle et al., ;

Seeger, ; Zhu & Goldberg, ). It is impossible to

enumerate all methods in this entry. Instead, we present

a few representative methods.

Generative Models

�is semi-supervised learning method assumes the

formof joint probability p(x, y ∣ θ) = p(y ∣ θ)p(x ∣ y, θ).
For example, the class prior distribution p(y ∣ θ) can
be a multinomial over Y , while the class conditional

distribution p(x ∣ y, θ) can be a multivariate Gaus-
sian in X (Castelli & Cover, ; Nigam, McCallum,

�run, & Mitchell, ). We use θ ∈ Θ to denote the

 S Semi-Supervised Learning

parameters of the joint probability. Each θ corresponds
to a predictor fθ via Bayes rule:

fθ(x) ≡ argmaxyp(y ∣ x, θ) = argmaxy
p(x, y ∣ θ)

∑y′ p(x, y′ ∣ θ)
.

�erefore, F = {fθ : θ ∈ Θ}.

What is the implicit ordering of fθ induced by unla-
beled training data {xi}l+ui = l+? It is the large to small

ordering of log likelihood of θ on unlabeled data:

log p({xi}l+ui = l+ ∣ θ) =
l+u
∑

i = l+
log

⎛

⎝
∑
y∈Y

p(xi, y ∣ θ)
⎞

⎠
.

�e top ranked fθ is the one whose θ (or rather the gen-
erative model with parameters θ) best �ts the unlabeled
data. �erefore, this method assumes that the form of

the joint probability is correct for the task.

To identify the fθ that both �ts the labeled data well
and ranks high, one maximizes the log likelihood of θ
on both labeled and unlabeled data:

argmaxθ log p({xi, yi}
l
i =  ∣ θ) + λ log p({xi}l+ui = l+ ∣ θ),

where λ is a balancing weight. �is is a non-concave
problem. A local maximum can be found with the EM

algorithm, or other numerical optimization methods.

(See also,7generative learning.)

Semi-Supervised Support Vector Machines

�is semi-supervised learningmethod assumes that the

decision boundary f (x) =  is situated in a low-density
region (in terms of unlabeled data) between the two

classes y ∈ {−, } (Joachims, ; Vapnik, ). Con-

sider the following hat loss function on an unlabeled

instance x:
max( − ∣f (x)∣, ),

which is positive when −< f (x)< , and zero outside.
�e hat loss thus measures the violation in (unlabeled)

large margin separation between f and x. Averaging
over all unlabeled training instances, it induces an

implicit ordering from small to large over f ∈ F :



u

l+u
∑
i=l+

max( − ∣f (x)∣, ).

�e top ranked f is onewhose decision boundary avoids
most unlabeled instances by a large margin.

To �nd the f that both �ts the labeled data well
and ranks high, one typically minimizes the following

objective:

argminf


l

l

∑
i = 
max( − yif (xi), )

+ λ∥f ∥ + λ


u

l+u
∑

i = l+
max( − ∣f (x)∣, ),

which is a combination of the objective for super-

vised support vector machines, and the average hat

loss. Algorithmically, the optimization problem is dif-

�cult because the hat loss is non-convex. Existing

solutions include semi-de�nite programming relax-

ation, deterministic annealing, continuation method,

concave-convex procedure (CCCP), stochastic gradient

descent, and Branch and Bound. (See also 7support
vector machines.)

Graph-Based Models

�is semi-supervised learning method assumes that

there is a graph G = {V ,E} such that the vertices
V are the labeled and unlabeled training instances,

and the undirected edges E connect instances i, j with
weight wij (Belkin, Niyogi, & Sindhwani, ; Blum

& Chawla, ; Zhu, Ghahramani, & La�erty, ).

�e graph is sometimes assumed to be a random

instantiation of an underlying manifold structure that

supports p(x). Typically, wij re�ects the proximity of

xi, xj. For example, the Gaussian edge weight function
de�neswij = exp (−∥xi − xj∥/σ ). As another example,
the kNN edge weight function de�nes wij =  if xi is
within the k nearest neighbors of xj or vice versa, and
wij =  otherwise. Other commonly used edge weight

functions include є-radius neighbors, b-matching, and
combinations of the above.

Large wij implies a preference for the predictions

f (xi) and f (xj) to be the same. �is can be formalized
by the graph energy of a function f :

l+u
∑
i,j=

wij(f (xi) − f (xj)).

�e graph energy induces an implicit ordering of

f ∈F from small to large. �e top ranked function is
the smoothest with respect to the graph (in fact, it

is any constant function). �e graph energy can be

Semi-Supervised Learning S 

S

equivalently expressed using the so-called unnor-

malized graph Laplacian matrix. Variants including

the normalized Laplacian and the powers of these

matrices.

To �nd the f that both �ts the labeled data well
and ranks high (i.e., being smooth on the graph

or manifold), one typically minimizes the following

objective:

argminf


l

l

∑
i = 

c(f (xi), yi) + λ∥f ∥

+ λ
l+u
∑
i,j = 

wij(f (xi) − f (xj)),

where c(f (x), y) is a convex loss function such as the
hinge loss or the squared loss.�is is a convex optimiza-

tion problem with e�cient solvers.

Co-training and Multiview Models

�is semi-supervised learning method assumes that

there are multiple, di�erent learners trained on the

same labeled data, and these learners agree on the unla-

beled data. A classic algorithm is co-training (Blum &

Mitchell, ). Take the example of web page clas-

si�cation, where each web page x is represented by
two subsets of features, or “views” x = ⟨x(), x()⟩.
For instance, x() can represent the words on the
page itself, and x() the words on the hyperlinks (on
other web pages) pointing to this page. �e co-training

algorithm trains two predictors: f () on x() (ignor-
ing the x() portion of the feature) and f () on x(),
both initially from the labeled data. If f () con�dently
predicts the label of an unlabeled instance x, then
the instance-label pair (x, f ()(x)) is added to f ()’s
labeled training data, and vice versa. Note this pro-

motes f () and f () to predict the same on x. �is
repeats so that each view teaches the other. Multiview

models generalize co-training by utilizing more than

two predictors, and relaxing the requirement of hav-

ing separate views (Sindhwani, Niyogi, & Belkin, ).

In either case, the �nal prediction is obtained from

a (con�dence weighted) average or vote among the

predictors.

To de�ne the implicit ordering on the hypothe-

sis space, we need a slight extension. In general, let

there be m predictors f (), . . . , f (m). Now let a hypoth-
esis be an m-tuple of predictors ⟨ f (), . . . , f (m)⟩. �e

disagreement of a tuple on the unlabeled data can be

de�ned as

l+u
∑

i = l+

m

∑
u,v = 

c(f (u)(xi), f (v)(xi)),

where c() is a loss function. Typical choices of c() are
the – loss for classi�cation, and the squared loss for

regression. �en the disagreement induces an implicit

ordering on tuples from small to large.

It is important for thesem predictors to be of diverse
types, and have di�erent 7inductive biases. In gen-
eral, each predictor f (u),u=  . . .mmay be evaluated by
its individual loss function c(u) and regularizer Ω(u).
To �nd a hypothesis (i.e., m predictors) that �ts the

labeled data well and ranks high, one can minimize the

following objective:

argmin

⟨f () ,. . ., f (m)⟩

m

∑
u = 

(


l

l

∑
i = 

c(u)(f (u)(xi), yi)

+λΩ(u)(f (u)))

+ λ
l+u
∑

i = l+

m

∑
u,v = 

c(f (u)(xi), f (v)(xi)).

Multiview learning typically optimizes this objective

directly. When the loss functions and regularizers are

convex, numerical solution is relatively easy to obtain.

In the special cases when the loss functions are the

squared loss, and the regularizers are squared ℓ norms,
there is a closed form solution. On the other hand, the

co-training algorithm, as presented earlier, optimizes

the objective indirectly with the iterative procedure.

One advantage of co-training is that the algorithm is

a wrapper method, in that it can use any “blackbox”

learners f () and f () without the need to modify the
learners.

A PAC Bound for Semi-Supervised Learning

Previously, we presented several semi-supervised learn-

ing methods, each induces an implicit ordering on the

hypothesis space using the unlabeled training data, and

each attempts to �nd a hypothesis that �t the labeled

training data well as well as rank high in that implicit

ordering. We now present a theoretical justi�cation

on why this is a good idea. In particular, we present

a uniform convergence bound by Balcan and Blum

 S Semi-Supervised Learning

(�eorem  in Balcan and Blum ()). Alternative

theoretical analyses on semi-supervised learning can be

found by following the recommended reading.

First, we introduce some notations. Consider the

– loss for classi�cation. Let c∗ :X ↦{, } be the

unknown target function, which may not be in F .

Let err(f) = Ex∼p[f (x) ≠ c∗(x)] be the true error
rate of a hypothesis f , and êrr(f) = 

l ∑
l
i= f (xi) ≠

c∗(xi) be the empirical error rate of f on the labeled
training sample. To characterize the implicit ordering,

we de�ned an “unlabeled error rate” errunl(f) =  −

Ex∼p[χ(f , x)], where the compatibility function χ : F ×

X ↦ [, ] measures how “compatible” f is to an unla-
beled instance x. As an example, in semi-supervised
support vector machines, if x is far away from the deci-
sion boundary produced by f , then χ(f , x) is large; but
if x is close to the decision boundary, χ(f , x) is small. In
this example, a large errunl(f) thenmeans that the deci-
sion boundary of f cuts through dense unlabeled data
regions, and thus f is undesirable for semi-supervised
learning. In contrast, a small errunl(f) means that the
decision boundary of f lies in a low density gap, which
is more desirable. In theory, the implicit ordering on

f ∈ F is to sort errunl(f) from small to large. In practice,
we use the empirical unlabeled error rate êrrunl(f) =

 − 

u ∑
l+u
i=l+ χ(f , xi).

Our goal is to show that if an f ∈ F “�ts the labeled
data well and ranks high,” then f is almost as good as
the best hypothesis in F . Let t ∈ [, ]. We �rst con-

sider the best hypothesis f ∗t in the subset of F that
consists of hypotheses whose unlabeled error rate is no

worse than t: f ∗t = argminf ′∈F ,errunl(f ′)≤terr(f
′). Obvi-

ously, t =  gives the best hypothesis in the whole F .
However, the nature of the guarantee has the form

err(f)≤ err(f ∗t)+EstimationError(t)+c, where the Esti-
mationError term increases with t. �us, with t =  the
bound can be loose. On the other hand, if t is close to ,
EstimationError(t) is small, but err(f ∗t) can be much

worse than err(f ∗t=). �e bound will account for the
optimal t.
We introduce a few more de�nitions. Let F(f) =

{f ′ ∈ F : êrrunl(f ′) ≤ êrrunl(f)} be the subset ofF with
empirical error no worse than that of f . As a complexity
measure, let [F(f)] be the number of di�erent parti-
tions of the �rst l unlabeled instances xl+ . . . xl, using
f ∈ F(f). Finally, let є̂(f) =

√


l log([F(f)]). �en
we have the following agnostic bound (meaning that c∗

may not be in F , and êrrunl(f)may not be zero for any
f ∈ F):

�eorem  Given l labeled instances and su�cient
unlabeled instances, with probability at least  − δ, the
function

f = argminf ′∈F êrr(f
′
) + є̂(f ′)

satis�es the guarantee that

err(f) ≤ min
t

(err(f ∗t) + є̂(f ∗t)) + 

√
log(/δ)

l
.

If a function f �ts the labeled data well, it has a small
êrr(f). If it ranks high, then F(f) will be a small set,
consequently є̂(f) is small. �e argmin operator identi-
�es the best such function during training. �e bound

account for the minimum of all possible t tradeo�s.
�erefore, we see that the “lucky” case is when the

implicit ordering is good such that f ∗t=, the best hypoth-
esis in F , is near the top of the ranking. �is is when

semi-supervised learning is expected to perform well.

Balcan and Blum also give results addressing the key

issue of howmuch unlabeled data is needed for êrrunl(f)
and errunl(f) to be close for all f ∈ F .

Applications
Because the type of semi-supervised learning discussed

in this entry has the same goal of creating a predictor

as supervised learning, it is applicable to essentially any

problems where supervised learning can be applied. For

example, semi-supervised learning has been applied to

natural language processing (word sense disambigua-

tion (Yarowsky, ), document categorization, named

entity classi�cation, sentiment analysis, machine trans-

lation), computer vision (object recognition, image

segmentation), bioinformatics (protein function pre-

diction), and cognitive psychology. Follow the recom-

mended reading for individual papers.

Future Directions
�ere are several directions to further enhance the value

semi-supervised learning. First, we need guarantees

that it will outperform supervised learning. Currently,

the practitioner has to manually choose a particular

Semi-Supervised Text Processing S 

S

semi-supervised learning method, and o�en manually

set learning parameters. Sometimes, a bad choice that

does notmatch the task (e.g., modeling each class with a

Gaussian when the data does not have this distribution)

can make semi-supervised learning worse than super-

vised learning. Second, we need methods that bene-

�t from unlabeled when l, the size of labeled data, is
large. It has been widely observed that the gain over

supervised learning is the largest when l is small, but
diminishes as l increases. �ird, we need good ways to
combine semi-supervised learning and 7active learn-
ing. In natural learning systems such as humans, we

routinely observe unlabeled input, which o�en natu-

rally leads to questions. And �nally, we need meth-

ods that can e�ciently process massive unlabeled data,

especially in an7online learning setting.

Cross References
7Active Learning
7Classi�cation
7Constrained Clustering
7Dimensionality Reduction
7Online Learning
7Regression
7Supervised Learning
7Unsupervised Learning

Recommended Reading
Abney, S. (). Semisupervised learning for computational linguis-

tics. Florida: Chapman & Hall/CRC.
Balcan, M.-F., & Blum, A. (). A discriminative model for semi-

supervised learning. Journal of the ACM.
Belkin, M., Niyogi, P., & Sindhwani, V. (). Manifold regular-

ization: A geometric framework for learning from labeled and

unlabeled examples. Journal of Machine Learning Research, ,
–.

Blum, A., & Chawla, S. (). Learning from labeled and unla-

beled data using graph mincuts. In Proceedings of the th
international conference on machine learning (pp. –). San
Francisco: Morgan Kaufmann.

Blum, A., & Mitchell, T. (). Combining labeled and unlabeled

data with co-training. In COLT: Proceedings of the workshop on
computational learning theory (pp. –). New York: ACM.

Castelli, V., & Cover, T. (). The exponential value of labeled

samples. Pattern Recognition Letters, (), –.
Chapelle, O., Zien, A., & Schölkopf, B., (Eds.) (). Semi-

supervised learning. Cambridge, MA MIT Press.
Joachims, T. (). Transductive inference for text classification

using support vector machines. In Proceedings of the th inter-
national conference on machine learning (pp. –). San
Francisco: Morgan Kaufmann.

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (). Text

classification from labeled and unlabeled documents using EM.

Machine Learning, (/), –.
Seeger, M. (). Learning with labeled and unlabeled data. Techni-

cal report. University of Edinburgh, Edinburgh.

Sindhwani, V., Niyogi, P., & Belkin, M. (). A co-regularized

approach to semi-supervised learning with multiple views. In

Proceedings of the nd ICML workshop on learning with multi-
ple views.

Vapnik, V. (). Statistical learning theory. New York: Wiley.
Yarowsky, D. (). Unsupervised word sense disambiguation

rivaling supervised methods. In Proceedings of the rd
annual meeting of the association for computational linguistics
(pp. –).

Zhu, X., Ghahramani, Z., & Lafferty, J. (). Semi-supervised

learning using Gaussian fields and harmonic functions. In The
th international conference on machine learning (ICML).

Zhu, X., & Goldberg, A. B. (). Synthesis lectures on artificial

intelligence and machine learning. In Introduction to semi-
supervised learning. Morgan & Claypool.

Semi-Supervised Text Processing

Ion Muslea

Language Weaver, Inc.,

Marina del Rey, CA, USA

Synonyms
Learning from labeled and unlabeled data; Transductive

learning

Definition
In contrast to supervised and unsupervised learners,

which use solely labeled or unlabeled examples, respec-

tively, semi-supervised learning systems exploit both

labeled and unlabeled examples. In a typical semi-

supervised framework, the system takes as input a

(small) training set of labeled examples and a (larger)

working set of unlabeled examples; the learner’s perfor-

mance is evaluated on a test set that consists of unla-

beled examples. Transductive learning is a particular

case of semi-supervised learning in which the working

set and the test set are identical.

Semi-supervised learners use the unlabeled exam-

ples to improve the performance of the system that

could be learned solely from labeled data. Such learn-

ers typically exploit – directly or indirectly – the dis-

tribution of the available unlabeled examples. Text

 S Semi-Supervised Text Processing

processing is an ideal application domain for semi-

supervised learning because the abundance of text doc-

uments available on the Web makes it impossible for

humans to label them all. We focus here on two related

types of text processing tasks that were heavily studied

in the semi-supervised framework: text classi�cation

and text7Clustering.

Motivation and Background
In most applications of machine learning, collecting

large amounts of labeled examples is an expensive,

tedious, and error-prone process. In contrast, one may

o�en have cheap or even free access to large amounts of

unlabeled examples. For example, for text classi�cation,

which is the task of classifying text documents into cat-

egories such as politics, sports, entertainment, etc., one

can easily crawl the Web and download billions of Web

pages; however, manually labeling all these documents

according to the taxonomy of interest is an extremely

expensive task.

�e key idea in semi-supervised learning is to com-

plement a small amount of labeled data by a large num-

ber of unlabeled examples. Under certain conditions,

the unlabeled examples can be mined for knowledge

that will allow the semi-supervised learner to build a

system that performs better than one learned solely

from the labeled data. More precisely, semi-supervised

learners assume that the learning model matches the

structure of the application domain. If this is the case,

the information extracted from the unlabeled data can

be used to guide the search towards the optimal solution
(e.g., by modifying or re-ranking the learned hypothe-

ses); otherwise, the unlabeled examples may hurt rather
than help the learning process (Cozman, Cohen, &

Cirelo, ).

For the sake of concision and clarity, we have had to

make several compromises in terms of the algorithms

and the applications presented here. Given the vast-

ness of the �eld of text processing, we have decided

to focus only on the two related tasks of text classi-

�cation and text clustering. �ey are the most stud-

ied text processing applications within the �eld of

machine learning; furthermore, virtually all the main

types of semi-supervised algorithms were applied to

these two tasks. �is decision has two main conse-

quences. First, we do not consider many other text

processing tasks, such as information extraction, nat-

ural language parsing, or base noun–phrase identi�ca-

tion; for these we refer the interested reader to Muslea,

Minton, and Knoblock (). Second, we discuss and

cite approaches that were applied to text classi�ca-

tion or clustering there is however, alone an excel-

lent survey by Zhu () covering seminal work on

semi-supervised learning that was not applied to text

processing.

Structure of the Learning System
Generative Models

�e early work on semi-supervised text categoriza-

tion (Nigam, McCallum, �run, & Mitchell, ) was

based primarily on generative models (see7generative
learning). Such approaches make two major assump-

tions: () the data is generated by a mixture model,

and () there is a correspondence between the compo-

nents of the mixture and the classes of the application

domain. Intuitively, if these assumptions hold, the unla-

beled examples become instrumental in identifying the

mixture’s components, while the labeled examples can

be used to label each individual component.

�e iterative approach proposed by Nigam et al.

() is based on 7�e EM Algorithm and works as
follows. First, the labeled examples are used to learn

an initial classi�er, which is used to probabilistically

label all unlabeled data; then the newly labeled exam-

ples are added to the training set. Finally, a new classi�er

is learned from all the data, and the entire process is

repeated till convergence is reached (or, alternatively, till

the number of iterations is �xed).

Nigam et al. () noticed that, in practice, the

two above-mentioned assumptions about the generative

model may not hold; in order to deal with this prob-

lem, the authors propose two extensions of their basic

approach. First, they allow each class to be generated

by multiple mixture components. Second, they intro-

duce a weighting factor that adjusts the contribution of

the unlabeled examples; this factor is tuned during the

learning process so that the in�uence of the unlabeled

examples correlates with the degree in which the data

distribution is consistent with the mixture model.

�e same general framework can also be applied

to the related task of text clustering. In the cluster-

ing framework, the learner is not concerned with the

Semi-Supervised Text Processing S 

S

actual label of an example; instead, it tries to �nd a

partitioning of the examples in clusters that are similar

respect to a prede�ned objective function. For example,
Seeded-KMeans (Basu, Banerjee, & Mooney, ) is a

semi-supervised text clustering algorithm that uses the

few available labeled examples to seed the search for the

data clusters. In order to optimize the target objective

function, Seeded-KMeans uses an EM algorithm on a

mixture of Gaussians.

Discriminative Approaches

7Support vector machines (SVMs) (Joachims, )
are particularly well suited for text classi�cation because

of their ability to deal with high-dimensional input

spaces (each word in the corpus is a feature) and

sparse feature-value vectors (any given document con-

tains only a small fraction of the corpus vocabulary).

SVMs are called maximum margin classi�ers because

theyminimize the empirical classi�cation error bymax-

imizing the geometric margin between the domain’s

positive and negative examples. Intuitively, this is equiv-

alent to �nding a discriminative decision boundary

that avoids the high-density regions in the instance

space.

Transductive SVMs (Joachims, ) are designed

to �nd an optimal decision boundary for a particular

test set. More precisely, they have access to both the

(labeled) training set and the unlabeled test set. Trans-

ductive SVMs work by �nding a labeling of the test

examples that maximizes the margin over all the exam-

ples in the training and the test set. �is transductive

approach has shown signi�cant improvements over the

traditional inductive SVMs, especially if the size of the

training set is small.

In contrast to transductive SVMs, semi-supervised

SVMs (SVM) work in a true semi-supervised setting

in which the test set is not available to the learner.

A major di�culty in the SVM framework is the fact

that the resulting optimization problem is not con-

vex, thus being sensitive to the issue of (non-optimal)

local minima. CSVMs (Chapelle, Chi, & Zien, )

alleviate this problem by using a global optimization

technique called continuation. On binary classi�cation

tasks CSVMs compare favorably against other SVM

approaches, but applying it onmulticlass domains is still

an open problem.

Multiview Approaches

Multiview learners are a class of algorithms for domains

in which the features can be partitioned in disjoint

subsets (views), each of which is su�cient to learn

the target concept. For example, when classifying Web

pages, one can use either the words that appear in

the documents or those that appear in the hyper-links

pointing to them. Co-training (Blum & Mitchell, )

is a semi-supervised, multiview learner that, intuitively,

works by bootstrapping the views from each other. First,

it uses the labeled examples to learn a classi�er in each

view. �en it applies the learned classi�ers to the unla-

beled data and detects the examples on which each view

makes the most con�dent prediction; these examples

are labeled by the respective classi�ers and added to

the (labeled) training set of the other view. �e entire

process is repeated for a number of iterations.

Multiview learners rely on two main assumptions,

namely that the views are compatible and uncorrelated.

�e former requires that each example is identically

labeled by the target concept in each view; the lat-

ter means that given an example’s label, its description

in each view are independent. In practice, both these

assumptions are likely to be violated; in order to deal

with the �rst issue, one can use the adaptive view valida-

tion algorithm (Muslea, Minton, & Knoblock, b),

which predicts whether the views are su�ciently com-

patible for multiview learning.

With respect to view correlation Muslea, Minton,

and Knoblock (a) have shown that by interleav-

ing active and semi-supervised learning, multiview

approaches become robust the view correlation. A sim-

ilar idea was previously used in the generative, single-

view framework: McCallum and Nigam () have

shown that by allowing the algorithm to (smartly)

choose which examples to include in the training set,

one can signi�cantly improve over the performance of

both supervised and semi-supervised learners that used

randomly chosen training sets.

�e main limitation of multiview learning is the

requirement that the user identi�es at least two suitable

views. In order to cope with this problem, researchers

have proposed algorithms that work in a way similar

to co-training, but exploit multiple 7inductive biases
instead of multiple views. For example, tri-training

(Zhou & Li, ) uses all domain features to train

three supervised classi�ers (e.g., a decision tree, a neural

 S Semi-Supervised Text Processing

network, and a Naive Bayes classi�er). �ese classi�ers

are then applied to each unlabeled example; if two of

them agree on the example’s label, they label it accord-

ingly and add it to the third classi�er’s training set. A

degenerate case is represented by self-training, which
uses a single classi�er that repeatedly goes through

the unlabeled data and adds to its own training set,

the examples on which its predictions are the most

con�dent.

Graph-Based Approaches

�e work on graph-based, semi-supervised text learn-

ing is based on the idea of representing the labeled and

unlabeled examples as vertices in a graph. �e edges

of this graph are weighted by the pair-wise similarity

between the corresponding examples, thus o�ering a

�exible way to incorporate prior domain knowledge.

With the learning task encoded in this manner, the

problem to be solved becomes one of graph theory,

namely �nding a partitioning of the graph that agrees

with the labeled examples. A major challenge for the

graph-based approaches is to �nd a balanced partition-

ing of the graph (e.g., in a degenerate scenario, one can

propose an unbalanced, undesirable partition in which,

except for the negative examples in the training set, all

other examples are labeled as positive).

One possible approach to cope with the issue on

unbalanced partitions is to use randomized min-cuts

(Blum, La�erty, Rwebangira, & Reddy, ).�e algo-

rithm starts with the original graph and repeatedly adds

randomnoise to the weights of the edges.�en, for each

modi�ed graph, it �nds a partitioning by using min-

imum cuts. Finally, the results from the various runs

aggregated in order to create probabilistic labels for the

unlabeled examples. �is approach has the additional

bene�t of o�ering a measure of the con�dence in each

particular prediction.

�e SGT algorithm (Joachims, ) uses spectral

methods to perform the graph partitioning. SGT can

be seen as a transductive version of the k nearest-
neighbor classi�er; furthermore Joachims () also

show that co-training emerges as a special case of

SGT. In contrast to transductive SVMs and co-training,

SGT does not require additional heuristics for avoiding

unbalanced graph partitionings (e.g., in the original co-

training algorithm, the examples that are added to the

training set a�er each iterationmust respect thedomain-

dependent ratio of negative-to-positive examples).

LapSVM (Sindhwani, Niyogi, & Belkin, ) is a

graph-based kernel method that uses a weighted com-

bination a regularizer learned solely from labeled data

and a graph Laplacian obtained from both the labeled

and unlabeled examples.�is approach allows LapSVM

to perform a principled search for a decision bound-

ary that is both consistent with the labeled examples

and re�ects the underlying geometry of all available data

points.

Approaches that Exploit Background Knowledge

WHIRL-BG (Zelikovitz & Hirsh, ) is an algo-

rithm for classifying short text fragments. It uses an

information integration approach that combines three

di�erent information sources: the training set, which

consists of the labeled examples; the test set that

WHIRL-BG must label; and a secondary corpus that

consists longer, related documents that are not labeled.

Intuitively, WHIRL-BG exploits the secondary corpus

as background knowledge that allows the system to link

a test example to themost similar labeled training exam-

ple. In other words, instead of trying tomeasure directly

a (unreliable) similarity between two short strings (i.e.,

a test and a training example), the system searches

for a background document that may include (a large

fraction of) both strings.

HMRF-KMEANS (Basu, Bilenko, &Mooney, )

uni�es the two main approaches to semi-supervised

text clustering: the constraint-based one and the adap-

tive distance one. �e former exploits user-provided

background knowledge to �nd an appropriate parti-

tioning of the data; for HMRF-KMEANS, the domain

knowledge consists of must-link or cannot-link con-

straints, which specify whether two examples should

or should not have the same label, respectively. �e

later uses a small number of labeled examples to learn

a domain-speci�c distance measure that is appropriate

for the clustering task at hand. HMRF-KMEANS can

use any Bregman divergence to measure the clustering

distortion, thus supporting a wide variety of learnable

distances.

Sensitivity and Specificity S 

S

HMRF-KMEANS exploits the labeled examples in

three main ways. First, it uses the neighborhoods

induced from the constraints to initialize the cluster

centroids. Second, when assigning examples to clusters,

the algorithm tries to simultaneously minimize both

the similarity to the cluster’s centroid and the num-

ber of violated constraints. Last but not least, during

the clustering process, HMRF-KMEANS iteratively re-

estimates the distance measure so that it takes into

account both the background knowledge and the data

variance.

Recommended Reading
Basu, S., Banerjee, A., & Mooney, R. (). Semi-supervised clus-

tering by seeding. In Proceedings of the international conference
on machine learning (pp. –). Sydney, Australia.

Basu, S., Bilenko, M., & Mooney, R. (). A probabilistic frame-

work for semi-supervised clustering. In Proceedings of the ACM
SIGKDD international conference on knowledge discovery and
data mining (pp. –). Seattle, WA.

Blum, A., Lafferty, J., Rwebangira, M. R., & Reddy, R. (). Semi-

supervised learning using randomized mincuts. In Proceedings
of the twenty-first international conference on machine learning
(p. ).

Blum, A., & Mitchell, T. (). Combining labeled and unlabeled

data with co-training. In Proceedings of the  conference on
computational learning theory (pp. –).

Chapelle, O., Chi, M., & Zien, A. (). A continuation method for

semi-supervised SVMs. In Proceedings of the rd international
conference on machine learning (pp. –). New York: ACM
Press.

Cozman, F., Cohen, I., & Cirelo, M. (). Semi-supervised learn-

ing of mixture models. In Proceedings of the international
conference on machine learning (pp. –). Washington, DC.

Joachims, T. (). Transductive inference for text classifica-

tion using support vector machines. In Proceedings of the
th international conference on machine learning (ICML-)
(pp. –). San Francisco: Morgan Kaufmann.

Joachims, T. (). Transductive learning via spectral graph par-

titioning. In Proceedings of the international conference on
machine learning.

McCallum, A., & Nigam, K. (). Employing EM in pool-based

active learning for text classification. In Proceedings of the th
international conference on machine learning (pp. –).

Muslea, I., Minton, S., & Knoblock, C. (a). Active + semi-

supervised learning = robust multi-view learning. In The
th international conference on machine learning (ICML-)
(pp. –). Sydney, Australia.

Muslea, I., Minton, S., & Knoblock, C. (b). Adaptive view val-

idation: A first step towards automatic view detection. In The
th international conference on machine learning (ICML-)
(pp. –). Sydney, Australia.

Muslea, I., Minton, S., & Knoblock, C. (). Active learning with

multiple views. Journal of Artificial Intelligence Research, ,
–.

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. M. ().

Text classification from labeled and unlabeled documents using

EM. Machine Learning, (/), –.
Sindhwani, V., Niyogi, P., & Belkin, M. (). Beyond the

point cloud: From transductive to semi-supervised learning.

In Proceedings of the nd international conference on machine
learning (pp. –). Bonn, Germany.

Zelikovitz, S., & Hirsh, H. (). Improving short text classi-

fication using unlabeled background knowledge. In Proceed-
ings of the th international conference on machine learning
(pp. –).

Zhou, Z.-H., & Li, M. (). Tri-training: Exploiting unlabeled

data using three classifiers. IEEE Transactions on Knowledge and
Data Engineering, (), –.

Zhu, X. (). Semi-supervised learning literature survey. Technical
report , Department of Computer Sciences, University of

Wisconsin, Madison.

Sensitivity

Synonyms
Recall; True positive rate

Sensitivity is the fraction of positive examples predicted

correctly by a model. See 7Sensitivity and Speci�city,
7Recall and Precision.

Sensitivity and Specificity

Kai Ming Ting

Monash University, Gippsland Campus Churchill,

VIC, Australia

Definition
Sensitivity and speci�city are two measures used

together in some domains to measure the predictive

performance of a classi�cation model or a diagnos-

tic test. For example, to measure the e�ectiveness of a

diagnostic test in the medical domain, sensitivity mea-

sures the fraction of people with disease (i.e., positive

examples) who have a positive test result; and speci-

�city measures the fraction of people without disease

(i.e., negative examples) who have a negative test result.

�ey are de�ned with reference to a special case of the

7confusion matrix, with two classes, one designated

 S Sequence Data

Sensitivity and Specificity. Table  The outcomes of clas-

sification into positive and negative classes

Assigned Class

Positive Negative

Positive True Positive (TP) False Negative (FN)

A
ct

ua
l

C
la

ss

Negative False Positive (FP) True Negative (TN)

the positive class, and the other the negative class, as
indicated in Table .

Sensitivity is sometimes also called true positive rate.
Speci�city is sometimes also called true negative rate.
�ey are de�ned as follows:

Sensitivity = TP/(TP + FN)

Speci�city = TP/(TN + FP)

Instead of two measures, they are sometimes com-

bined to provide a single measure of predictive perfor-

mance as follows:

Sensitivity × Speci�city

= TP ∗ TN/[(TP + FN) ∗ (TN + FP)]

Note that sensitivity is equivalent to7recall.

Cross References
7Confusion Matrix

Sequence Data

7Sequential Data

Sequential Data

Synonyms
Sequence data

Sequential Data refers to any data that contain elements
that are ordered into sequences. Examples include

7time series, DNA sequences (see 7biomedical infor-
matics) and sequences of user actions. Techniques for

learning from sequential data include 7Markov mod-
els, 7Conditional Random Fields and 7time series
techniques.

Sequential Inductive Transfer

7Cumulative Learning

Sequential Prediction

7Online Learning

Set

7Class

Shannon’s Information

If a message announces an event E of probability P(E)
its information content is − log


P(E). �is is also its

length in bits.

Shattering Coefficient

Synonyms
Growth function

Definition
�e shattering coe�cient SF(n) is a function that mea-
sures the size of a function classF when its functions f :
X → R are restricted to sets of points x = (x, . . . , xn) ∈
X n of size n. Speci�cally, for each n ∈ N the shatter-
ing coe�cient is the maximum size of the set of vectors

Fx = {(f (x), , f (xn)) : f ∈ F} ⊂ Rn that can be

realized for some choice of x ∈ X n. �at is,

SF(n) = sup
x∈X n

∣Fx∣ .

�e shattering coe�cient of a hypothesis classH is used

in 7generalization bounds as an analogue to the class’s
size in the �nite case.

Similarity Measures S 

S

Similarity Measures

Michail Vlachos

IBM Zürich Research Laboratory, Rüschlikon,

Switzerland

Synonyms
Distance; Distance metrics; Distance functions;

Distance measures

Definition
�e term similarity measure refers to a function that

is used for comparing objects of any type. �e objects

can be data structures, database records, or even multi-

media objects (audio, video, etc.). �erefore, the input

of a similarity measure is two objects and the output

is, in general, a number between  and ; “zero” mean-

ing that the objects are completely dissimilar and “one”

signifying that the two objects are identical. Similarity

is related to distance, which is the inverse of similarity.

�at is, a similarity of  implies a distance of  between

two objects.

Motivation and Background
Similarity measures are typically used for quantify-

ing the a�nity between objects in search operations,

where the user presents an object (query) and requests

other objects “similar” to the given query. �erefore,

a similarity measure is a mathematical abstraction for

comparing objects, assigning a single number that indi-

cates the a�nity between the said pair of objects. �e

results of the search are typically presented to the user

in the order suggested by the returned similarity value.

Objects with higher similarity value are presented �rst

to the user because they are deemed to be more rele-

vant to the query posed by the user. For example, when

searching for speci�c keywords on an Internet search

engine, Internet pages that are more relevant/similar

to the posed query are presented �rst. �e selection of

the proper similarity function is a important param-

eter in many applications, including 7instance-based
learning,7clustering, and7anomaly detection.
Most similaritymeasures attempt tomodel (imitate)

the human notion of similarity between objects. If a

similarity function resembles very closely the similarity

ranking between objects as returned by a human, then

it is considered successful. �is is where the di�culty

also lies, because in general similarity is something that

is very subjective.

Consider the case where a user poses a keyword

query ‘crane’ at a search engine, while searching for

images.�e returned results would contain images with

machineries, birds or even origami creations. �is is

because when the similarity measure used is solely

based on textual information then, then all such images

are indeed proper answers to the query. If one was

interested also in the semantics of an image, then per-

haps additional features such as texture, color or shape

could have been utilized. �erefore, for de�ning an

e�ective similarity measure, one has to �rst extract the

proper object features and then evaluate the similarity

using an appropriate distance function.

Classes of Similarity Functions
�ere are twomajor classes of similarity functions: met-

ric functions and non-metric functions. In order for a

function d to be ametric it has to satisfy all the following
three properties for any objects X,Y ,Z:

. d(X,Y) =  i� X = Y (identity axiom)
. d(X,Y) = d(Y ,X) (symmetry axiom)

. d(X,Y) + d(Y ,Z) ≥ d(X,Z) (triangle inequality)

Metric similarity functions are very widely used in

search operations because of their support of the trian-

gle inequality. �e triangle inequality can help prune

a lot of the search space, by eliminating objects from

examination that are guaranteed to be distant to the

given query (Agrawal et al., ; Zezula et al., ).

�e most frequently used metric similarity function is

the Euclidean distance. For two objectsX and Y that are
characterized by set of n features X = (x, x, . . . , xn)
and similarly Y = (y, y, . . . , yn) the Euclidean distance
is de�ned as

D =

¿
Á
ÁÀ

n

∑
i=

(xi − yi)

If we represent the objects X and Y as an

ordered sequence of their features, we can visualize the

 S Similarity Measures

Similarity Measures. Figure . Mapping achieved by the Euclidean distance between time-series data

1. Bat
similar

to batman

2. Batman
similar
to man

3. But, man
is not similar

to bat…

Similarity Measures. Figure . Nonmetric similarity that disobeys the triangle inequality

linear mapping achieved by the Euclidean distance in

Fig. .

Non-metric similarity measures resemble more

closely the human notion of similarity by allowing

more �exible matching between the examined objects,

for example, by allowing non-linear mappings or even

by accommodating occlusion of points or features.

�e human visual system is in general considered

nonmetric. Non-metric functions typically disobey the

triangle inequality. We can see an example of this below

in Fig. .

Similarity Measures S 

S

0 20 40 60 80 100 120

Euclidean matching

0 20 40 60 80 100 120

Time warping

0 20 40 60 80 100 120

Longest common subsequence

Similarity Measures. Figure . Comparison of Euclidean,

warping, and longest common subsequence measures

Widely used non-metric similarity functions are the

Warping distance and the Longest Common Subse-

quence (LCSS). �e Warping distance (also known as

dynamic time warping – DTW) has been very exten-

sively used in the past in voice recognition tasks, due

to its ability to perform compression or decompression

of the features, allowing �exible non-linear mappings.

In Fig.  we visually depict the outcome of the previ-

ously mentioned measures for 7time-series data. �e
Euclidean distance performs a rigid linear mapping of

points, the DTW can perform nonlinear one-to-many

mappings, and the LCSS constructs a one-to-one non-

linear mapping.

Recently, similarity metrics based on information

theory, and in speci�c, on Kolmogorov complexity have

been presented (Keogh et al., ; Li et al., ) and

can also be considered as compression-based measures.
A very simple and easily implementable version of a

compression based distance is

dc(X,Y) =
C(XY)

C(X) + C(Y)

where C(X) is the compressed size (bytes) of X given
a certain compression algorithm. �e distance will be

close to , if X and Y are dissimilar and less than  when
X and Y are related. �erefore, we exploit the fact that
if X and Y are “similar” they should compress equally
well (approximately same amount of bytes) either when

considered separately or together, because the compres-

sion dictionaries will be similar when the two objects

are related.

In summary, the choice of a similarity metric is

highly dependent on the application at hand.�epracti-

tioner should also closely consider on which object fea-

tures the similarity measure will be applied. Ultimately,

the combination of both feature selection and similarity

metric will de�ne the quality of a search process.

Cross References
7Dimensionality Reduction
7Feature Selection

 S Simple Bayes

Recommended Readings
Agrawal, R., Faloutsos, C., & Swami, A. (). Efficient similar-

ity search in sequence databases. In Proceedings of founda-
tions of data organization and algorithms (FODO), (pp. –).
Chicago, Illinois, USA.

Keogh, E., Lonardi, S., & Ratanamahatana, A. (). Towards

parameter-free data mining. Proceedings of International Con-
ference on Knowledge Discovery and Data Mining (SIGKDD) (pp.
–). Seattle, Washington, USA.

Li, M., Chen, X., Li, X., Ma, B., & Vitanyi, P. M. B. (). The simi-

larity metric. IEEE Transactions on Information Theory, (),
–.

Zezula, P., Amato, G., Dohnal, V., & Batko, M. (). Similar-
ity search: the metric approach. Advances in Database Systems,
Springer.

Simple Bayes

7Naïve Bayes

Simple Recurrent Network

Risto Miikkulainen

�e University of Texas at Austin, Austin, TX, USA

Synonyms
Elman network; Feedforward recurrent network

Definition
�e simple recurrent network is a speci�c version of the

7Backpropagation neural network that makes it possi-
ble to process of sequential input and output (Elman,

). It is typically a three-layer network where a copy

of the hidden layer activations is saved and used (in

addition to the actual input) as input to the hidden

layer in the next time step. �e previous hidden layer

is fully connected to the hidden layer. Because the net-

work has no recurrent connections per se (only a copy

of the activation values), the entire network (includ-

ing the weights from the previous hidden layer to the

hidden layer) can be trained with the backpropagation

algorithm as usual. It can be trained to read a sequence

of inputs into a target output pattern, to generate a

sequence of outputs from a given input pattern, or to

map an input sequence to an output sequence (as in

predicting the next input). Simple recurrent networks

have been particularly useful in 7time series predic-
tion, as well as in modeling cognitive processes, such as

language understanding and production.

Recommended Reading
Elman, J. L. (). Finding structure in time. Cognitive Science, ,

–.

SMT

7Statistical Machine Translation

Solution Concept

A criterion specifying which locations in the search

space are solutions and which are not. In designing a

coevolutionary algorithm, it is important to consider

whether the solution concept implemented by the algo-

rithm (i.e., the set of individuals to which it can con-

verge) corresponds with the intended solution concept.

Solving Semantic Ambiguity

7Word Sense Disambiguation

SOM

7Self-Organizing Maps

SORT

7Class

Spam Detection

7Text Mining for Spam Filtering

Speedup Learning S 

S

Specialization

Specialization is the converse of7generalization. �us,
if h is a generalization of h then h is a specialization
of h.

Cross References
7Generalization
7Induction
7Learning as Search
7Subsumption
7Logic of Generality

Specificity

Synonyms
True negative rate

Speci�city is the fraction of negative examples pre-

dicted correctly by a model. See 7Sensitivity and
Speci�city.

Spectral Clustering

7Graph Clustering

Speedup Learning

Alan Fern

Science, Oregon State University,

Corvallis, OR, USA

Definition
Speedup learning is a branch of machine learning that

studies learning mechanisms for speeding up problem

solvers based on problem-solving experience.�e input

to a speedup learner typically consists of observations of

prior problem-solving experience, which may include

traces of the problem solver’s operations and/or solu-

tions to solve the problems. �e output is knowledge

that the problem solver can exploit to �nd solutions

more quickly than before learning without seriously

e�ecting the solution quality. �e most distinctive fea-

ture of speedup learning, compared withmost branches

of machine learning, is that the learned knowledge does

not provide the problem solver with the ability to solve

new problem instances. Rather, the learned knowledge

is intended solely to facilitate faster solution times com-

pared to the solver without the knowledge.

Motivation and Background
Much of the work in computer science and especially

arti�cial intelligence aims at developing practically-

e�cient problem solvers for combinatorially hard prob-

lem classes such as automated planning, logical and

probabilistic reasoning, game playing, constraint sat-

isfaction, and combinatorial optimization. While it

is o�en straightforward to develop optimal prob-

lem solvers for these problems using brute-force,

exponential-time search procedures, it is generally

much more di�cult to develop solvers that are e�-

cient across a wide range of problem instances. �e

main motivation behind speedup learning is to create

adaptive problem solvers that can learn patterns from

problem solving experience that can be exploited for

e�ciency gains. Such adaptive solvers have the poten-

tial to signi�cantly outperform traditional static solvers

by specializing their behavior to the characteristics of a

single problem instance or to an entire class of related

problem instances. �e exact form of knowledge and

learning mechanism is tightly tied to the problem class

and the problem-solver architecture.

Most branches of machine learning, such as

7supervised classi�cation, aim to learn fundamentally
new problem solving capabilities that are not easily

programmed by hand even when ignoring e�ciency

issues – for example, learning to recognize hand-written

digits. Speedup learning is distinct in that it is typically

applied in situations where hand-coding an optimal,

but ine�cient, problem solver is straightforward –

for example, solving satis�ability problems. Rather,

learning is aimed exclusively at �nding solutions in a

more practical time frame.

Work in speedup learning grew out of various

sub�elds of arti�cial intelligence, and more generally

computer science. An early example, from automated

planning involved learning knowledge for speeding up

the original STRIPS planner Fikes, Hart, and Nilsson

() via the learning of triangle tables or macros that

could later be exploited by the problem solver.�rough-

out the s and early s, there was a great deal of

 S Speedup Learning

additional work on speedup learning in the area of auto-

mated planning as overviewed in Minton () and

Zimmerman and Kambhampati ().

Another major source of speedup learning research

has originated from the areas of AI search and con-

straint satisfaction. Many of the 7intelligent back-
tracking mechanisms from these areas, which are

critical to perform, can be viewed as speedup learn-

ing techniques Kambhampati () where knowl-

edge is learned, while solving a problem instance that

better informs later search decisions. Such methods

have also come out of the area of logic programming

Kumar and Lin (), where search e�ciency plays a

central role.

In addition, various branches of AI have devel-

oped speedup-learning approaches based on learn-

ing improved heuristic evaluation functions. Samuel’s

checker player Samuel () was one such early exam-

ples, where learned evaluation functions allowed for the

performance of deep game tree search to be approxi-

mated by shallower, a less expensive search.

Structure of Learning System
Figure  shows a generic diagram of a speedup learning

system. �e main components are the problem solver

and the speedup learner. �e role of the problem solver

is to receive problem instances from a problem gen-

erator and to produce solutions for those instances.

For example, problem solvers might include constraint-

satisfaction engines, automated planners, or A∗ search.
�e role of the speedup learner is to produce knowl-

edge that the problem solver can use to improve its

solution time. �e input to the speedup learner, which

is analyzed in order to produce the knowledge, can

include one or more of the following data sources:

() the input problem instances, () traces of the prob-

lem solver’s decisions while solving the input problems,

and () solutions to solved problems.

Clearly there is a large space of possible speedup

learning systems that result from di�erent problem

solvers, forms of learned knowledge, learning methods,

and intended mode of applicability. Some of the main

dimensions are described in the following section along

which speedup learning approaches can be character-

ized. Examples of typical learners that span this space

are provided, noting that the examples are far from an

exhaustive list.

Problem SolverProblem
generator Solution

Speedup
Learner

Problem solver
traces

Learned
knowledge

Problem
instance

Speedup Learning. Figure . Schematic diagram of a

speedup learning system. The problem solver receives

problem instances from a problem generator and pro-

duces solutions. The speedup learner can observe the

input problem instances, traces of the problem solver

while solving the problem instances, and sometimes also

the solutions to previously solved problem instances.

The speedup learner outputs knowledge that can be

used by the problem solver to speedup its solution time

either on the current problem instance (intra-problem

speedup) and/or future related instances (inter-problem

speedup)

Dimensions of Speedup Learning

Intra-Problem versus Inter-Problem Speedup. Intra-
problem speedup learning is when knowledge is

learned during the solution of the current problem

instance and is only applicable to speeding up the solu-

tion of the current instance. A�er a solution is found,

the knowledge is discarded as it is not applicable for

the future instances. Inter-problem speedup learning

is when the learned knowledge is applicable not only

to the problem(s) it was learned on but also to new

problems to be encountered in the future. In this sense,

the learned knowledge can be viewed as a generalized

knowledge about how to �nd solutionsmore quickly for

an entire class of problems.

Typically in the inter-problem learning, the prob-

lem generator produces instances that are related in

some way, and, thus, share common structure that can

be learned from the earlier instances and exploited

when solving the later instances. Rather intra-problem

speedup learners treat each problem instance as com-

pletely distinct from the rest. Also note that inter-

problem learners have the potential to bene�t from

Speedup Learning S 

S

the analysis of solutions to previous problem instances.

Rather, intra-problem learners are unable to use this

source of information, since, once the current problem

is solved, no further learning is warranted.

Types of Learned Knowledge. Most problem solvers
can be viewed as search procedures, which is the view

that will be takenwhen characterizing the various forms

of learned knowledge in speedup learning. Four types

of commonly used knowledge are listed below, noting

that this is far from an exhaustive list. First, pruning
constraints are the sets of constraints on search nodes
that signal when certain branch of the search space can

be safely pruned. Second,macro operators (macros) are
sequences of search operators that are typically use-

ful when executed in order. Problem solvers can o�en

utilize macros in order to decrease the e�ective solu-

tion depth of the search space by treating macros as

additional search operators. It is important that the

decrease in e�ective depth is enough to compensate for

the increase in number of operators, which increases

the search complexity. �ird, search-control rules are
the sets of rules that typically test the current prob-

lem solving state and suggest problem-solving actions

such as rejecting, selecting, or preferring a particular

search operator. In the extreme case, learned search

control rules can completely remove the need for search.

Fourth, heuristic evaluation functions are used to mea-
sure the quality of a particular search node. Learning-

improved heuristics can result in better directed search

behavior.

Deductive versus Inductive Learning. 7Deductive
learning refers to a learning process for which the

learned knowledge can be deductively proven to be

correct. For example, in the case of learned pruning

constraints, a deductive learning mechanism would

provide a guarantee that the pruning was sound in

the sense that the optimality of the problem solver

would be una�ected. 7Inductive learning mechanisms
rather are statistical in nature and typically do not

produce knowledge with associated deductive guaran-

tees. Rather, inductive methods focus on �nding sta-

tistical regularities that are typically useful, though

perhaps not correct in all cases. For example, an induc-

tive learner may discover patterns that are strongly cor-

related to pruning opportunities, though these patterns

may have a small probability of leading to unsound

pruning.

In cases where one must guarantee a sound and

complete problem solver, deductive learning approaches

are always applicable, though their utility depends on

the particular application. In certain cases, inductively-

learned knowledge can also be utilized in a way that

does not e�ect the correctness of the problem solver.

For example, inductively learned search-control rules

that assert preferences, rather than prune nodes from

the search, do not lead to incompleteness. Tradition-

ally, the primary disadvantage of deductive learning,

compared with inductive learning, is that the inductive

methods typically produce knowledge that generalizes

to a wider range of situations than deductive meth-

ods. In addition, deductive learning methods are o�en

more costly in terms of learning time as they rely on

expensive deductive reasoning mechanisms. Naturally,

a number of speedup learning systems exist that uti-

lize a combination of inductive and deductive learning

techniques.

Examples of Intra-Problem Speedup Learning

Much of the speedup learning work arising from

research in AI search and constraint satisfaction falls

into the intra-problem paradigm. �e most common

forms of learning are deductive and are based on com-

puting explanations of “search failures” that occur dur-

ing the solution of a particular problem. Here a search

failure typically corresponds to a point where the prob-

lem solver must backtrack. By computing and forming

such failure explanations the problem solver is typi-

cally able to avoid similar types of failures in the future

by detecting that a search path will lead to failure

without fully exploring that path. 7Nogood learning
is a very successful, and commonly used, example of

the general failure-explanation approach Schiex and

Verfaillie (). Nogoods are combinations of vari-

able values that lead to search failures. By comput-

ing and recording nogoods, it is possible to imme-

diately prune search states that consider those value

combinations. �ere are many variations of nogood

learning, with di�erent techniques utilizing di�erent

approaches to analyzing search failures to extract gen-

eral nogoods.

Another example of the failure-explanation app-

roach, which is commonly utilized in satis�ability

solvers, is 7clause learning. �e idea is similar to

 S Speedup Learning

nogood learning. When a failure occurs during the sys-

tematic search, a proof of the failure is constructed and

analyzed to extract implied constraints, or clauses, that

the solution must satisfy.�ese learned clauses are then

added to the set of clauses of the original satis�abil-

ity problem and in later search trigger early pruning

when they, or their consequences, are violated. E�cient

implementations of this idea have lead to huge gains

in satis�ability solvers. In addition, it has been shown

theoretically that clause learning can improve solution

times by an exponential factor Beame and Sabharwal

().

Inductive techniques for learning heuristic evalua-

tion functions have also been investigated in the intra-

problem speedup paradigm. Here we discuss just two

such approaches, where in both cases the key idea

is to observe the problem solver and extract training

examples that can be used to learn an accurate eval-

uation function. A particularly successful example of

this approach is the STAGE system Boyan and Moore

() for solving combinatorial optimization problems

such as traveling salesman and circuit layout.�e prob-

lem solving architecture used by STAGE is based on

repeated random restarts of a fast hill-climbing local

optimizer, which when given an initial con�guration of

the combinatorial object, performs a greedy search to

a local minimum con�guration. �e speedup learning

mechanism for STAGE is to learn an approximate func-

tion that maps initial con�gurations to the performance

of the local optimizer when started at that con�gura-

tion. Note that on each restart of the problem solver the

learning component gets a training example that can

be used to improve the function. �e problem solver

uses the learned function in order to select promising

con�gurations fromwhich to restart, rather than choos-

ing randomly. In particular, STAGE attempts to restart

from a con�guration that optimizes the learned func-

tion, which is the predicted best starting point for the

hill-climber. �is overall approach has shown impres-

sive performance gains in a number of combinatorial

optimization domains.

As a second example of inductive learning of heuris-

tics in the intra-problem paradigm, there has beenwork

within the more traditional problem solving paradigm

of best-�rst search Sarkar, Chakrabarti, and Ghose

(). Here the speedup learner observes the sequence

of search nodes traversed by the problem solver. For any

pair of nodes observed to be on the same search path,

the learner creates a training example in an attempt to

train a heuristic to better predict the distance between

those two nodes. Ideally, this updated heuristic func-

tion better re�ects the distance from nodes in the

search queue to the goal node of the current prob-

lem instance, and, hence, result in improved search

performance.

Examples of Inter-Problem Speedup Learning

Much of the work on inter-problem speedup learning

came out of AI planning research, where researchers

have long studied learning approaches for speeding up

planners. speedup in planning is focused in this chap-

ter, noting that similar ideas have also been pursued in

other research areas such as constraint satisfaction. For

a collection and survey of work on speedup in planning

see Minton () and Zimmerman and Kambhampati

(). Typically in this work, one is interested in learn-

ing knowledge for an entire planning domain, which

is a collection of problems that share the same set of

actions. �e Blocksworld is a classic example of such

a planning domain. A�er experiencing and solving a

number of problems from a target domain, such as the

Blocksworld, the learned knowledge is then used to

speed up performance on new problems from the same

domain.

�ere have been a number of deductive learning

approaches to speedup learning in planning, which

are traditionally cited as 7explanation-based learning
(EBL) approaches Minton et al. (). EBL for AI

planning is strongly related to the failure-explanation

approaches developed for CSPs as characterized nicely

by Kambhampati (). �ere are two main di�er-

ences between the inter-problem EBL work in plan-

ning and the intra-problem EBL approaches for CSPs.

First, EBL approaches in planning produce more gen-

eral explanations that are applicable not only in the

problem in which they were learned, but also new prob-

lems. �is is o�en made possible by introducing vari-

ables in the place of speci�c objects into the explana-

tions derived from a particular problem.�is allows the

explanations to apply to contexts in new problems that

share similar structure but involve di�erent objects.�e

second di�erence is that inter-problem EBL approaches

Speedup Learning For Planning S 

S

in planning o�en produce explanations of successes and

not just of failures. �ese positive explanations are not

possible in the context of intra-problem speedup since

the intra-problem learner is only interested in solving a

single problem.

Despite the relatively large e�ort invested in inter-

problemEBL research, the best approaches typically did

not consistently lead to signi�cant gains, and even hurt

performance in many cases. A primary way that EBL

can hurt performance is by learning too many expla-

nations, which results in the problem solver spending

toomuch time simply evaluating the explanations at the

cost of reducing the number of search nodes considered.

�is problem is commonly referred to as the EBL util-

ity problemMinton () as it is di�cult to determine

which explanations have high enoughutility to beworth

keeping.

In addition to EBL, there has also been work

on inductive mechanisms for acquiring search-control

rules to speedupAI planners. Typically, statistical learn-

ing mechanisms are used to �nd common patterns that

can distinguish between good and bad search decisions.

As one example, Huang et al. learn action-rejection

and selection rules based on the solutions to plan-

ning problems froma commondomainHuang, Selman,

and Kautz (). �e learned rules were then added

as constraints to the constraint satisfaction engine,

which served to guide the solver to solution plans more

quickly. Another approach, which has been studied at

a theoretical and empirical level, is to learn heuristic

functions to guide a bounded search process Xu, Fern

(), in particular, bread-�rst beam search. Results in

a number of planning domains demonstrate signi�cant

improvements over planners that do not incorporate

a learning component. One other class of approach is

based on attempting to learn knowledge that removes

the need for a problem solver altogether. In particular,

to learn a reactive policy for quickly selecting actions

in any given state of the environment. Such policies

can be learned via statistical techniques by simply try-

ing to learn an e�cient function that maps planning

states to the actions selected by the planner. Despite

its simplicity, this approach has demonstrated con-

siderable success Khardon () and has also been

characterized at a theoretical level Tadepalli and

Natarajan ().

Cross References
7Explanation-Based Learning

Recommended Reading
Beame, P., Kautz, H., & Sabharwal, A. (). Towards understand-

ing and harnessing the potential of clause learning. Journal of
Artificial Intelligence Research, , –.

Boyan, J. A., & Moore, A. W. (). Learning evaluation functions

for global optimization and boolean satisfiability. In National
conference on artificial intelligence (pp. –). Mlenio Park, CA:
AAAI Press.

Fikes, R., Hart, P., & Nilsson, N. (). Learning and executing

generalized robot plans. Artificial Intelligence, (–), –.
Huang, Y.-C., Selman, B., & Kautz, H. (). Learning declarative

control rules for constraint-based planning. In International
conference on machine learning (pp. –). San Francisco:
Morgan Kaufmann.

Kambhampati, S. (). On the relations between intelligent

backtracking and failure-driven explanation-based learning in

constraint satisfaction and planning. Artificial Intelligence,
(-), –.

Khardon, R. (). Learning action strategies for planning

domains. Artificial Intelligence, (-), –.
Kumar, V., & Lin, Y. (). A data-dependency based intelligent

backtracking scheme for prolog. The Journal of Logic Program-
ming, (), –.

Minton, S. (). Quantitative results concerning the utility of

explanation-based learning. In National conference on artificial
intelligence (pp. –). St. Paul, MN: Morgan Kaufmann.

Minton, S. (Ed.) (). Machine learning methods for planning. San
Francisco: Morgan Kaufmann.

Minton, S., Carbonell, J., Knoblock, C. A., Kuokka, D. R., Etzioni, O.,

& Gil, Y. (). Explanation-based learning: A problem solving

perspective. Artificial Intelligence, , –.
Samuel, A. (). Some studies in machine learning using the game

of checkers. IBM Journal of Research and Development, (), –
.

Sarkar, S., Chakrabarti, P., & Ghose, S. (). Learning whiles

solving problems in best first search. IEEE Transactions on Sys-
tems, Man, and Cybernetics–Part A: Systems and Humans, (),
–.

Schiex, T., & Verfaillie, G. (). Nogood recording for static and

dynamic constraint satisfaction problems. International Journal
on Artificial Intelligence Tools, (), –.

Tadepalli, P., & Natarajan, B. (). A formal framework for

speedup learning from problems and solutions. Journal of Arti-
ficial Intelligence Research, , –.

Zimmerman, T., & Kambhampati, S. (). Learning-assisted auto-

mated planning: Looking back, taking stock, going forward.

AI Magazine, (), –.

Speedup Learning For Planning

7Explanation-Based Learning for Planning

 S Spike-Timing-Dependent Plasticity

Spike-Timing-Dependent Plasticity

Abiological formofHebbian learningwhere the change

of synaptic weights depends on the exact timing of

presynaptic and postsynaptic action potentials.

Cross References
7Biological Learning: Synaptic Plasticity
7Hebb Rule
7Spike Timing Dependent Plasticity

Sponsored Search

7Text Mining for Advertising

Squared Error

7Error Squared

Squared Error Loss

7Mean Squared Error

Stacked Generalization

Synonyms
Stacking

Definition
Stacking is an 7ensemble learning technique. A set of
models are constructed from bootstrap samples of a

dataset, then their outputs on a hold-out dataset are

used as input to a “meta”-model. �e set of base models
are called level-, and the meta-model level-. �e task
of the level- model is to combine the set of outputs so

as to correctly classify the target, thereby correcting any

mistakes made by the level- models.

Recommended Reading
Wolpert, D. H. (). Stacked generalization. Neural Networks (),

–.

Stacking

7Stacked Generalization

Starting Clause

7Bottom Clause

State

In a7Markov decision process, states represent the pos-
sible system con�gurations facing the decision-maker

at each decision epoch. �ey must contain all variable
information relevant to the decision-making process.

Statistical Learning

7Inductive Learning

Statistical Machine Translation

Miles Osborne

University of Edinburgh, Edinburgh, UK

Synonyms
SMT

Definition
Statistical machine translation (SMT) deals with auto-

matically mapping sentences in one human language

(for example, French) into another human language

(such as English). �e �rst language is called the source
and the second language is called the target. �is pro-
cess can be thought of as a stochastic process. �ere

are many SMT variants, depending upon how trans-

lation is modeled. Some approaches are in terms of

Statistical Machine Translation S 

S

a string-to-string mapping, some use trees-to-strings,

and some use tree-to-tree models. All share in common

the central idea that translation is automatic, withmod-

els estimated fromparallel corpora (source-target pairs)

and also frommonolingual corpora (examples of target

sentences).

Motivation and Background
Machine Translation has widespread commercial, mil-

itary, and political applications. For example, increas-

ingly, the Web is accessed by non-English speakers

reading non-English pages. �e ability to �nd rele-

vant information clearly should not be bounded by

our language-speaking capabilities. Furthermore, we

may not have su�cient linguists in some language of

interest to cope with the sheer volume of documents

that we would like translated. Enter automatic transla-

tion. Machine translation poses a number of interesting

machine learning challenges: data sets are typically very

large, as are the associatedmodels; the trainingmaterial

used is o�en noisy and plagued with sparse statistics;

the search space of possible translations is su�ciently

large that exhaustive search is not possible. Advances in

machine learning, such as maximum-margin methods,

frequently appear in translation research. SMT systems

are now su�ciently mature that they can be deployed in

production systems. A good example of this is Google’s

online Arabic-English translation, which is based upon

SMT techniques.

Structure of the Learning System
Modeling

Formally, translation can be described as �nding the

most likely target sentence e∗ for some source sentence
f :

e∗ = argmaxeP(f ∣ e)P(e)

(e conventionally stands for English and f for French,
but any language pairs can be substituted.)

�is approach has three major aspects:

● A translation model (P(f ∣ e)), which speci�es
the set of possible translations for some target sen-

tence. �e translation model also assigns probabili-

ties to these translations, representing their relative

correctness.

● A 7language model (P(e)), which models the �u-
ency of the proposed target sentence. �is assigns

a distribution over strings, with higher probabilities

being assigned to sentences which are more rep-

resentative of natural language. Language models

are usually smoothed n-grammodels, typically con-
ditioning on two (or more) previous words when

predicting the probability of the current word.

● A search process (the argmax operation), which

is concerned with navigating through the space of

possible target translations. �is is called decoding.
Decoding for SMT is NP-hard, so most approaches

use a beam search.

�is is called the Source-Channel approach to trans-
lation (Brown, Pietra, Pietra, & Mercer, ). Most

modern SMT systems instead use a7log-linear model,
as it is more �exible and allows for various aspects of

translation to be balanced together (Och & Ney, ):

e∗ = argmaxe (∑
i
fi(e, f)λi)

Here, feature functions fi(e, f) capture some aspect
of translation and each feature function has an asso-

ciated weight λi. When we have the two feature func-

tions P(f ∣ e) and P(e), we have the Source-Channel
model. �e weights are scaling factors (balancing the

contributions that each feature function makes) and

are optimized with respect to some 7loss function
which evaluates translation quality. Frequently, this is in

terms of the BLEU evaluation metric Papineni, Roukos,
Ward, & Zhu (). Typically, the error surface is non-

convex and the loss function is nondi�erentiable, so

search techniques which do not use �rst-order deriva-

tives must be employed. It is worth noting that machine

translation evaluation is a complex problem and that

methods such as BLEU are not without criticism.

SMT systems usually decompose entire sentences

into a sequence of strings called phrases (Koehn, Och, &
Marcu, ). �e modeling task then becomes one

of determining how to break a source sentence into

a sequence of contiguous phrases and how to spec-

ify which source phrase should be associated with

each target phrase. Figure  shows an example English-

French sentence pair. Figure  shows that sentence pair

decomposed into phrase-pairs. Phrase-based systems

 S Statistical Machine Translation

Those people have grown up, lived and worked for many

years in a farming district.

Ces gens ont grandi, vécu et oeuvré des dizaines d’années

dans le domain agricole.

Statistical Machine Translation. Figure . A sentence pair

Ces gens ont Those people have

gens ont grandi people have

grown up

ont grandi , have grown up ,

grandi , vécu grown up , lived

, vécu et , lived and

vécu et oeuvré lived and worked

et oeuvré des dizaines d’ oeuvré and worked many

oeuvré des dizaines d’ années dizaines worked many years

des dizaines d’ années dans many years in

années dans le years in a

le domaine agricole a farming districtle

domaine agricole . farming district .

Statistical Machine Translation. Figure . Example

phrase pairs

represented an advance over previousword-basedmod-

els, since phrase-based translation can capture local

(within a phrase) word order. Furthermore, phrase-

based translation approaches need to make fewer deci-

sions than word-based models. �is means there are

fewer errors to make.

Amajor aspect of any SMT approach is dealing with

phrasal reordering. Typically, the translation of each
source phrase need not follow the same temporal order

in the target sentence. Simple approaches model the

absolute distance a target phrase can “move” from the

originating target phrase. More sophisticated reorder-

ing models condition this movement upon the aspects

of the phrase pair.

Our description of SMT is in terms of a string-

to-string model. �ere are numerous other SMT

approaches, for example those which use notions of

syntax (Chiang, ). �ese models are now showing

promising results, but are signi�cantly more complex to

describe.

Estimation

�e translation model of a SMT system is estimated

using parallel corpora. Because the search space is so
large and that parallel corpora is not aligned at the word

level, the estimation process is based upon a large-scale

application of Expectation-Maximization, along with

heuristics. �is consists of the following steps:

● Determine how each source word translates to zero

or more target words. �e IBM models are used for

this task, which are based upon the Expectation-

Maximization algorithm for parameter estimation

(Brown et al., ).

● Repeat this process, but instead determine how

each target word translates to zero or more source

words.

● Harmonize the previous two steps, creating a set of

word alignments for each sentence pair. �is pro-
cess is designed to use the two directions as alter-

native views on how words should be translated.

Figure  shows the sentence pair aligned at the word

level.

● Heuristically, determine which sequence of source

words translates to a sequence of target words. �is

produces a set of phrase-pairs: a snippet of text in the
source sentence and the associated snippet of text in

the target sentence.

● Relative frequency estimators can then be used to

characterize how each source phrase translates to a

given target phrase.

Parallel corpora varies in size tremendously; for lan-

guage pairs such as Arabic to English, we have on the

order of tenmillion sentence pairs.Most other language

pairs (for example, Finnish to Irish) will have far smaller

parallel corpora available. Parallel corpora exists for all

European languages and for many other pairs, such as

Mandarin to English.

�e language model is instead estimated from

monolingual corpora, typically using relative frequency

estimates, which are then smoothed. For languages such

as English, typically billion (and more) words are used.

Deploying such large models can pose signi�cant engi-

neering challenges. �is is because the language model

can easily be so large that it will not �t into the memory

Statistical Machine Translation S 

S

Statistical Machine Translation. Figure . The sentence pair in Fig.  aligned at the word-level

of conventionalmachines. Also, the languagemodel can

be queriedmillions of timeswhen translating sentences,

which precludes storing it on disk.

Programs and Data
All of the code and data necessary to begin work on

SMT is available either as public source, or for a small

payment (in the case of corpora from the LDC):

● �e standard so�ware to estimate word-based trans-

lation models is Giza++:

http://www.9och.com/GIZA++.html

● Converting word-based to phrase-basedmodels and

decoding can be achieved using the Moses decoder

and associated sets of scripts:

http://www.statmt.org/jhuws/?n=Moses.HomePage

● Translation performance can be evaluated using

BLEU:

http://www.nist.gov/speech/tests/mt/resources/

scoring.htm

● �e SRILM is the standard toolkit for building and

using language models:

http://www.speech.sri.com/projects/srilm/

● Europarl is a set of parallel corpora, dealing with

European languages:

http://www.statmt.org/europarl/

● �e Linguistics Data Consortium (LDC) maintains

corpora of various kinds, including large volumes of

monolingual data which can be used to train lan-

guage models:

http://www.ldc.upenn.edu/

Recommended Reading
Brown, P. F., Pietra, S. D., Pietra, V. J. D., & Mercer, R. L. ().

The mathematic of statistical machine translation: Parameter

estimation. Computational Linguistics, (), –.
Chiang, D. (, June). A hierarchical phrase-based model for sta-

tistical machine translation. In Proceedings of the rd annual
meeting of the association for computational linguistics (ACL’)
(pp. –). Ann Arbor, MI: Association for Computational

Linguistics.

Koehn, P., Och, F. J., & Marcu, D. (). Statistical phrase-

based translation. In NAACL ’: Proceedings of the 
conference of the north american chapter of the association
for computational linguistics on human language technology
(pp. –). Morristown, NJ: Association for Computational

Linguistics.

Och, F. J., & Ney, H. (). Discriminative training and maximum

entropy models for statistical machine translation. In ACL ’:
Proceedings of the th annual meeting on association for compu-
tational linguistics (pp. –). Morristown, NJ: Association
for Computational Linguistics.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. -J. (). Bleu: A

method for automatic evaluation of machine translation. In

ACL ’: Proceedings of the th annual meeting on associa-
tion for computational linguistics (pp. –). Morristown, NJ:
Association for Computational Linguistics.

http://www.fjoch.com/GIZA++.html
http://www.statmt.org/jhuws/?n=Moses.HomePage
http://www.speech.sri.com/projects/srilm/
http://www.statmt.org/europarl/
http://www.ldc.upenn.edu/
http://www.nist.gov/speech/tests/mt/resources/scoring.htm
http://www.nist.gov/speech/tests/mt/resources/scoring.htm

 S Statistical Natural Language Processing

Statistical Natural Language
Processing

7MaximumEntropyModels forNatural Language Pro-
cessing

Statistical Physics Of Learning

7Phase Transitions in Machine Learning

Statistical Relational Learning

Luc De Raedt, Kristian Kersting

Katholieke Universiteit Leuven,

Heverlee, Belgium
Knowledge Discovery, Fraunhofer IAIS,

Sankt Augustin, Germany

Definition
Statistical relational learning a.k.a. probabilistic induc-

tive logic programming deals with machine learning

and data mining in relational domains where obser-

vations may be missing, partially observed, or noisy.

In doing so, it addresses one of the central questions

of arti�cial intelligence – the integration of probabilis-

tic reasoning with machine learning and �rst-order and

relational representations – and deals with all related

aspects such as reasoning, parameter estimation, and

structure learning.

Motivation and Background
One of the central questions of arti�cial intelligence

is concerned with combining expressive knowledge

representation formalisms such as relational and �rst-

order logic with principled probabilistic and statistical

approaches to inference and learning. While tradition-

ally relational and logical representations, probabilistic

and statistical reasoning, and machine learning have

been studied independently of one another, statistical

relational learning investigates them jointly, cf. Fig. .

A major driving force is the explosive growth in the

amount of heterogeneous data that is being collected

Statistical
relational
learning

Probabilities

LearningLogic

Statistical Relational Learning. Figure . Statistical

relational learning a.k.a. probabilistic inductive logic

programming combines probability, logic, and learning

in the business and scienti�c world in domains such

as bioinformatics, transportation systems, communica-

tion networks, social network analysis, citation analysis,

and robotics. Characteristic for these domains is that

they provide uncertain information about varying num-
bers of entities and relationships among the entities,

that is, about relational domains. Traditional machine
learning approaches are able to cope either with uncer-

tainty or with relational representations but typically

not with both.

Many formalisms and representations have been

developed in statistical relational learning. For instance,

Eisele () has introduced a probabilistic variant of

comprehensive uni�cation formalism (CUF). In a simi-

lar manner, Muggleton () and Cussens () have

upgraded stochastic grammars toward stochastic logic
programs. Sato () has introduced probabilistic dis-
tributional semantics for logic programs. Taskar, Abbeel,
and Koller () have upgraded Markov networks

toward relational Markov networks, and Richardson
and Domingos () toward Markov logic networks.
Neville and Jensen () have extended depen-

dency networks toward relational dependency networks.
Another research stream has investigated logical and

relational extensions of Bayesian networks. It includes

Poole’s independent choice logic (Poole, ), Ngo and
Haddawy’s probabilistic logic programs (Ngo & Had-
dawy, ), Jäger’s relational Bayesian networks (Jager,
), Koller, Getoor, and Pfe�er’s probabilistic rela-
tional models (Getoor, ; Pfe�er ), and Kersting
and De Raedt’s Bayesian logic programs (Kersting & De
Raedt, ).

Statistical Relational Learning S 

S

�e bene�ts of employing logical abstraction and

relations within statistical learning are manyfold:

. Relations among entities allow one to use infor-

mation about one entity to help reach conclusions

about other, related entities.

. Variables, that is, placeholders for entities allow one

to make abstraction of speci�c entities.

. Uni�cation allows one to share information among

entities. �us, instead of learning regularities for

each single entity independently, statistical rela-

tional learning aims at �nding general regularities

among groups of entities.

. �e learned knowledge is o�en declarative and

compact, whichmakes it easier for people to under-

stand and to validate.

. In many applications, there is a rich background

theory available, which can e�ciently and elegantly

be represented as a set of general regularities. �is

is important because background knowledge may

improve the quality of learning as it focuses the

learning on the relevant patterns, that is, it restricts

the search space.

. When learning a model from data, relational and

logical abstraction allow one to reuse experience in

that learning about one entity improves the predic-
tion for other entities; and this may even generalize
to objects that have never been observed before.

�us, relational and logical abstraction make statis-

tical learningmore robust and e�cient.�is has proven

to be bene�cial in many fascinating real-world applica-

tions in citation analysis, web mining, natural language

processing, robotics, bio- and chemo-informatics, elec-

tronic games, and activity recognition.

Theory
Whereas most of the existing works on statistical rela-

tional learning have started from a statistical and prob-

abilistic learning perspective and extended probabilistic

formalisms with relational aspects, statistical relational

learning can elegantly be introduced by starting from

7inductive logic programming (De Raedt, ;

Muggleton & De Raedt, ), which is o�en also

calledmulti-relational data mining (MRDM) (Džeroski
& Lavrač, ). Inductive logic programming is a

research �eld at the intersection of machine learning

and logic programming. It forms a formal framework

and has introduced practical algorithms for inductively

learning relational descriptions (in the form of logic

programs) from examples and background knowledge.

So, the only di�erence to statistical relational learning is

that it does not explicitly deal with uncertainty.

Essentially, there are only two changes to apply to

inductive logic programming approaches in order to

arrive at statistical relational learning:

. 7clauses (i.e., logical formulae that can be inter-
preted as rules; cf. below) are annotated with

probabilistic information such as conditional prob-

abilities; and

. the 7covers relation (which states the conditions
under which a hypothesis considers an example as

positive) becomes probabilistic.

A probabilistic covers relation so�ens the hard covers

relation employed in traditional inductive logic pro-

gramming and is de�ned as the probability of an exam-

ple given the hypothesis and the background theory.

De�nition  (Probabilistic Covers Relation). A proba-
bilistic covers relation takes as arguments an example e, a
hypothesis H and possibly the background theory B, and
returns the probability value P(e ∣ H,B) between  and 
of the example e given H and B, that is, covers(e,H,B) =
P(e ∣ H,B).

It speci�es the likelihood of the example given

the hypothesis and the background theory. Di�erent

choices of the probabilistic covers relation lead to di�er-

ent statistical relational learning approaches; this is akin

to the learning settings in inductive logic programming.

Statistical Relational Languages

�ere is a multitude of di�erent languages and for-

malisms for statistical relational learning. For an

overview of these languages we refer to (Getoor &

Taskar, ) and (De Raedt, Frasconi, Kersting, &

Muggleton, ). Here, we choose two formalisms

that are representatives of the two main streams in

statistical relational learning. First, we discuss Markov

logic (Richardson & Domingos, ), which upgrades

Markov network toward �rst-order logic, and second,

 S Statistical Relational Learning

we discuss ProbLog (De Raedt, Kimmig, & Toivo-

nen, ), which is a probabilistic Prolog based on

Sato’s distribution semantics (Sato, ).WhileMarkov

logic is a typical example of knowledge-based model

construction, ProbLog is a probabilistic programming

language.

Case Study: Markov Logic Networks Markov logic com-

bines �rst-order logic with 7Markov networks. �e
idea is to view logical formulae as so� constraints on the

set of possible worlds, that is, on the 7interpretations
(an interpretation is a set of facts). If an interpretation

does not satisfy a logical formula, it becomes less proba-

ble, but not necessarily impossible as in traditional logic.

Hence, the more formulae an interpretation satis�es,

the more likely it becomes. In a Markov logic network,

this is realized by associating a weight to each formula

that re�ects how strong the constraint is.More precisely,

a Markov logic network consists of a set of weighted

clauses H = {c, . . . , cm}. (Markov logic networks, in
principle, also allow one to use arbitrary logical formu-

lae, not just clauses. However, for reasons of simplicity,

we only employ clauses and make some further simpli-

�cations.)�e weightswi of the clauses then specify the

strength of the clausal constraint.

Example  Consider the following example (adapted
from Richardson and Domingos ()). Friends &
Smokers is a small Markov logic network that computes
the probability of a person having lung cancer on the basis
of her friends smoking. �is can be encoded using the
following weighted clauses:

.: cancer(P)← smoking(P)
.: smoking(X)← friends(X,Y), smoking(Y)
.: smoking(Y)← friends(X,Y), smoking(X)

�e �rst clause states the so� constraint that smoking
causes cancer. So, interpretations in which persons that
smoke have cancer are more likely than those where
they do not (under the assumptions that other properties
remain constant). �e second and third clauses state that
friends of smokers are typically also smokers.

A Markov logic network together with a Herbrand

domain (in the form of a set of constants {d, . . . ,dk})
then induces a grounded Markov network, which

fr(a,b)

fr(a,a) smok(a) smok(b) fr(b,b)

can(a)

fr(b,a)

can(b)

Statistical Relational Learning. Figure . The Markov

network for the constants ann and bob. Adapted

from Richardson and Domingos ()

de�nes a probability distribution over the possible Her-

brand interpretations.

�e nodes, that is, the random variables in the

grounded network, are the atoms in the Herbrand base,

that is, the facts of the form p (d′, . . . ,d′n) where p is
a predicate or relation and the d′i are constants. Fur-
thermore, for every ground instance ciθ of a clause ci
in H, there will be an edge between any pair of atoms
aθ, bθ that occurs in ciθ.�eMarkov network obtained
for the constants anna and bob is shown in Fig. .
To obtain a probability distribution over the Herbrand

interpretations, we still need to de�ne the potentials.

�e probability distribution over interpretations I is

P(I) =


Z
∏

c:clause
fc(I) ()

where the fc are de�ned as

fc(I) = enc(I)wc ()

and nc(I) denotes the number of substitutions θ for
which cθ is satis�ed by I, and Z is a normalization con-
stant. �e de�nition of a potential as an exponential

function of a weighted feature of a clique is common

inMarkov networks; cf.7graphical models.�e reason
is that the resulting probability distribution is easier to

manipulate.

Note that for di�erent (Herbrand) domains, dif-

ferent Markov networks will be produced. �erefore,

one can view Markov logic networks as a kind of

Statistical Relational Learning S 

S

template for generating Markov networks, and, hence,

Markov logic is based on knowledge-based model

construction. Notice also that Markov logic networks

de�ne a probability distribution over interpretations,

and nicely separate the qualitative from the quantitative

component.

Case Study: ProbLog Many formalisms do not explic-

itly encode a set of conditional independency assump-

tions, as in Bayesian or Markov networks, but rather

extend a (logic) programming languagewith probabilis-

tic choices. Stochastic logic programs (Cussens, ;

Muggleton, ) directly upgrade stochastic context-

free grammars toward de�nite clause logic, whereas

Prism (Sato, ), probabilisticHorn abduction (PHA)

(Poole, ), and the more recent independent choice

logic (ICL) (Poole, ) specify probabilities on facts

from which further knowledge can be deduced. As a

simple representative of this stream of work, we intro-

duce the probabilistic Prolog called ProbLog (De Raedt

et al., ).

�e key idea underlying Problog is that some facts

f for probabilistic predicates are annotated with a prob-
ability value. �is value indicates the degree of belief,

that is the probability, that any ground instance f θ of f
is true. It is also assumed that the f θ aremarginally inde-
pendent. �e probabilistic facts are then augmented

with a set of de�nite clauses de�ning further predicates

(which should be disjoint from the probabilistic ones).

An example adapted fromDeRaedt et al. () is given

below.

Example  Consider the facts

.: edge(a,c)←
.: edge(c,b)←
.: edge(d,c)←
.: edge(d,b)←

which specify that with probability . there is an edge
from a to c. Consider also the following (simpli�ed) de�-
nition of path/.

path(X,Y)edge(X,Y)←
path(X,Y)edge(X,Z), path(Z,Y)←

One can now de�ne a probability distribution on

(ground) proofs as follows. �e probability of a ground

proof is the product of the probabilities of the (ground)

clauses (here, facts) used in the proof. For instance,

the only proof for the goal ← path(a,b) employs the
facts edge(a,c) and edge(c,b); these facts aremarginally
independent, and hence the probability of the proof is

. × .. �e probabilistic facts used in a single proof

are sometimes called an explanation.
It is now tempting to de�ne the probability of a

ground atom as the sum of the probabilities of the

proofs for that atom. However, this does not work with-

out additional restrictions, as shown in the following

example.

Example  �e fact path(d,b) has two explanations:

. {edge(d,c), edge(c,b)} with probability . × . =
., and

. {edge(d,b)} with probability ..

Summing the probabilities of these explanations gives
a value of ., which is clearly impossible.

�e reason for this problem is that the di�erent

explanations are not mutually exclusive, and therefore

their probabilities may not be summed.�e probability

P(path(d,b) = true) is, however, equal to the probability
that a proof succeeds, that is,

P(path(d,b) = true) = P[(e(d,c) ∧ e(c,b)) ∨ e(d,b)]

which shows that computing the probability of a derived

ground fact reduces to computing the probability of

a boolean formula in disjunctive normal form (DNF),

where all random variables are marginally indepen-

dent of one another. Computing the probability of such

formulae is anNP-hard problem, the disjoint-sum prob-
lem. Using the inclusion-exclusion principle from set
theory, one can compute the probability as

P(path(d,b) = true) = P[(e(d,c) ∧ e(c,b)) ∨ e(d,b)]

= P(e(d,c) ∧ e(c,b))

+ P(e(d,b))

− P((e(d,c) ∧ e(c,b))

∧e(d,b))

= . × . + . − . × .

× . = .

 S Statistical Relational Learning

�ere existmore e�ectiveways to compute the probabil-

ity of such DNF formulae (De Raedt et al., ), where

binary decision diagrams are employed to represent the

DNF formulae.

�e above example shows how the probability of

a speci�c fact is de�ned and can be computed. �e

distribution at the level of individual facts (or goals)

can easily be generalized to a possible world seman-

tics, specifying a probability distribution on interpre-

tations. It is formalized in the distribution semantics of
Sato (), which is de�ned by starting from the set of

all probabilistic ground facts F for the given program.
For simplicity, we shall assume that this set is �nite,

though Sato’s results also hold for the in�nite case. �e

distribution semantics then starts from a probability

distribution PF(S) de�ned on subsets S ⊆ F:

PF(S) =∏
f ∈S

P(f)∏
f /∈S

( − P(f)). ()

Each subset S is now interpreted as a set of logical facts
and combined with the de�nite clause program R that
speci�es the logical part of the probabilistic logic pro-

gram. Any such combination S ∪ R possesses a unique
least Herbrand model M(S ∪ R), which corresponds
to a possible world. �e probability of such a possible

world is then the sum of the probabilities of the subsets

S yielding that possible world, that is,

PW(M) = ∑
S⊆F:M(S∪R)=M

PF(S) ()

For instance, in the path example, there are  possi-

ble worlds, which can be obtained from the  di�erent

truth assignments to the facts, and whose probabilities

can be computed using Eq. (). As for graphical mod-

els, the probability of any logical formula can be com-

puted from a possible world semantics (speci�ed here

by PW).

Because computing the probability of a fact or goal

under the distribution semantics is hard, systems such

as Prism (Sato, ) and PHA (Poole, ) impose

additional restrictions that can be used to improve the

e�ciency of the inference procedure. �e key assump-

tion is that the explanations for a goal are mutually
exclusive, which overcomes the disjoint-sum problem.
If the di�erent explanations of a goal do not overlap,

then its probability is simply the sum of the probabil-

ities of its explanations. �is directly follows from the

inclusion-exclusion formulae as under the exclusive-

explanation assumption the conjunctions (or intersec-

tions) are empty.

Learning

Essentially, any statistical relational approach can be

viewed as li�ing a traditional inductive logic program-

ming setting by associating probabilistic information to

clauses and by replacing the deterministic coverage rela-

tion by a probabilistic one. In contrast to traditional

graphical models such as Bayesian networks or Markov

networks, however, we can also employ “counterexam-

ples” for learning. Consider a simple kinship domain.

Assume rex is a male person. Consequently, he can-
not be the daughter of any other person, say ann.
�us, daughter(rex,ann) can be listed as a nega-
tive example although we will never observe it. “Coun-

terexamples” con�ict with the usual view on learning

examples in statistical learning.

In statistical learning, we seek to �nd that hypoth-

esis H∗, which is most likely given the learning

examples:

H∗
= argmax

H
P(H∣E) = argmax

H

P(E∣H) ⋅ P(F)
P(E)

with P(E) >  .

�us, examples E in traditional statistical learning are
always observable, that is, P(E) > . However, in statis-
tical relational learning, as in inductive logic program-

ming, we may also employ “counterexamples” such as

daughter(rex,ann), which have probability “,”
and that actually never can be observed.

De�nition  (SRL Problem). Given a set E = Ep ∪

Ei of positive and negative examples Ep and Ei (with
Ep ∩ Ei = ∅) over some example language LE, a prob-
abilistic covers relation covers(e,H,B) = P(e ∣ H,B), a
probabilistic logical language LH for hypotheses, and a
background theory B, �nd a hypothesis H∗ in LH such
that H∗ = argmaxH score(E,H,B) and the following
constraints hold: ∀ ep ∈ Ep : covers(ep,H∗,B) > 

and ∀ ei ∈ Ei : covers(ei,H∗,B) = . �e score
is some objective function, usually involving the proba-
bilistic covers relation of the observed examples such as
the observed likelihood∏ep∈Ep

covers(ep,H∗,B) or some
penalized variant thereof.

Statistical Relational Learning S 

S

�is learning setting uni�es inductive logic pro-

gramming and statistical learning in the following

sense: using a deterministic covers relation (either  or

), it yields the classical inductive logic programming

learning problem; sticking to propositional logic and

learning from positive examples, that is, P(E) > , only
yields traditional statistical learning.

To come up with algorithms solving the SRL prob-

lem, say for density estimation, one typically distin-

guishes two subtasks because H = (L, λ) is essen-
tially a logical theory L annotated with probabilistic
parameters λ:

. Parameter estimation where it is assumed that the
underlying logic program L is �xed, and the learn-
ing task consists of estimating the parameters λ that
maximize the likelihood.

. Structure learning where both L and λ have to be
learned from the data.

In the following paragraphs, we will sketch the basic

parameter estimation and structure learning tech-

niques, and illustrate them for each setting.

Parameter Estimation �e problem of parameter esti-

mation is concerned with estimating the values of the

parameters λ of a �xed probabilistic programH = (L, λ)
that best explains the examples E. So, λ is a set of param-
eters and can be represented as a vector. As already

indicated above, tomeasure the extent to which amodel

�ts the data, one usually employs the likelihood of the

data, that is, P(E ∣ L, λ), though other scores or variants
could be used as well.

When all examples are fully observable, maximum

likelihood reduces to frequency counting. In the pres-

ence of missing data, however, the maximum likeli-

hood estimate typically cannot be written in closed

form. It is a numerical optimization problem, and all

known algorithms involve nonlinear optimization. �e

most commonly adopted technique for probabilistic

logic learning is the expectation-maximization (EM)

algorithm (Dempster, Laird, Rubin, ; McLachlan &

Krishnan, ). EM is based on the observation that

learning would be easy (i.e., correspond to frequency

counting), if the values of all the random variables

would be known. �erefore, it estimates these values,

maximizes the likelihood based on the estimates, and

then iterates. More speci�cally, EM assumes that the

parameters have been initialized (e.g., at random) and

then iteratively performs the following two steps until

convergence:

(E-Step) On the basis of the observed data and the
present parameters of the model, it computes a dis-

tribution over all possible completions of each par-

tially observed data case.

(M-Step) Treating each completion as a fully observed
data case weighted by its probability, it computes

the improved parameter values using (weighted) fre-

quency counting.

�e frequencies over the completions are called the

expected counts. Examples for parameter estimation of
probabilistic relational models can be found in (Getoor

& Taskar, ) and (De Raedt, Frasconi, Kersting, &

Muggleton, ).

Structure Learning �e problem is now to learn both

the structure L and the parameters λ of the probabilistic
program H = (L, λ) from data. O�en, further informa-
tion is given as well. As in inductive logic programming,

the additional knowledge can take various di�erent

forms, including a7language bias that imposes restric-
tions on the syntax of L, and an initial hypothesis (L, λ)
from which the learning process can start.

Nearly all (score-based) approaches to structure

learning perform a heuristic search through the space of

possible hypotheses. Typically, hill-climbing or beam-

search is applied until the hypothesis satis�es the

logical constraints and the score(H,E) is no longer
improving. �e steps in the search-space are typi-

cally made using re�nement operators, which make

small, syntactic modi�cations to the (underlying) logic

program.

At this point, it is interesting to observe that the

logical constraints o�en require that the positive exam-

ples are covered in the logical sense. For instance,

when learning ProbLog programs from entailment,

the observed example clauses must be entailed by the

logic program. �us, for a probabilistic program H =

(LH , λH) and a background theory B = (LB, λB) it

holds that ∀ep ∈ Ep : P(e∣H,B) >  if and only if

covers(e,LH ,LB) = , where LH (respectively LB) is the
underlying logic program (logical background theory)

 S Statistical Relational Learning

and covers(e,LH ,LB) is the purely logical covers relation,
which is either  or .

Applications
Applications of statistical relational learning can be

found in many areas such as web search and min-

ing, text mining, bioinformatics, natural language pro-

cessing, robotics, and social network analysis, among

others. Due to space restrictions, we will only name a

few of these exciting applications.

For instance, Getoor, Taskar, & Koller () have

used statistical relational models to estimate the result

size of complex database queries. Segal et al. have

employed probabilistic relational models to cluster gene

expression data (Segal, Taskar, Gasch, Friedman, &

Koller, ) and to discover cellular processes from

gene expression data (Segal, Battle, & Koller, ).

Getoor et al. have used probabilistic relational mod-

els to understand tuberculosis epidemiology (Getoor,

Rhee, Koller, & Small, ). McGovern et al. ()

have estimated probabilistic relational trees to discover

publication patterns in high-energy physics. Probabilis-

tic relational trees have also been used to learn to rank

brokers with respect to the probability that they would

commit a serious violation of securities regulations in

the near future (Neville et al., ). Anguelov et al.

() have used relational Markov networks for seg-

mentation of D scan data. Markov networks have also

been used to compactly represent object maps and to

estimate trajectories of people (Limketkai, Liao, & Fox,

). Kersting et al. have employed relational hidden

Markov models for protein fold recognition (Kersting,

De Raedt, & Raiko, ). Poon and Domingos ()

have shown how to use Markov logic to perform joint

unsupervised coreference resolution. Xu et al. have

used nonparametric relational models for analyzing

social networks (Xu, Tresp, Rettinger, & Kersting, ).

Kersting and Xu () have used relational Gaussian

processes for learning to rank search results. Recently,

Poon and Domingos () have shown how to per-

form unsupervised semantic parsing using Markov

logic networks.

Future Directions
We have provided an overview of the new and excit-

ing area of statistical relational learning. It combines

principles of probabilistic reasoning, logical represen-

tation, and statistical learning into a coherent whole.

�e techniques of probabilistic logic learning were ana-

lyzed starting from an inductive logic programming

perspective by li�ing the coverage relation to a prob-

abilistic one and annotating the logical formulae. Dif-

ferent choices of the probabilistic coverage relation lead

to di�erent representational formalisms, two of which

were introduced.

Statistical relational learning is an active area of

research within the machine learning and the arti�-

cial intelligence community. First, there is the issue

of e�cient inference and learning. Most current infer-
ence algorithms for statistical relational models require

explicit state enumeration, which is o�en impracti-

cal: the number of states grows very quickly with

the number of domain objects and relations. Li�ed
inference algorithms seek to avoid explicit state enu-

meration and directly work at the level of groups of

atoms, eliminating all the instantiations of a set of

atoms in a single step, in some cases independently

of the number of these instantiations. Despite var-

ious approaches to li�ed inference (de Salvo Braz,

Amir, & Roth, ; Jaimovich, Meshi, & Friedman,

; Kersting, Ahmadi, & Natarajan, ; Kisynski

& Poole, ; Milch, Zettlemoyer, Kersting, Haimes,

& Kaelbling , ; Poole, ; Sen, Deshpande, &

Getoor, ; Singla & Domingos, ), it largely

remains a challenging problem. For what concerns

learning, advanced principles of both statistical learn-

ing and logical and relational learning can be employed

for learning the parameters and the structure of proba-

bilistic logics such as statistical predicate invention (Kok
&Domingos, ) and boosting (Gutmann&Kersting,
). Recently, people started to investigate learning
from weighted examples (see e.g., Chen, Muggleton, &
Santos, ) and to link statistical relational learning to

support vector machines (see e.g., Passerini, Frasconi,

& De Raedt, ). Second, there is the issue of closed-
world versus open-world assumption that is, do we know
howmany objects there are (see e.g., Milch et al., ).

�ird, there is interest in dealing with continuous val-
ues within statistical relational learning (see e.g., Chu,
Sindhwani, Ghahramani, & Keerthi, ; Silva, Chu,

& Ghahramani, ; Wang & Domingos, ; Xu,

Kersting, & Tresp, ). �is is mainly motivated

by the fact that most real-world applications actually

Statistical Relational Learning S 

S

contain continuous values. Nonparametric Bayesian
approaches to statistical relational learning have also

been developed (see e.g., Kemp, Tenenbaum, Gri�ths,

Yamada, & Ueda, ; Xu, Tresp, Yu, & Kriegel, ;

Yu & Chu, ; Yu, Chu, Yu, Tresp, & Xu, ), to

overcome the typically strong parametric assumptions

underlying current statistical relational learning. Peo-

ple have also started to investigate relational variants of
classical statistical learning tasks such as matrix factor-
izations (see e.g., Singh & Gordon, ). Finally, while

statistical relational learning approaches have been used

successfully in a number of applications, they do not yet

cope with the dynamic environments in an e�ective way.

Cross References
7Multi-Relational Data Mining
7Relational Learning

Recommended Reading
In addition to the references embedded in the text above, we also

recommend De Raedt et al. (), Getoor & Taskar (), De

Raedt () and the SRL tutorials at major artificial intelligence

and machine learning conferences.

Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D.,

Heitz, G., et al. (). Discriminative learning of Markov ran-

dom fields for segmentation of D scan data. In C. Schmid,

S. Soatto, & C. Tomasi (Eds.), IEEE Computer Society inter-
national conference on computer vision and pattern recognition
(CVPR-), San Diego, CA, USA (Vol. , pp. –).

Chen, J., Muggleton, S., & Santos, J. (). Learning probabilistic

logic models from probabilistic examples. Machine Learning,
(), –.

Chu, W., Sindhwani, V., Ghahramani, Z., & Keerthi, S. (). Rela-

tional learning with Gaussian processes. In Advances in Neu-
ral information processing systems  (NIPS-). Cambridge,
MA: MIT Press.

Cussens, J. (). Loglinear models for first-order probabilistic rea-

soning. In K. Blackmond Laskey & H. Prade (Eds.), Proceedings
of the fifteenth annual conference on uncertainty in artificial
intelligence (UAI-) (pp. –), Stockholm, Sweden. San
Francisco: Morgan Kaufmann.

Cussens, J. (). Parameter estimation in stochastic logic pro-

grams. Machine Learning Journal, (), –.
De Raedt, L. (). Logical and relational learning. Springer.
De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. (Eds.).

(). Probabilistic inductive logic programming. Lecture
notes in computer science (Vol. ). Berlin/Heidelberg:
Springer.

De Raedt, L., Kimmig, A., & Toivonen, H. (). Problog: A prob-

abilistic Prolog and its application in link discovery. In M.

Veloso (Ed.), Proceedings of the th international joint con-
ference on artificial intelligence (pp. –). Hyderabad,
India.

de Salvo Braz, R., Amir, E., & Roth, D. (). Lifted first order prob-

abilistic inference. In Proceedings of the th international joint
conference on artificial intelligence (IJCAI-) (pp. –).
Edinburgh, Scotland.

Dempster, A., Laird, N., & Rubin, D. (). Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society B, , –.

Džeroski, S., & Lavrač, N. (Eds.). (). Relational data mining.
Berlin: Springer.

Eisele, A. (). Towards probabilistic extensions of contraint-

based grammars. In J. Dörne (Ed.), Computational aspects of
constraint-based linguistics description-II. Stuttgart: Institute
for Computational Linguistics (IMS-CL). DYNA- deliverable

R..B.

Getoor, L. (). Learning statistical models from relational data.
PhD thesis, Stanford University, USA.

Getoor, L., Rhee, J., Koller, D., & Small, P. (). Understand-

ing tuberculosis epidemiology using probabilistic relational

models. Journal of Artificial Intelligence in Medicine, ,
–.

Getoor, L., & Taskar, B. (Eds.). (). Introduction to statistical
relational learning. Cambridge, MA, USA: The MIT Press.

Getoor, L., Taskar, B., & Koller, D. (). Using probabilistic mod-

els for selectivity estimation. In Proceedings of ACM SIGMOD
international conference on management of data (pp. –).
Santa Barbara, CA, USA: ACM Press.

Gutmann, B., & Kersting, K. (). TildeCRF: Conditional random

fields for logical sequences. In J. Fuernkranz, T. Scheffer, & M.

Spiliopoulou (Eds.), Proceedings of the th European conference
on machine learning (ECML-), Berlin, Germany (pp. –
).

Jäger, M. (). Relational Bayesian networks. In K. Laskey & H.

Prade (Eds.), Proceedings of the thirteenth conference on uncer-
tainty in artificial intelligence (UAI-), Stockholm, Sweden
(pp. –). San Franciso, CA, USA: Morgan Kaufmann.

Jaimovich, A., Meshi, O., & Friedman, N. (). Template-based

inference in symmetric relational Markov random fields. In

Proceedings of the conference on uncertainty in artificial intel-
ligence (UAI-) (pp. –).

Kemp, C., Tenenbaum, J., Griffiths, T., Yamada, T., & Ueda, N.

(). Learning systems of concepts with an infinite relational

model. In Proceedings of st AAAI.
Kersting, K., Ahmadi, B., & Natarajan, S. (). Counting belief

propagation. In Proceedings of the th conference on uncer-
tainty in artificial intelligence (UAI-). Montreal, Canada.

Kersting, K., & De Raedt, L. (). Bayesian logic programming:

Theory and tool. In L. Getoor & B. Taskar (Eds.), An introduc-
tion to statistical relational learning (pp. –). Cambridge,
MA, USA: MIT Press.

Kersting, K., De Raedt, L., & Raiko, T. (). Logial Hidden Markov

Models. Journal of Artificial Intelligence Research (JAIR), ,
–.

Kersting, K., & Xu, Z. (). Learning preferences with hidden

common cause relations. In Proceedings of the European confer-
ence on machine learning and principles and practice of knowl-
edge discovery in databases (ECML PKDD ). LNAI, Bled,
Slovenia, Springer.

Kisynski, J., & Poole, D. (). Lifted aggregation in directed first-

order probabilistic models. In C. Boutilier (Ed.), Proceedings
of the international joint conference on artificial intelligence
(IJCAI-). Pasadena, CA, USA.

 S Statistical Relational Learning

Kok, S., & Domingos, P. (). Statistical predicate invention. In

Proceedings of the twenty-fourth international conference on
machine learning (ICML-), Corvallis, OR, USA (pp. –
). ACM Press.

Limketkai, B., Liao, L., & Fox, D. (). Relational object maps

for mobile robots. In F. Giunchiglia & L. P. Kaelbling (Eds.),

Proceedings of the nineteenth international joint conference on
artificial intelligence (IJCAI-), Edinburgh, Scotland (pp. –
). AAAI Press.

McGovern, A., Friedland, L., Hay, M., Gallagher, B., Fast, A., Neville,

J., et al. (). Exploiting relational structure to understand

publication patterns in high-energy physics. SIGKDD Explo-
rations, (), –.

McLachlan, G., & Krishnan, T. (). The EM algorithm and exten-
sions. New York: Wiley.

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., & Kolobov, A.

(). BLOG: Probabilistic models with unknown objects. In F.

Giunchiglia, L. P. Kaelbling (Eds.), Proceedings of the nineteenth
international joint conference on artificial intelligence (IJCAI-
), Edinburgh, Scotland (pp. –). Edinburgh, Scotland:
AAAI Press.

Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., & Pack Kael-

bling, L. (). Lifted probabilistic inference with counting

formulas. In Proceedings of the rd AAAI conference on arti-
ficial intelligence (AAAI-).

Muggleton, S. (). Stochastic logic programs. In L. De Raedt

(Ed.), Advances in inductive logic programming (pp. –).
Amsterdam: IOS Press.

Muggleton, S., & De Raedt, L. (). Inductive logic programming:

Theory and methods. Journal of Logic Programming, (),
–.

Neville, J., & Jensen, D. (). Dependency networks for rela-

tional data. In R. Rastogi, K. Morik, M. Bramer, & X. Wu

(Eds.), Proceedings of the fourth IEEE international conference
on data mining (ICDM-), Brighton, UK (pp. –). IEEE
Computer Society Press.

Neville, J., Simsek, Ö., Jensen, D., Komoroske, J., Palmer,

K., & Goldberg, H. (). Using relational knowledge

discovery to prevent securities fraud. In Proceedings of
the th ACM SIGKDD international conference on knowl-
edge discovery and data mining. Chicago, IL, USA: ACM
Press.

Ngo, L., & Haddawy, P. (). Answering queries from context-

sensitive probabilistic knowledge bases. Theoretical Computer
Science, , –.

Passerini, A., Frasconi, P., & De Raedt, L. (). Kernels on pro-

log proof trees: Statistical learning in the ILP setting. Journal of
Machine Learning Research, , –.

Pfeffer, A. (). Probabilistic reasoning for complex systems.
PhD thesis, Computer Science Department, Stanford

University.

Poole, D. (). Probabilistic Horn abduction and Bayesian net-

works. Artificial Intelligence Journal, , –.
Poole, D. (). The independent choice logic for modelling mul-

tiple agents under uncertainty. Artificial Intelligence, (–),
–.

Poole, D. (). First-order probabilistic inference. In G. Got-

tlob & T. Walsh (Eds.), Proceedings of the eighteenth inter-
national joint conference on artificial intelligence (IJCAI-
), Acapulco, Mexico (pp. –). San Francisco: Morgan
Kaufmann.

Poon, H., & Domingos, P. (). Joint unsupervised coreference

resolution with markov logic. In: Proceedings of the  con-
ference on empirical methods in natural language processing
(EMNLP), Honolulu, HI, USA.

Poon, H., & Domingos, P. (). Unsupervised semantic parsing.

In Proceedings of the  conference on empirical methods in
natural language processing (EMNLP), Singapore.

Richardson, M., & Domingos, P. (). Markov logic networks.

Machine Learning, , –.
Sato, T. (). A statistical learning method for logic programs

with distribution semantics. In L. Sterling (Ed.), Proceedings
of the twelfth international conference on logic programming
(ICLP-), Tokyo, Japan (pp. –). MIT Press.

Segal, E., Battle, A., & Koller, D. (). Decomposing gene expres-

sion into cellular processes. In Proceedings of Pacific symposium
on biocomputing (PSB) (pp. –). World Scientific.

Segal, E., Taskar, B., Gasch, A., Friedman, N., & Koller, D. ().

Rich probabilistic models for gene expression. Bioinformatics,
(Suppl. ), S– (Proceedings of ISMB ).

Sen, P., Deshpande, A., & Getoor, L. (). Exploiting shared corre-

lations in probabilistic databases. In Proceedings of the interna-
tional conference on very large data bases (VLDB-). Auckland,
New Zealand.

Silva, R., Chu, W., & Ghahramani, Z. (). Hidden common cause

relations in relational learning. In Advances in Neural informa-
tion processing systems  (NIPS-). Cambridge, MA: MIT
Press.

Singh, A., & Gordon, G. (). Relational learning via collective

matrix factorization. In Proceedings of th international con-
ference on knowledge discovery and data mining. Las Vegas,
US.

Singla, P., & Domingos, P. (). Lifted first-order belief propa-

gation. In Proceedings of the rd AAAI conference on artificial
intelligence (AAAI-), Chicago, IL, USA (pp. –).

Taskar, B., Abbeel, P., & Koller, D. (). Discriminative probabilis-

tic models for relational data. In A. Darwiche & N. Friedman

(Eds.), Proceedings of the eighteenth conference on uncertainty
in artificial intelligence (UAI-), Edmonton, Alberta, Canada
(pp. –).

Wang, J., & Domingos, P. (). Hybrid markov logic networks. In

Proceedings of the rd AAAI conference on artificial intelligence
(AAAI-), Chicago, IL, USA (pp. –).

Xu, Z., Kersting, K., & Tresp, V. (). Multi-relational learn-

ing with Gaussian processes. In C. Boutilier (Ed.) Proceedings
of the international joint conference on artificial intelligence
(IJCAI-). Pasadena, CA.

Xu, Z., Tresp, V., Rettinger, A., & Kersting, K. (). Social

network mining with nonparametric relational models. In

Advances in social network mining and analysis. Lecture
Notes in Computer Science (Vol. ), Berlin/Heidelberg:

Springer.

Xu, Z., Tresp, V., Yu, K., & Kriegel, H. P. (). Infinite hidden

relational models. In Proceedings of nd UAI.
Yu, K., & Chu, W. (). Gaussian process models for link

analysis and transfer learning. In Advances in Neural infor-
mation processing systems  (NIPS-). Cambridge, MA:
MIT Press.

Yu, K., Chu, W., Yu, S., Tresp, V., & Xu, Z. (). Stochastic rela-

tional models for discriminative link prediction. In Advances
in Neural information processing systems  (NIPS-). Cam-
bridge, MA: MIT Press.

Stochastic Finite Learning S 

S

Stochastic Finite Learning

Thomas Zeugmann

Hokkaido University,

Sapparo, Japan

Motivation and Background
Assume that we are given a concept class C and should

design a learner for it. Next, supposewe already knowor

could prove C not to be learnable in the model of7PAC
Learning. But it can be shown that C is learnable within

Gold’s () model of 7Inductive Inference or learn-
ing in the limit. �us, we can design a learner behaving

as follows. When fed any of the data sequences allowed

in this model, it converges in the limit to a hypothesis

correctly describing the target concept. Nothingmore is

known. LetM be any �xed learner. If (dn)n ≥  is any data
sequence, then the stage of convergence is the least inte-
germ such thatM(dm) =M(dn) for all n ≥ m, provided
such an n exists (and in�nite, otherwise). In general, it
is undecidable whether or not the learner has already

reached the stage of convergence, but even if it is decid-

able for a particular concept class, it may be practically

infeasible to do so.�is uncertaintymay not be tolerable
in many applications.

When we tried to overcome this uncertainty, the

idea of stochastic �nite learning emerged. Clearly, in

general nothing can be done, since in Gold’s ()

model the learner has to learn from any data sequence.

So for every concept that needsmore than one datum to

converge, one can easily construct a sequence, where the

�rst datum is repeated very o�en and where therefore,

the learner does not �nd the right hypothesis within

the given bound. However, such data sequences seem

unnatural. �erefore, we looked at data sequences that

are generated with respect to some probability distribu-

tion taken from a prespeci�ed class of probability distri-

butions and computed the expected total learning time,
i.e., the expected time until the learner reaches the stage

of convergence (cf. Erlebach, Rossmanith, Stadtherr,

Steger, & Zeugmann, ; Zeugmann, ). Clearly,

one is then also interested in knowing how o�en the

expected total learning time is exceeded. In general,

Markov’s inequality can be applied to obtain the rele-

vant tail bounds. However, if the learner is known to

be rearrangement independent and conservative, then

we always get exponentially shrinking tail bounds (cf.
Rossmanith & Zeugmann, ). A learner is said to be

rearrangement independent, if its output depends exclu-
sively on the range and length of its input (but not the

order) (cf., e.g., Lange & Zeugmann,  and the ref-

erences therein). Furthermore, a learner is conservative,
if it exclusively performs mind changes that can be jus-

ti�ed by an inconsistency of the abandoned hypothesis

with the data received so far (see Angluin, b for a

formal de�nition).

Combining these ideas results in stochastic �nite

learning. A stochastic �nite learner is successively fed

data about the target concept. Note that these data are

generated randomly with respect to one of the probabil-

ity distributions from the class of underlying probability

distributions. Additionally, the learner takes a con�-

dence parameter δ as input. But in contrast to learning
in the limit, the learner itself decides how many exam-

ples it wants to read. �en it computes a hypothesis,

outputs it and stops. �e hypothesis output is correct

for the target with a probability at least  − δ.
�e description given above explains how it works,

but not why it does. Intuitively, the stochastic �nite

learner simulates the limit learner until an upper bound

for twice the expected total number of examples needed

until convergence has been met. Assuming this to

be true, by Markov’s inequality, the limit learner has

now converged with a probability /. All what is le�

is to decrease the probability of failure. �is can be

done by using again Markov’s inequality, i.e., increas-

ing the sample complexity by a factor of /δ results in
a con�dence of  − δ for having reached the stage of
convergence.

Note that the stochastic �nite learner has to cal-

culate an upper bound for the stage of convergence.

�is is precisely the point where we need the param-

eterization of the class D of underlying probability

distributions. �en, a bit of prior knowledge must be
provided in the form of suitable upper and/or lower

bounds for the parameters involved. Amore serious dif-

�culty is to incorporate the unknown target concept

into this estimate. �is step depends on the concrete

learning problem on hand and requires some extra

e�ort.

It should also be noted that our approach may be

bene�cial even in case that the considered concept class

is PAC learnable.

 S Stochastic Finite Learning

Definition
Let D be a set of probability distributions on the learn-

ing domain, let C be a concept class, H a hypothesis

space for C, and δ ∈ (, ). (C,D) is said to be stochas-
tically �nitely learnable with δ-con�dence with respect
to H i� there is a learner M that for every c ∈ C and

every D ∈ D performs as follows. Given any random

data sequence θ for c generated according toD,M stops
a�er having seen a �nite number of examples and out-

puts a single hypothesis h ∈ H. With a probability at

least  − δ (with respect to distribution D), h has to be
correct, i.e., c = h.
If stochastic �nite learning can be achieved with δ-

con�dence for every δ >  then we say that (C,D) can

be learned stochastically �nite with high con�dence.

Detail
Note that there are subtle di�erences between our

model and PAC learning. By its de�nition, stochas-

tic �nite learning is not completely distribution inde-

pendent. A bit of additional knowledge concerning
the underlying probability distributions is required.

�us, from that perspective, stochastic �nite learning is

weaker than the PAC model. On the other hand, we do

not measure the quality of the hypothesis with respect
to the underlying probability distribution. Instead, we

require the hypothesis computed to be exactly correct

with high probability. Note that the exact identi�cation

with high con�dence has been considered within the

PAC paradigm, too (cf., e.g., Saly, Goldman, & Schapire,

). Conversely, we also can easily relax the require-

ment to learn probably exactly correct, but whenever
possible we shall not do it.

Furthermore, in the uniform PAC model as intro-

duced in Valiant (), the sample complexity depends

exclusively on the VC dimension of the target con-

cept class and the error and con�dence parameters ε
and δ, respectively. �is model has been generalized by
allowing the sample size to depend on the concept com-

plexity, too (cf., e.g., Blumer, Ehrenfeucht, Haussler, &

Warmuth, ; Haussler, Kearns, Littlestone, & War-

muth, ). Provided no upper bound for the concept

complexity of the target concept is given, such PAC

learners decide themselves how many examples they

wish to read (cf. Haussler et al., ). �is feature is

also adopted to our setting of stochastic �nite learning.

However, all variants of e�cient7PACLearning, we are
aware of, require that all hypotheses from the relevant

hypothesis space are uniformly polynomially evaluable.

�ough this requirement may be necessary in some

cases to achieve (e�cient) stochastic �nite learning, it

is not necessary in general as we shall see below.

In the following, we provide two sample applica-

tions of Stochastic Finite Learning. We always choose

the concept class C itself as hypothesis space.

Learning Monomials
Let Xn = {, }n be the learning domain, let Ln =

{x, x̄, x, x̄ . . . , xn, x̄n} (set of literals), and consider
the class Cn of all concepts describable by a conjunc-

tion of literals. As usual, we refer to any conjunction of

literals as a monomial. A monomial m describes a con-
cept c ⊆ Xn in the obvious way: �e concept contains

exactly those binary vectors for which the monomial

evaluates to .

�e basic ingredient to the stochastic �nite learner is

Haussler’s () Wholist algorithm, and thus the main

emphasis is on the resulting complexity. �e Wholist

algorithm can also be used to achieve 7PAC Learning
of the class Cn and the resulting sample complexity is

O(/ε ⋅ (n + ln(/δ))) for all ε, δ ∈ (, ]. Since the

Wholist algorithm learns from positive examples only,

it is meaningful to study the learnability of Cn from pos-

itive examples only. So, the stage of convergence is not
decidable.

Since theWholist algorithm immediately converges

for the empty concept, we exclude it from our consid-

erations. �at is, we consider concepts c ∈ Cn described
by a monomial m = ⋀

#(m)
j =  ℓij such that k = k(m) =

n − #(m) > . A literal not contained in m is said to
be irrelevant. Bit i is said to be irrelevant for mono-
mial m if neither xi nor x̄i appear in m. �ere are k

positive examples for c. For the sake of presentation,
we assume these examples to be binomially distributed
with parameter p. So, in a random positive example,
all entries corresponding to irrelevant bits are selected

independently of each other. With some probability p
this will be a , and with probability −p, this will be a .
Only distributions where  < p <  are considered, since
otherwise exact identi�cation is impossible. Now, one

can show that the expected number of examples needed

by the Wholist algorithm until convergence is bounded

Stochastic Finite Learning S 

S

by ⌈logψ k(m)⌉ + τ + , where ψ := min{ 

− p ,


p} and

τ := max{ p
− p ,

− p
p }.

Let CON denote a random variable for the stage of
convergence. Since the Wholist algorithm is rearrange-

ment independent and conservative, we can conclude

(cf. Rossmanith & Zeugmann, )

Pr(CON >  t ⋅E[CON]) ≤ 
−t
for all natural

numbers t ≥ .

Finally, in order to obtain a stochastic �nite learner,

we reasonably assume that the prior knowledge is pro-
vided by parameters plow and pup such that plow ≤ p ≤

pup for the true parameter p. Binomial distributions ful-
�lling this requirement are called (plow, pup)-admissible
distributions. Let Dn[plow, pup] denote the set of such
distributions on Xn. �en one can show

Let  < plow ≤ pup <  and ψ := min{ 

−plow ,


pup
}.

�en (Cn, Dn[plow, pup]) is stochastically �nitely learn-
able with high con�dence from positive examples. To
achieve δ-con�dence no more than O (log


/δ ⋅ logψ n),

many examples are necessary.
�erefore,we have achieved an exponential improve-

ment on the number of examples needed for learning

(compared to the PAC bound displayed above), and, in

addition, our stochastic �nite learner exactly identi�es

the target. Note that this result is due to Reischuk and

Zeugmann, however, we refer the reader to Zeugmann

() for the relevant proofs.

�e results obtained for learnability from positive

examples only can be extended mutatis mutandis to

the case when the learner is fed positive and negative

examples (cf. Zeugmann,  for details).

Learning Pattern Languages
�epattern languages have been introduced byAngluin

(a) and can be informally de�ned as follows. Let Σ =

{, , . . . } be any �nite alphabet containing at least two

elements. LetX = {x, x, . . .} be a countably in�nite set
of variables such that Σ∩X = ∅. Patterns are nonempty
strings over Σ∪X, e.g., , x, xxxxx are pat-
terns. �e length of a string s ∈ Σ∗ and of a pattern

π is denoted by ∣s∣ and ∣π∣, respectively. A pattern π is
in canonical form provided that if k is the number of
di�erent variables in π then the variables occurring in
π are precisely x, . . . , xk−. Moreover, for every j with

 ≤ j < k − , the le�most occurrence of xj in π is le�
to the le�most occurrence of xj+. �e examples given
above are patterns in canonical form.

If k is the number of di�erent variables in π then we
refer to π as to a k-variable pattern. For example, xxx
is a one-variable pattern, and xxx is a two-variable
pattern. If π is a pattern, then the language generated by
π is the set of all strings that can be obtained from π by
substituting a nonnull element si ∈ Σ∗ for each occur-
rence of the variable symbol xi in π, for all i ≥ . We
use L(π) to denote the language generated by pattern
π. So, ,  belong to L(xxx) (by substituting
 and  for x, respectively) and  is an element of
L(xxx) (by substituting  for x and  for x). Note
that even the class of all one-variable patterns has in�-

nite7VC Dimension (cf. Mitchell, Sche�er, Sharma, &
Stephan, ).

Reischuk andZeugmann () designed a stochas-

tic �nite learner for the class of all one-variable pat-

tern languages that runs in time O(∣π∣ log(/δ)) for
all meaningful distributions and learns from positive

data only. �at is, all data fed to the learner belong to

the target pattern language. Furthermore, by meaning-

ful distribution essentially the following is meant. �e

expected length of an example should be �nite, and the

distribution should allow to learn the target pattern.

�is is then expressed by �xing some suitable param-

eters. It should be noted that the algorithm is highly

practical, and amodi�cation of it also works for the case

that empty substitutions are allowed.
For the class of all pattern languages, one can also

provide a stochastic �nite learner, identifying the whole

class from positive data. In order to arrive at a suit-

able class of distributions, essentially three require-

ments are made. �e �rst one is the same as in the

one-variable case, i.e., the expected length E[Λ] of

a generated string should be �nite. Second, the class

of distributions is restricted to regular product dis-

tributions, i.e., for all variables the substitutions are

identically distributed. �ird, two parameters α and
β are introduced. �e parameter α is the probability
that a string of length  is substituted and β is the
conditional probability that two random strings that

get substituted into π are identical under the condi-
tion that both have length . �ese two parameters

ensure that the target pattern language is learnable at

all. �e stochastic �nite learner is then using as a priori

 S Stratified Cross Validation

knowledge a lower bound α∗ for α and an upper bound
β∗ for β. �e basic ingredient to this stochastic �nite
learner is Lange andWiehagen’s () pattern language

learning algorithm. Rossmanith and Zeugmann’s ()

stochastic �nite learner for the pattern languages runs

in timeO ((/αk
∗)E[Λ] log/β∗(k) log(/δ)), where k is

the number of di�erent variables in the target pattern.

So, with increasing k it becomes impractical.
Note that the two stochastic �nite learners for the

pattern languages can compute the expected stage of

convergence, since the �rst string seen provides an

upper bound for the length of the target pattern.

For further information, we refer the reader to

Zeugmann () and the references therein. More

research is needed to explore the potential of stochas-

tic �nite learning. Such investigations should extend the

learnable classes, study the incorporation of noise, and

explore further possible classes of meaningful probabil-

ity distributions.

Cross References
7Inductive Inference
7PAC Learning

Recommended Reading
Angluin, D. (a). Finding patterns common to a set of strings.

Journal of Computer and System Sciences, (), –.
Angluin, D. (b). Inductive inference of formal languages from

positive data. Information Control, (), –.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. ().

Learnability and the Vapnik–Chervonenkis dimension. Journal
of the ACM, (), –.

Erlebach, T., Rossmanith, P., Stadtherr, H., Steger, A., & Zeugmann,

T. (). Learning one-variable pattern languages very effi-

ciently on average, in parallel, and by asking queries. Theoretical
Computer Science, (), –.

Gold, E. M. (). Language identification in the limit. Information
and Control, (), –.

Haussler, D. (). Bias, version spaces and Valiant’s learning

framework. In P. Langley (Ed.), Proceedings of the fourth inter-
national workshop on machine learning (pp. –). San
Mateo, CA: Morgan Kaufmann.

Haussler, D., Kearns, M., Littlestone, N., & Warmuth, M. K. ().

Equivalence of models for polynomial learnability. Information
and Computation, (), –.

Lange, S., & Wiehagen, R. (). Polynomial-time inference of

arbitrary pattern languages. New Generation Computing, (),
–.

Lange, S., & Zeugmann, T. (). Set-driven and rearrangement-

independent learning of recursive languages. Mathematical
Systems Theory, (), –.

Mitchell, A., Scheffer, T., Sharma, A., & Stephan, F. (). The VC-

dimension of sub- classes of pattern languages. In O. Watanabe

& T. Yokomori (Eds.), Algorithmic learning theory, tenth inter-
national conference, ALT”, Tokyo, Japan, December , Pro-
ceedings, Lecture notes in artificial intelligence (Vol. , pp.
–). Springer.

Reischuk, R., & Zeugmann, T. (). An average-case optimal

one-variable pattern language learner. Journal of Computer and
System Sciences, (), –.

Rossmanith, P., & Zeugmann, T. (). Stochastic finite learning of

the pattern languages. Machine Learning, (/), –.
Saly, A., Goldman, M. J. K., & Schapire, R. E. (). Exact identifi-

cation of circuits using fixed points of amplification functions.

SIAM Journal of Computing, (), –.
Valiant, L. G. (). A theory of the learnable. Communications of

the ACM, (), –.
Zeugmann, T. (). Lange and Wiehagen’s pattern language learn-

ing algorithm: An average-case analysis with respect to its total

learning time. Annals of Mathematics and Artificial Intelligence,
, –.

Zeugmann, T. (). From learning in the limit to stochastic finite

learning. Theoretical Computer Science, (), –. Special
issue for ALT .

Stratified Cross Validation

Strati�ed Cross Validation is a form of7cross validation
inwhich the class distribution is kept as close as possible

to being the same across all folds.

Stream Mining

A sub�eld of knowledge discovery called streammining
addresses the issue of rapidly changing data. �e idea

is to be able to deal with the stream of incoming data

quickly enough to be able to simultaneously update the

corresponding models (e.g., ontologies), as the amount

of data is too large to be stored: new evidence from

the incoming data is incorporated into the model with-

out storing the data. For instance, modeling ontol-

ogy changes and evolution over time using text min-

ing methods (7Text Mining for Semantic Web). �e
underlying methods are based on the machine learning

methods of7Online Learning, where themodel is built
from the initially available data and updated regularly as

more data become available.

Examples of data streams include computer net-

work tra�c, phone conversations, ATM transactions,

web searches, and sensor data.

Structural Risk Minimization S 

S

Cross References
7Clustering Data Streams
7Online Learning

String kernel

A string kernel is a function from any of various families
of kernel functions (see7kernel methods) that operate
over strings and sequences.�emost typical example is

as follows. Suppose that we are dealing with strings over

a �nite alphabet Σ. Given a string a = aa . . .an ∈ Σ*, we
say that a substring p = pp . . .pk occurs in a on posi-
tions i i . . .ik i�  ≤ i < i < . . . < ik ≤ n and aij = pj
for all j = , . . . , k. We de�ne the weight of this occur-
rence as λik−i−k+, where λ ∈ [, ] is a constant chosen

in advance; in other words, an occurrence weighs less

if characters of p are separated by other characters. Let
ϕp(a) be the sum of the weights of all occurrences
of p in a, and let ϕ(a)= (ϕp(a))p∈Σ∗ be an in�nite-
dimensional feature vector consisting of ϕp(a) for all
possible substrings p ∈ Σ*. It turns out that the dot

product of two such in�nite-length vectors, K(a, a′) =

ϕ(a)Tϕ(a′), can be computed in time polynomial in the
length of a and a′, e.g., using dynamic programming.
�e function K de�ned in this way can be used as a
kernel with various kernel methods. See also 7feature
construction in text mining.

String Matching Algorithm

A string matching algorithm returns parts of text

matching a given pattern, such as a regular expres-
sion. Such algorithms have countless applications, from
�le editing to bioinformatics. Many algorithms com-

pute deterministic �nite automata, which can be expen-

sive to build, but are usually e�cient to use; they

include the Knuth–Morris–Pratt algorithm and the

Boyer–Moore algorithm, that build the automaton in
time O(m) and O(m + s), respectively, where m is the
length of the pattern and s the size of the alphabet, and
match a text of length n in time O(n) in the worst case.

Structural Credit Assignment

7Credit Assignment

Structural Risk Minimization

Xinhua Zhang

Australian National University, NICTA London

Circuit,

Canberra, Australia

Definition
�e goal of learning is usually to �nd a model

which delivers good generalization performance over

an underlying distribution of the data. Consider an

input space X and output space Y . Assume the pairs

(X×Y) ∈ X×Y are randomvariables whose (unknown)

joint distribution is PXY . It is our goal to �nd a predictor

f : X ↦ Y which minimizes the expected risk:

P(f (X) ≠ Y) = E(X,Y)∼PXY [δ(f (X) ≠ Y)] ,

where δ(z) =  if z is true, and  otherwise.
In practice we only have n pairs of training exam-

ples (Xi,Yi) drawn identically and independently from

PXY . Based on these samples, the7empirical risk can be
de�ned as



n

n

∑
i=

δ(f (Xi) ≠ Yi).

Choosing a function f by minimizing the empirical
risk o�en leads to 7over�tting. To alleviate this prob-
lem, the idea of structural risk minimization (SRM)

is to employ an in�nite sequence of models F,F, . . .

with increasing capacity. Here each Fi is a set of func-

tions, e.g., polynomials with degree . We minimize

the empirical risk in each model with a penalty for the

capacity of the model:

fn := argmin
f ∈Fi ,i∈N



n

n

∑
j=

δ(f (Xj)≠Yj) + capacity(Fi,n),

where capacity(Fi,n) quanti�es the complexity of
model Fi in the context of the given training set. For

example, it equals  when Fi is the set of polynomials

with degree . In other words, when trying to reduce

 S Structure

the risk on the training set, we prefer a predictor from a

simple model.

Note the penalty is measured on the model Fi, not
the predictor f . �is is di�erent from the regulariza-
tion framework, e.g., support vector machines, which

penalizes the complexity of the classi�er.
More details about SRM can be found in Vapnik

().

Recommended Reading
Vapnik, V. (). Statistical learning theory. New York: Wiley.

Structure

7Topology of a Neural Network

Structured Data Clustering

7Graph Clustering

Structured Induction

Michael Bain

University of New South Wales,

Sydney, Australia

Definition
Structured induction is a method of applying machine

learning in which a model for a task is learned using

a representation where some of the components are

themselves the outputs of learned models for speci�ed

sub-tasks. �e idea was inspired by structured pro-

gramming (Dahl, Dijkstra and Hoare, ), in which

a complex task is solved by repeated decomposition

into simpler sub-tasks that can be easily analyzed and

implemented.�e approachwas �rst developed byAlen

Shapiro () in the context of constructing expert

systems by 7decision tree learning, but in principle it
could be applied using other learning methods.

Motivation and Background

Structured induction is designed to solve complex

learning tasks for which it is di�cult a priori to obtain

a set of attributes or features in which it is possible

to represent an accurate approximation of the target

hypothesis reasonably concisely. In Shapiro’s approach,

a hierarchy of7decision trees is learned, where in each
tree of the hierarchy the attributes can have values

that are outputs computed by a lower-level 7decision
tree. Shapiro showed in computer chess applications

that structured induction could learn accurate mod-

els, while signi�cantly reducing their complexity. Struc-

tured induction was �rst commercialized in the s

by a number of companies providing expert systems

solutions and has since seenmany applications (Razzak,

Hassan and Pettipher, ).

A key assumption is that human expertise is avail-

able to de�ne the task structure. Several approaches

have been proposed to address the problem of learning

this structure (under headings such as 7constructive
induction,7representation change,7feature construc-
tion, and 7predicate invention) although to date, none
have received wide acceptance.

�e identi�cation of knowledge acquisition as the

“bottleneck” in knowledge engineering by Feigen-

baum () sparked considerable interest in symbolic

machine-learningmethods as a potential solution. Early

work on7decision tree induction around this time was
o�en driven by problems from computer chess, a chal-

lenging domain by the standards of the time due to

relatively large data sets and the complexity of the target

hypotheses. In a landmark paper on his ID 7decision
tree learning algorithm, Quinlan () reported exper-

iments on learning to classify positions in a four-piece

chess endgame as winnable (or not) within a certain

number of moves (“lost N-ply”). A set of attributes
was de�ned as inadequate for a classi�cation task if
two objects belonging to di�erent classes had identi-

cal values for each attribute. He concluded that “almost

all the e�ort (for a non chess-player, at least) must be

devoted to �nding attributes that are adequate for the

classi�cation problem being tackled”.

�e problem is that the e�ort of developing the

set of attributes becomes disproportionate to the time

taken to do the induction. Quinlan () reported

durations of three weeks and two man-months, respec-

tively, to de�ne an adequate set of attributes for the “lost

Structured Induction S 

S

-ply” and “lost -ply” experiments. In contrast, the

implementation of ID used in that work induced the

7decision trees in  s and  s, respectively. It is worth
noting that the more complex problem of “lost -ply”

was abandoned due to the di�culty of developing an

adequate set of attributes.

AlthoughQuinlan’s experiments with ID produced

exact 7classi�ers for his chess problems, the resulting
7decision trees were too large to be comprehensible
to domain experts. �is is a serious drawback when

machine learning is used with the goal of installing

learned 7rules in an expert system, since the system
cannot provide understandable explanations. Shapiro

and Niblett () proposed structured induction as a

solution to this problem, and the method was devel-

oped in Shapiro’s PhD thesis (Shapiro, ) motivated

by expert systems development.

Structure of Learning System
Structured induction is essentially a two-stage process,

comprising a top-down decomposition of the prob-

lem into a solution structure, followed by a bottom-

up series of 7classi�er learning steps, one for each of
the subproblems. A knowledge engineer and a domain

expert are required to collaborate at each stage, with

the latter acting as a source of examples. �e use of

machine learning to avoid the knowledge acquisition

bottleneck is based on the �nding that although domain

experts �nd it di�cult to express general and accurate

7rules for a problem, they are usually able to generate
tutorial examples in an attribute-value formalism from

which7rules can be generalized automatically.�e key
insight of structured induction is that the task of spec-

ifying an attribute and its value set can be treated as

a subproblem of the learning task, and solved in the

same way.

�e approach can be illustrated by a simple exam-

ple using the structure shown in Fig. . Suppose the

task is to learn a model for some concept p. Sup-
pose further that the domain expert proposes three

attributes a, a, and a as adequate for the classi�cation
of p. Now the domain expert consults with the knowl-
edge engineer and it is decided that while attribute a
is directly implementable, the other two are not. An

attribute that is directly implementable by a knowl-

edge engineer is referred to as primitive for the domain.

a1

a21 a22 a23 a31 a32

a2 a3

p

Structured Induction. Figure . A schematic diagram of a

model learned by structured induction (after Shapiro,

). Concepts to be learned are shown in ovals, and

primitive attributes in boxes. The top-level concept p is

defined in terms of the primitive attribute a and two

sub-concepts a and a. Each of the two sub-concepts

are further decomposed into sets of primitive attributes,

a. . . and a. . .

�e other attributes become sub-concepts a and a,
and each in turn is addressed by the domain expert.

In this case, three attributes are proposed as most rel-

evant to the solution of a, and two for a. Since all of
these attributes are found to be primitive, the top-down

problem decomposition stage is therefore complete.

�e domain expert, having proposed a set of primi-

tive attributes for a sub-concept, say a, is now required
to provide a set of classi�ed examples de�ned in terms of

values for attributes a and a. Given these examples,
the knowledge engineer will run a learning algorithm

to induce a 7classi�er such as a 7decision tree. �e
domain expert will then inspect the 7classi�er and
can optionally re�ne it by supplying further examples,

until they are satis�ed that it completely and correctly

de�nes the sub-concept a. �is process is repeated in a
bottom-up fashion for all sub-concepts. At every level of

the hierarchy, once all sub-concepts have been de�ned,

they are now directly executable7classi�ers and can be
treated in the same way as primitive attributes and used

for learning. �e structured induction solution is com-

plete once an acceptable7classi�er has been learned for
the top-level concept, p in this example.

Structured Versus Unstructured Induction
On two chess end-game domains, Shapiro ()

showed that structured induction could generate more

compact trees from fewer examples compared with an

unstructured approach. To quantify this improvement,

 S Structured Induction

Shapiro made an analysis based on Michie’s �nite mes-

sage information theory (Michie, ). �is showed

that on one of the domains, the information gain con-

tributed by the structured induction approach over

learning unstructured trees from the same set of exam-

ples was %. Essentially, this is because the structure

devised by the domain expert in collaboration with the

knowledge engineer provides a context for each of the

induction tasks required. Since within this context only

a subset of the complete attribute set is used to specify a

sub-concept, it su�ces to obtain only su�cient exam-

ples to learn a model for that sub-concept. However,

without the bene�t of such contextual restrictions the

task of learning a complete solution can require consid-

erablymore examples. Shapiro’s analysis is an attempt to

quantify the relative increase in information per exam-

ple in structured versus unstructured induction.

Related Work
While induction can bypass the knowledge acquisi-

tion bottleneck, in structured induction the process of

acquiring the structure in collaboration with a domain

expert can become a new bottleneck. In an attempt to

avoid this, a number of researchers have attempted to

develop methods whereby the structure, as well as the

sub-concept models can be learned automatically.

Muggleton () introduced 7inverse resolution
as an approach to learning structured 7rule sets in a
system called Duce. As part of this process, a domain

expert is required to provide names for new sub-

concepts or predicates that are proposed by the learning
algorithm. A domain expert is also required to con�rm

learned 7rules. Both these roles are similar to those
required of the expert in constructive induction, but the

key di�erence is that the learning algorithm is now the

source of both the structure and the 7rules. Duce was
applied to one of the chess end-game domains used in

Shapiro’s study (Shapiro, ) and found a solution that

was less compact, but still accepted as comprehensible

by a chess expert.

�e Duce system searches for commonly occur-

ring subsets of attribute-value pairs within 7rules, and
uses these to construct new sub-concept de�nitions.

Many approaches have been developed using related

methods to learn new sub-concepts in the context

of 7decision tree or 7rule learning; some examples

include Pagallo and Haussler (), Zheng (), and

Zhang and Honavar (). Gaines () proposed

EDAGs (exception directed acyclic graphs) as a general-

ization of both 7decision trees and 7rules with excep-
tions, and reported EDAG representations of chess

end-game 7classi�ers that were more comprehensible
than either7rules or7decision trees. Zupan, Bohanec,
Demsar, and Bratko () developed a system named

HINT designed to learn a model represented as a con-

cept hierarchy based on methods of function decom-

position. Inverse resolution as used in Duce has been

generalized to �rst-order logic representations in the

�eld of inductive logic programming. In this frame-

work, the construction of new intermediate concepts

is referred to as 7predicate invention, but to date this
remains a largely open problem.More recently, much of

the interest in 7representation change has focused on
approaches like support vector machines, where the so-

called kernel trick enables the use of implicit 7feature
construction (Shawe-Taylor and Cristianini, ).

Cross References
7Classi�er
7Constructive Induction
7Decision Tree
7Feature Construction
7Predicate Invention
7Rule Learning

Recommended Reading
Dahl, O. J., Dijkstra, E. W., & Hoare, C. A. R. (Eds.). (). Struc-

tured programming. London: Academic Press.
Feigenbaum, E. A. (). The art of artificial intelligence: Themes

and case studies of knowledge engineering. In R. Reddy (Ed.),

Proceedings of the fifth international conference on artificial
intelligence (IJCAI) (pp. –). Los Altos, CA: William
Kaufmann.

Gaines, B. (). Transforming rules and trees into comprehensi-

ble knowledge structures. In U. Fayyad, G. Piatetsky-Shapiro,

P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge dis-
covery and data mining (pp. –). Cambridge, MA: MIT
Press.

Michie, D. (). Measuring the knowledge-content of expert pro-

grams. Bulletin of the Institute of Mathematics and its Applica-
tions, (/), –.

Muggleton, S. (). Duce, an oracle-based approach to construc-

tive induction. In IJCAI  (pp. –). Los Altos, CA:
Kaufmann.

Sublinear Clustering S 

S

Pagallo, G., & Haussler, D. (). Boolean feature discovery in

empirical learning. Machine learning, , –.
Quinlan, J. R. (). Learning efficient classification procedures

and their application to chess end games. In R. Michalski, J.

Carbonnel, & T. Mitchell (Eds.), Machine learning: An artificial
intelligence approach, (pp. –). Palo Alto, CA: Tioga.

Razzak, M. A., Hassan, T., & Pettipher, R. (). Extran-: A

Fortran-based software package for building expert systems. In

M. A. Bramer (Ed.), Research and development in expert systems
(pp. –). Cambridge: Cambridge University Press.

Shapiro, A., & Niblett, T. (). Automatic induction of classifi-

cation rules for a chess endgame. In M. R. B. Clarke (Ed.),

Advances in computer chess (Vol. , pp. –). Pergamon:
Oxford.

Shapiro, A. D. (). Structured Induction in expert systems. Wok-
ingham: Turing Institute Press with Addison Wesley.

Shawe-Taylor, J., & Cristianini, N. (). Kernel methods for pattern
analysis. Cambridge: Cambridge University Press.

Zhang, J., & Honavar, V. (). Learning decision tree clas-

sifiers from attribute value taxonomies and partially speci-

fied data. In ICML-: Proceedings of the twentieth inter-
national conference on machine learning, Menlo Park, CA:
AAAI Press.

Zheng, Z. (). Constructing nominal X-of-N attributes. In Pro-
ceedings of the fourteenth International joint conference on arti-
ficial intelligence (IJCAI, ) (pp. –). Los Altos, CA:
Morgan Kaufmann.

Zupan, B., Bohanec, M., Demsar, J., & Bratko, I. (). Learning

by discovering concept hierarchies. Artificial Intelligence, ,
–.

Subgroup Discovery

Definition
Subgroup discovery (Klösgen, ; Lavrač, Kavšek,

Flach, & Todorovski, ) is an area of 7supervised
descriptive rule induction.�e subgroup discovery task

is de�ned as given a population of individuals and a

property of those individuals that we are interested in,

�nd population subgroups that are statistically “most

interesting,” for example, are as large as possible and

have the most unusual statistical (distributional) char-

acteristics with respect to the property of interest.

Recommended Reading
Klösgen, W., (). Explora: A multipattern and multistrategy dis-

covery assistant. In Advances in knowledge discovery and data
mining (pp. –). Cambridge: MIT Press.

Lavrač, N., Kavšek, B., Flach, P. A., & Todorovski, L. (). Sub-

group discovery with CN-SD. Journal of Machine Learning
Research, , –.

Sublinear Clustering

Artur Czumaj, Christian Sohler

University of Warwick, Coventry, UK,
University of Paderborn,

Paderborn, Germany

Definition
Sublinear clustering describes the process of clustering
a given set of input objects using only a small subset of

the input set, which is typically selected by a random

process. A solution computed by a sublinear cluster-

ing algorithm is an implicit description of the clustering

(rather than a partition of the input objects), for exam-

ple in the form of cluster centers. Sublinear clustering

is usually applied when the input set is too large to be

processed with standard clustering algorithms.

Motivation and Background
7Clustering is the process of partitioning a set of
objects into subsets of similar objects. Inmachine learn-

ing, it is, for example, used in unsupervised learning

to �t input data to a density model. In many modern

applications of clustering, the input sets consist of bil-

lions of objects to be clustered. Typical examples include

web search, analysis of web tra�c, and spam detection.

�erefore, even thoughmany relatively e�cient cluster-

ing algorithms are known, they are o�en too slow to

cluster such huge inputs.

Since in some applications it is even not possible to

cluster the entire input set, a new approach is needed

to cope with very large data sets. �e approach used in

many di�erent areas of science and engineering in this

context is to sample a subset of the data and to analyze
this sample instead of the whole data set. �is is also

the underlyingmethod used in sublinear clustering.�e

main challenge and innovation in this area lies in the

qualitative analysis of random sampling (in the form of

approximation guarantees) and the design of non uni-
form sampling strategies that approximate the input set
provably better than uniform random sampling.

Structure of the Learning System
In sublinear clustering a large input set of objects is to be

partitioned into subsets of similar objects. Usually, this

 S Sublinear Clustering

input is a point set P either in the Euclidean space or in
the metric space. �e clustering problem is speci�ed by

an objective function that determines the quality or cost

of every possible clustering.�e goal is to �nd a cluster-

ing of minimum cost/maximum quality. For example,

given a set P of points in the Euclidean space the objec-
tive of7k-means clustering is to �nd a setC of k centers
that minimizes ∑p∈P(d(p,C)), where d(p,C) denotes
the distance of p to the nearest center fromC. Since usu-
ally the clustering problems are computationally hard

(NP-hard), one typically considers approximate solu-
tions: instead of �nding a clustering that optimizes the

cost of the solution, one aims at a solution whose cost is

close to the optimal one.

In sublinear algorithms a solution is computed for

a small representative subset of objects, for example a

random sample. �e solution is represented implicitly,

for example, in the form of cluster centers and it can be

easily extended to the whole input point set.�e quality

of the output is analyzedwith respect to the original point
set.�e challenge is to design and analyze fast (sublinear-
time) algorithms that select a subset of objects that very
well represent the entire input, such that the solution

computed for this subset will also be a good solution for

the original point set. �is can be achieved by uniform

and non uniform random sampling and the computa-
tion of core-sets, i.e., small weighted subsets of the input
that approximate the input with respect to a clustering

objective function.

Theory/Solution
Clustering Problems

For any point p and any set Q in a metric space (X,d),
let d(p,Q) = minq∈Q d(p, q). A point set P is weighted if
there is a function w assigning a positive weight to each
point in P.

Radius k-Clustering: Given a weighted set P of points
in a metric space (X,d), �nd a set C ⊆ P of k centers
minimizing maxp∈P d(p,C).

Diameter k-Clustering: Given a weighted set P of points
in a metric space (X,d), �nd a partition of P into k
subsets P, . . . ,Pk, such that max

k
i=maxp,q∈Pi d(p, q) is

minimized.

k-Median: Given a weighted set P of points in a metric
space (X,d), �nd a setC ⊆ P of k centers thatminimizes
median(P,C) = ∑p∈P w(p) ⋅ d(p,C).

k-Means: Given a weighted set of points P in a metric
space (X,d), �nd a setC ⊆ P of k centers thatminimizes
mean(P,C) = ∑p∈P w(p) ⋅ (d(p,C)).

Random Sampling and Sublinear-Time Algorithms

Random sampling is perhaps the most natural approach
to design sublinear-time algorithms for clustering. For

the input set P, random sampling algorithm follows the
following scheme:

. Pick a random sample S of points
. Run an algorithm (possibly an approximation one)

for (given kind of) clustering for S
. Return the clustering induced by the solution for S

�e running time and the quality of this algorithm

depends on the size of the random sample S and of
the running time and the quality of the algorithm for

clustering of S. Because almost all interesting clustering
problems are computationally intractable (NP-hard),

usually the second step of the sampling scheme uses

an approximation algorithm. (An algorithm for a min-

imization problem is called a λ-approximation if it
always returns a solution whose cost is at most λ times
the optimum.)

While random sampling approach gives very sim-

ple algorithms, depending on the clustering problem

at hand, it o�en �nds a clustering of poor quality and

it is usually di�cult to analyze. Indeed, it is easy to

see that random sampling has some serious limitations

to obtain clustering of good quality. Even the standard

assumption that the input is in metric space is not su�-

cient to obtain good quality of clustering because of the

small clusters which are “hidden” for random sampling

approach. (If there is a cluster of size o(∣P∣/∣S∣) thenwith
high probability the random sample set S will contain
no point from that cluster.) �erefore, another impor-

tant parameters used in the analysis is the diameter of
the metric space ∆, which is ∆ = maxp,q∈P d(p, q).

Quality of Uniformly Random Sampling: �e quality of

random sampling for three basic clustering problems

Sublinear Clustering S 

S

(k-means, k-median, and min-sum k-clustering) have
been analyzed in Ben-David (), Czumaj and Sohler

(), and Mishra, Oblinger, and Pitt (). In these

papers, generic methods of analyzing uniform random

sampling have been obtained. �ese results assume

that the input point sets are in a metric space and

are unweighted (i.e., when the weight function w is
always ).

�eorem  Let є >  be an approximation parame-
ter. Suppose that an α-approximation algorithm for the
k-median problem in a metric space is used in step ()
of the uniform sampling, where α ≥  (Ben-David ;

Czumaj & Sohler , Mishra et al., ). If we choose
S to be of size at least

cα (k +
∆

є
(α + k ln(k∆α/є)))

for an appropriate constant c, then the uniform sampling
algorithm returns a clustering C∗ (of S) such that with
probability at least . the normalized cost of clustering
for S satis�es

median(S,C∗)
∣S∣

≤
(α + .)OPT(P)

∣P∣
+ є,

where OPT(S) = minCmedian(P,C) is the minimum
cost of a solution for k-median for P.

Similar results can be shown for the k-means prob-
lem, and also for min-sum k-clustering (cf. Czumaj
& Sohler, ). For example, for k-means, with a sam-
ple S of size at least cα (k + (∆/є) (α + k ln(k∆α/є))),
with probability at least . the normalized cost of

k-means clustering for S satisfy

mean(S,C∗)
∣S∣

≤
(α + .)OPT(P)

∣P∣
+ є,

where OPT(S) = minCmean(P,C) is the minimum
cost of a solution for k-means for P.
Improvements of these bounds for the casewhen the

input consists of points in Euclidean space are also dis-

cussed inMishra et al. (), Czumaj and Sohler ()

discuss also . For example, for k-median, if one takes S of
size at least cα (k + ∆k ln(∆/є)/є), thenwith probability

at least . the normalized cost of k-median clustering
for S satis�es

median(S,C∗)
∣S∣

≤
(α + .)OPT(P)

∣P∣
+ є ,

and hence the approximation ratio is better than that in

�eorem  by factor of .

�e results stated inCzumaj and Sohler () allow

to parameterize the constants . and . in the claims

above.

Property Testing of the Quality of Clustering: Sincemost

of the clustering problems are computationally quite

expensive, in some situations it might be interesting not

to �nd a clustering (or its succinct representation), but

just to test if the input set has a good clustering.

Alon, Dar, Parnas, and Ron () introduced

the notion of approximate testing of good clustering.

A point set P is c-clusterable if it has a clustering of
the cost at most c, that is, OPT(P) ≤ c. To formal-
ize the notion of having no good clustering, one says

a point set is є-far from ( + β)c-clusterable, if more
than an є-fraction of the points in P must be removed
(or moved) to make the input set ( + β)c-clusterable.
With these de�nitions, the goal is to design fast algo-

rithms that accept the input point sets P, which are
c-clusterable, and reject with probability at least /
inputs are є-far from ( + β)c-clusterable. If neither
holds, then the algorithms may either accept or reject.

�e bounds for the testing algorithms are phrased in

terms of sample complexity, that is, the number of sam-
pled input points which are considered by the algorithm

(e.g., by using random sampling).

Alon et al. () consider two classical clustering

problems in this setting: radius and diameter k-
clusterings. If the inputs are drawn from an arbi-

trary metric space, then they show that to distinguish

between input points sets that are c-clusterable and are
є-far from ( + β)c-clusterable with β < , the sam-

ple complexity must be at least Ω(
√

∣P∣/є) . However,
to distinguish between inputs that are c-clusterable and
are є-far from c-clusterable, the sample complexity is
only O(

√
k/є).

A more interesting situation is for the input points

drawn from the Euclidean d-dimensional space. In that
case, even a constant-time algorithms are possible.

 S Sublinear Clustering

�eorem  For the radius k-clustering, one can distin-
guish between points sets in Rd that are c-clusterable from
those є-far from c-clusterable with the sample complexity
Õ(dk/є) (Alon et al., ) (�e Õ-notation ignores log-
arithms in the largest occurrence of a variable; Õ(f (n)) =
O(f (n) ⋅ (log f (n))O()).)

Furthermore, for any β > , one can distinguish
between points sets in Rd that are c-clusterable from those
є-far from (+β)c-clusterable with the sample complexity
Õ(k/(βє)).

�eorem  For the diameter k-clustering, one can dis-
tinguish between points sets in Rd that are c-clusterable
from those є-far from (+β)c-clusterable with the sample
complexity Õ(kd(/β)d/є) (Alon et al., ).

Core-Sets: Sublinear Space Representations with

Applications

A core-set is a small weighted set of points S that prov-
ably approximates another point set P with respect to a
given clustering problem (Bădoiu, Har-Peled, & Indyk,

). �e precise de�nition of a core-set depends

on the clustering objective function and the notion of

approximation. For example, a coreset for the k-median
problem can be de�ned as follows:

De�nition  A weighted point set S is called є-coreset
for a point set P for the k-median problem, if for every
set C of k centers, we have ( − є) ⋅ median(P,C) ≤

median(S,C) ≤ ( + є) ⋅ median(P,C) (Har-Peled &
Mazumdar, ).

A core-set as de�ned above is also sometimes called

a strong core-set, because the cost of the objective func-
tion is approximately preserved for any set of cluster

centers. In some cases it can be helpful to only require

a weaker notion of approximation. For example, for

some applications it is su�cient that the cost is pre-

served for a certain discrete set of candidate solutions.

Such a core-set is usually called a weak core-set. In
high-dimensional applications it is sometimes su�cient

that the solution is contained in the low-dimensional

subspace spanned by the core-set points.

Constructing a Core-Set: �ere are deterministic and

randomized constructions for core-sets of an un-

weighted set P of n points in the Rd. Deterministic

core-set constructions are usually based on the move-
ment paradigm. �e input points are moved to a set of
few locations such that the overall movement is at most

є times the cost of an optimal solution. �en the set
of points at the same location are replaced by a single

point whose weight equals the number of these points.

Since for the k-median problem the cost of any solution
changes by at most the overall movement, this imme-

diately implies that the constructed weighted set is an

є-core-set. For other similar problems more involved
arguments can be used to prove the core-set property.

Based on themovement paradigm, for k-median a core-
set of size O(k logn/єd) can be constructed e�ciently
(Har-Peled & Mazumdar, ).

Randomized core-set constructions are based on

non uniform sampling.�e challenge is to de�ne a ran-

domized process for which the resulting weighted point

set is with high probability a core-set. Most random-

ized coreset constructions �rst compute a bi-criteria

approximation C′. �en every point is sampled with
probability proportional to its distance to the nearest

center of C′. A point q is assigned a weight proportional
to /pq, where pq is the probability that p is sampled.
For every �xed set C of k centers, the resulting sam-
ple is an unbiased estimator for median(P,C). If the
sample set is large enough, it approximates the cost of

every possible set of k centers within a factor of ( ± є).
�e above approach can be used to obtain a weak core-

set of size independent of the size of the input point

set and the dimension of the input space (Feldman,

Monemizadeh, & Sohler, ). A related construction

has been previously used to obtain a strong core-set of

size Õ(k ⋅d⋅logn/є). Both constructions have constant
success probability that can be improved by increasing

the size of the core-set.

Applications Core-sets have been used to obtain im-

proved approximation algorithms for di�erent variants

of clustering problems. Since the core-sets are of sublin-

ear size and they can be constructed in sublinear time,

they can be used to obtain sublinear-time approxima-

tion algorithms for a number of clustering problems.

Another important application is clustering of data

streams. A data stream is a long sequence of data

that typically does not �t into main memory, for

example, a sequence of packet headers in IP traf-

�c monitoring. To analyze data streams we need

Subsumption S 

S

algorithms that extract information from a streamwith-

out storing all of the observed data. �erefore, in

the data streaming model algorithms are required to

use log
O() n bits of memory. For core-sets, a simple

but rather general technique is known, which turns

a given construction of a strong core-set into a data

streaming algorithm, i.e., an algorithm that processes

the input points sequentially and uses only log
O()

space (for constant k and є) and computes a ( + є)-
approximation for the optimal set of centers of the

k-median clustering (Har-Peled & Mazumdar, ).
Core-sets can also be used to improve the running time

and stability of clustering algorithms like the k-means
algorithm (Frahling & Sohler, ).

Recommended Reading
Alon, N., Dar, S., Parnas, M., & Ron, D. (). Testing of clustering.

SIAM Journal on Discrete Mathematics, (), –.
Bădoiu, M., Har-Peled, S., & Indyk, P. (). Approxi-

mate clustering via core-sets. In Proceedings of the th
Annual ACM Symposium on Theory of Computing (STOC),
(pp. –).

Ben-David, S. (). A framework for statistical clustering with a

constant time approximation algorithms for k-median cluster-
ing. In Proceedings of the th Annual Conference on Learning
Theory (COLT), (pp. –).

Chen, K. (). On k-median clustering in high dimensions. In Pro-
ceedings of the th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), (pp. –).

Czumaj, A., & Sohler, C. (). Sublinear-time approximation for

clustering via random sampling. Random Structures & Algo-
rithms, (–), –.

Feldman, D., Monemizadeh, M., & Sohler, C. (). A PTAS for

k-means clustering based on weak coresets. In Proceedings of
the rd Annual ACM Symposium on Computational Geometry
(SoCG), (pp. –).

Frahling, G., & Sohler, C. (). A fast k-means implemen-
tation using coresets. In Proceedings of the nd Annual
ACM Symposium on Computational Geometry (SoCG),
(pp. –).

Har-Peled, S. & Kushal, A. (). Smaller coresets for k-
median and k-means clustering. In Proceedings of the st
Annual ACM Symposium on Computational Geometry (SoCG),
(pp. –).

Har-Peled, S., & Mazumdar, S. (). On coresets for k-
means and k-median clustering. In Proceedings of the th
Annual ACM Symposium on Theory of Computing (STOC),
(pp. –).

Meyerson, A., O’Callaghan, L., & Plotkin S.(July ). A k-median
algorithm with running time independent of data size.Machine
Learning, (–), (pp. –).

Mishra, N., Oblinger, D., & Pitt, L. (). Sublinear time approxi-

mate clustering. In Proceedings of the th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), (pp. –).

Subspace Clustering

7Projective Clustering

Subsumption

Claude Sammut

�e University of New South Wales,

Sydney NSW, Australia

Subsumption provides a syntactic notion of general-

ity. Generality can simply be de�ned in terms of the

cover of a concept. �at is, a concept, C, is more gen-
eral than a concept, C′, if C covers at least as many
examples as C′ (see 7Learning as Search). However,
this does not tell us how to determine, from their syn-

tax, if one sentence in a concept description language

is more general than another. When we de�ne a sub-
sumption relation for a language, we provide a syntac-
tic analogue of generality (Lavrač & Džeroski, ).

For example, θ-subsumption (Plotkin, ) is the basis
for constructing generalization lattices in 7inductive
logic programming (Shapiro, ). See 7Generality of
Logic for a de�nition of θ-subsumption. An example
of de�ning a subsumption relation for a domain spe-

ci�c language is in the LEX program (Mitchell, Utgo�,

& Banerji, ), where an ordering on mathematical

expressions is given.

Cross References
7Generalization
7Induction
7Learning as Search
7Logic of Generality

Recommended Reading
Lavrač, N., & Džeroski, S. (). Inductive Logic Programming:

Techniques and applications. Chichester: Ellis Horwood.
Mitchell, T. M., Utgoff, P. E., & Banerji, R. B. (). Learning

by experimentation: Acquiring and refining problem-solving

heuristics. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach.
Palo Alto: Tioga.

Plotkin, G. D. (). A note on inductive generalization. In B.

Meltzer & D. Michie (Eds.), Machine intelligence (Vol. , pp.
–). Edinburgh University Press.

 S Supersmoothing

Shapiro, E. Y. (). An algorithm that infers theories from facts. In

Proceedings of the seventh international joint conference on arti-
ficial intelligence, Vancouver (pp. –). Los Altos: Morgan
Kaufmann.

Supersmoothing

7Local Distance Metric Adaptation

Supervised Descriptive Rule
Induction

Petra Kralj Novak, Nada Lavrač,,

Geoffrey I. Webb

Jožef Stefan Institute, Ljubljana, Slovenia
University of Nova Gorica, Nova Gorica, Slovenia
Monash University, Clayton, VIC, Australia

Synonyms
SDRI

Definition
Supervised descriptive rule induction (SDRI) is a

machine learning task in which individual patterns in

the form of rules (see 7Classi�cation rule) intended
for interpretation are induced from data, labeled by a

prede�ned property of interest. In contrast to standard

7supervised rule induction, which aims at learning a
set of rules de�ning a classi�cation/prediction model,

the goal of SDRI is to induce individual descriptive pat-

terns. In this respect SDRI is similar to 7association
rule discovery, but the consequents of the rules are

restricted to a single variable – the property of interest –

and, except for the discrete target attribute, the data is

not necessarily assumed to be discrete.

Supervised descriptive rule induction assumes a set

of training examples, described by attributes and their

values and a selected attribute of interest (called the

target attribute). Supervised descriptive rule induction

induces rules that may each be interpreted indepen-

dently of the others. Each rule is a7local model, cover-
ing a subset of training examples, that captures a local

relationship between the target attribute and the other

attributes.

Induced descriptive rules are mainly aimed at

human interpretation. More speci�cally, the purposes

of supervised descriptive rule induction are to allow

the user to gain insights into the data domain

and to better understand the phenomena underlying

the data.

Motivation and Background
Symbolic data analysis techniques aim at discovering

comprehensible patterns or 7models in data. �ey
can be divided into techniques for predictive induction,
wheremodels, typically induced from class labeled data,

are used to predict the class value of previously unseen

examples, and descriptive induction, where the aim is
to �nd comprehensible patterns, typically induced from

unlabeled data. Until recently, these techniques have

been investigated by two di�erent research communi-

ties: predictive induction mainly by the machine learn-

ing community, and descriptive inductionmainly by the

data mining community.

Data mining tasks where the goal is to �nd com-

prehensible patterns from labeled data have been

addressed by both the machine learning and the

data mining community independently. �e data min-

ing community, using the 7association rule learn-
ing perspective, adapted association rule learners like

7Apriori (Agrawal, Mannila, Srikant, Toivonon, &
Inkeri Verkamo, ) to perform tasks on labeled

data, like class association rule learning (Jovanovski &

Lavrač, ; Liu, Hsu, &Ma, ), as well as7contrast
set mining (Bay & Pazzani, ) and 7emerging pat-
tern mining (Dong & Li, ). On the other hand,

the machine learning community, which traditionally

focused on the induction of7rule sets from labeled data
for the purposes of classi�cation, turned to building

individual rules for exploratory data analysis and inter-

pretation.�is is the goal of the task named7subgroup
discovery (Wrobel, ). �ese are the main areas of

supervised descriptive rule induction. All these areas

deal with �nding comprehensible rules from class

labeled data. However, the methods used and the inter-

pretation of the results di�er slightly from approach

to approach. Other related approaches include change

mining,mining of closed sets for labeled data, exception

rule mining, bump hunting, quantitative association

rules, and impact rules. See Kralj Novak, Lavrač, and

Supervised Descriptive Rule Induction S 

S

Webb () for a more detailed survey of supervised

descriptive rule induction.

Structure of the Learning System
Supervised descriptive rule induction assumes that

there is data with the property of interest de�ned by

the user. Let us illustrate supervised descriptive rule

induction using data from Table , a very small arti-

�cial sample data set, adapted from Quinlan (),

which contains the results of a survey on  individ-

uals, concerning the approval or disproval of an issue

analyzed in the survey. Each individual is characterized

by four attributes that encode rudimentary information

about the sociodemographic background. �e last col-

umn (Approved) is the designated property of interest,

encoding whether the individual approved or disproved

the issue. Unlike predictive induction, where the aim

is to �nd a predictive model, the goal of supervised

descriptive rule induction is to �nd local patterns in

form of individual rules describing individuals that are

likely to approve or disprove the issue, based on the four

demographic characteristics.

Figure  shows six descriptive rules, found for the

sample data using the Magnum Opus (Webb, )

rule learning so�ware. �ese rules were found using

Supervised Descriptive Rule Induction. Table  A Sample Database

Education Marital Status Sex Has Children Approved

Primary Single Male No No

Primary Single Male Yes No

Primary Married Male No Yes

University Divorced Female No Yes

University Married Female Yes Yes

Secondary Single Male No No

University Single Female No Yes

Secondary Divorced Female No Yes

Secondary Single Female Yes Yes

Secondary Married Male Yes Yes

Primary Married Female No Yes

Secondary Divorced Male Yes No

University Divorced Female Yes No

Secondary Divorced Male No Yes

MaritalStatus=single AND Sex=male → Approved=no

Sex=male → Approved=no

Sex=female → Approved=yes

MaritalStatus=married → Approved=yes

MaritalStatus=divorced AND HasChildren=yes → Approved=no

MaritalStatus=single → Approved=no

Supervised Descriptive Rule Induction. Figure . Selected descriptive rules, describing individual patterns in the data

of Table 

 S Supervised Descriptive Rule Induction

the default settings except that the critical value for

the statistical test was relaxed. �is set of descriptive

rules di�ers from a typical predictive rule set in several

ways.�e �rst rule is redundant with respect to the sec-

ond. �e �rst rule is included as a strong pattern (all

three singlemales donot approve)whereas the second is

weaker butmore general (four out of sevenmales do not

approve, which is not highly predictive, but accounts for

four out of all �ve respondents who do not approve).

Most predictive systemswould include only one of these

rules, but either or both of them may be of interest

to someone trying to understand the data, depending

on the speci�c application. �is particular approach to

descriptive pattern discovery does not attempt to guess

which of the more speci�c or more general patterns

will be more useful to the end user. Another di�erence

between predictive and descriptive rules is that the pre-

dictive approach o�en includes rules for the sake of

completeness, while some descriptive approaches make

no attempt at completeness, as they assess each pattern

on its individual merits.

Exactly which rules will be induced by a super-

vised descriptive rule induction algorithm depends on

the task de�nition, the selected algorithm, as well as

the user-de�ned constraints concerning minimal rule

support, precision, etc. Di�erent learning approaches

and heuristics have been proposed to induce supervised

descriptive rules.

Applications
Applications of supervised descriptive rule induction

are widely spread. See Kralj Novak et al. () for a

detailed survey.

7Subgroup discovery has been used in numerous
real-life applications. Medical applications include the

analysis of coronary heart disease and brain ischemia

data analysis, as well as pro�ling examiners for sono-

graphic examinations. Spatial subgroup mining appli-

cations include mining of census data and mining of

vegetation data.�ere are also applications inmarketing

and analysis of shop �oor data.

7Contrast setmining has been usedwith retail sales
data and for designing customized insurance programs.

It has also been used in medical applications to identify

patterns in synchrotron X-ray data that distinguish tis-

sue samples of di�erent forms of cancerous tumor and

for distinguishing between groups of brain ischemia

patients.

7Emerging patternmining has beenmainly applied
to the �eld of bioinformatics, more speci�cally to

microarray data analysis. For example, an interpretable

classi�er based on simple rules that is competitive to

the state of the art black-box classi�ers on the acute

lymphoblastic leukemia (ALL) microarray data set was

built from emerging patterns. Another application was

about �nding groups of genes by emerging patterns in a

ALL/acute myeloblastic leukemia (AML) data set and a

colon tumor data set. Emerging patterns were also used

together with the unexpected change approach and the

added/perished rule to mine customer behavior.

Future Directions
A direction for further research is to decompose SDRI

algorithms, preprocessing and evaluation methods into

basic components and their reimplementation as con-

nectable web services, which includes the de�nition of

interfaces between SDRI services. For instance, this can

include the adaptation and implementation of subgroup

discovery techniques to solving open problems in the

area of contrast set mining and emerging patterns. �is

would allow for the improvement of algorithms due

to the cross-fertilization of ideas from di�erent SDRI

subareas.

Another direction for further research concerns

complex data types and the use of background knowl-

edge. �e SDRI attempts in this direction include rela-

tional subgroup discovery approaches like algorithms

Midos (Wrobel, ), RSD (Relational Subgroup Dis-

covery) (Železný & Lavrač, ), and SubgroupMiner

(Klösgen & May, ), which is designed for spatial

data mining in relational space databases. �e search

for enriched gene sets (SEGS) method (Trajkovski,

Lavrac, & Tolar, ) supports building rules when

using specialized biological knowledge in the form of

ontologies. It is a step toward semantically enabled cre-

ative knowledge discovery in the form of descriptive

rules.

Cross References
7Apriori
7Association Rule Discovery

Support Vector Machines S 

S

7Classi�cation Rule
7Contrast Set Mining
7Emerging Pattern Mining
7Subgroup Discovery
7Supervised Rule Induction

Recommended Reading
Agrawal, R., Mannila, H., Srikant, R., Toivonon, H., & Inkeri

Verkamo, A. (). Fast discovery of association rules.

In Advances in knowledge discovery and data mining (pp.
–). Menlo Park: American Association for Artificial

Intelligence.

Bay, S. D., & Pazzani, M. J. (). Detecting group differences: Min-

ing contrast sets. Data Mining and Knowledge Discovery, (),
–.

Dong, G., & Li, J. (). Efficient mining of emerging pat-

terns: Discovering trends and differences. In Proceedings of
the fifth ACM SIGKDD international conference on knowl-
edge discovery and data mining (KDD-) (pp. –).
New York: ACM.

Jovanovski, V., & Lavrač, N. (). Classification rule learning with

APRIORI-C. In Proceedings of the tenth Portuguese conference
on artificial intelligence (pp. –). London: Springer.

Klösgen, W., & May, M. (). Spatial subgroup mining integrated

in an object-relational spatial database. In Proceedings of the
sixth European conference on principles and practice of knowl-
edge discovery in databases (PKDD-) (pp. –). London:
Springer.

Kralj Novak, P. Lavrač, N., & Webb, G. I. (February ). Super-

vised descriptive rule discovery: A unifying survey of contrast

set, emerging pattern and subgroup mining. Journal of Machine
Learning Research, , –. Available at: http://www.jmlr.
org/papers/volume/kralj-novaka/kraljnovaka.pdf.

Liu, B., Hsu, W., & Ma, Y. (). Integrating classification and asso-

ciation rule mining. In Proceedings of the fourth international
conference on knowledge discovery and data mining (KDD-)
(pp. –).

Trajkovski, I., Lavrac, N., & Tolar, J. (). SEGS: Search for

enriched gene sets in microarray data. Journal of Biomedical
Informatics, (), –.

Quinlan, J. R. (). Induction of decision trees.Machine Learning,
(), –.

Webb, G. I. (). OPUS: An efficient admissible algorithm for

unordered search. Journal of Artificial Intelligence Research, ,
–.

Wrobel, S. (). An algorithm for multi-relational discovery of

subgroups. In Proceedings of the first European conference on
principles of data mining and knowledge discovery (PKDD-)
(pp. –). London: Springer.

Wrobel, S. (). Inductive logic programming for knowledge

discovery in databases. In S. Dzeroski & N. Lavrac (Eds.),

Relational data mining (Chap. , pp. –). Berlin: Springer.
Železný, F., & Lavrac, N. (). Propositionalization-based rela-

tional subgroup discovery with RSD. Machine Learning, ,
–.

Supervised Learning

Definition
Supervised learning refers to any machine learning pro-
cess that learns a function from an input type to an

output type using data comprising examples that have

both input and output values. Two typical examples

of supervised learning are 7classi�cation learning and
7regression. In these cases, the output types are respec-
tively categorical (the classes) and numeric. Supervised

learning stands in contrast to 7unsupervised learn-
ing, which seeks to learn structure in data, and to

7reinforcement learning in which sequential decision-
making policies are learned from reward with no exam-

ples of “correct” behavior.

Cross References
7Reinforcement Learning
7Unsupervised Learning

Support Vector Machines

Xinhua Zhang

Australian National University, NICTA London

Circuit, Canberra, Australia

Definition
Support vector machines (SVMs) are a class of lin-

ear algorithms that can be used for 7classi�cation,
7regression, density estimation, novelty detection, and
other applications. In the simplest case of two-class clas-

si�cation, SVMs �nd a hyperplane that separates the

two classes of data with as wide a margin as possible.

�is leads to good generalization accuracy on unseen

data, and supports specialized optimization methods

that allow SVM to learn from a large amount of data.

Motivation and Background
Over the past decade, maximum margin models espe-

cially SVMs have become popular in machine learn-

ing. �is technique was developed in three major steps.

First, assuming that the two classes of training examples

can be separated by a hyperplane, Vapnik and Lerner

http://www.jmlr.org/papers/volume10/kralj-novak09a/kraljnovak09a.pdf
http://www.jmlr.org/papers/volume10/kralj-novak09a/kraljnovak09a.pdf

 S Support Vector Machines

proposed in  that the optimal hyperplane is the

one that separates the training examples with the widest

margin. From the s to s, Vapnik and Cher-

vonenkis developed the Vapnik–Chervonenkis theory,

which justi�es the maximum margin principle from a

statistical point of view. Similar algorithms and opti-

mization techniques were proposed by Mangasarian

in .

Second, Boser, Guyon, and Vapnik () incor-

porated kernel function into the maximum margin

models, and their formulation is close to the currently

popular form of SVMs. Before that, Wahba () also

discussed the use of kernels. Kernels allow SVM to

implicitly construct the optimal hyperplane in the fea-

ture space, and the resulting nonlinear model is impor-

tant for modeling real data.

Finally, in case the training examples are not lin-

early separable, Cortes and Vapnik () showed that

the so�margin can be applied, allowing some examples

to violate the margin condition.

On the theoretical side, Shawe-Taylor, Bartlett,

Williamson, and Anthony () gave the �rst rigorous

statistical bound on the generalization of hard mar-

gin SVMs. Shawe-Taylor and Cristianini () gave

statistical bounds on the generalization of so� margin

algorithms and for the regression case.

In reality SVMs became popular thanks to its sig-

ni�cantly better empirical performance than the neu-

ral networks. By incorporating transform invariances,

the SVMs developed at AT&T achieved the highest

accuracy on the MNIST benchmark set (a handwrit-

ten digit recognition problem). Joachims () also

showed clear superiority of SVMs on text categoriza-

tion. A�erward, SVMs have been shown e�ective in

many applications including computer vision, natural

language, bioinformatics, and �nance.

Theory
SVMs have a strong mathematical basis and are closely

related to some well-established theories in statistics.

�ey not only try to correctly classify the training data,

but also maximize the margin for better generaliza-

tion performance. �is formulation leads to a sepa-

rating hyperplane that depends only on the (usually

small fraction of) data points that lie on the margin,

which are called support vectors. Hence the whole algo-

rithm is called support vectormachine. In addition, since

real–world data analysis problems o�en involve non-

linear dependencies, SVMs can be easily extended to

model such nonlinearity by means of positive semi-

de�nite kernels. Moreover, SVMs can be trained via

quadratic programming, which (a) makes theoretical

analysis easier, and (b) provides much convenience in

designing e�cient solvers that scale for large datasets.

Finally, when applied to real-world data, SVMs o�en

deliver state-of-the-art performance in accuracy, �exi-

bility, robustness, and e�ciency.

Optimal Hyperplane for Linearly Separable Examples

Consider the training set {(xi, yi)}
n
i= where xi ∈ Rp

is the input feature vector for the i-th example, and
yi ∈ {,−} is its corresponding label indicating whether

the example is positive (yi = +) or negative (yi = −). To
begin with, we assume that the set of positive and nega-

tive examples are linearly separable, that is, there exists

a function f (x) = ⟨w, x⟩ + b where w ∈ Rp (called the

weight vector) and b ∈ R (called bias) such that

⟨w, xi⟩ + b >  for yi = +

⟨w, xi⟩ + b <  for yi = −.

We call ⟨w, x⟩+b =  the decision hyperplane and in
fact, there can exist multiple hyperplanes that separate

the positive and negative examples, see Fig. . However,

they are not created equal. Associated with each such

hyperplane is a notion called margin, de�ned as the
distance between the hyperplane and the closest exam-

ple. SVM aims to �nd the particular hyperplane that

maximizes the margin.

Mathematically, it is easy to check that the dis-

tance from a point xi to a hyperplane ⟨w, x⟩ + b=  is
∥w∥

−
∣⟨w, xi⟩ + b∣. �erefore, SVM seeks for the opti-

mal w, b of the following optimization problem:

maximize
w∈Rp , b∈R

min
≤i≤n

∣⟨w, xi⟩ + b∣
∥w∥

,

s.t.

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⟨w, xi⟩ + b >  if yi = +

⟨w, xi⟩ + b <  if yi = −
∀i .

It is clear that if (w, b) is an optimal solution, then
(αw, αb) is also an optimal solution for any α > .

Support Vector Machines S 

S

H1

H2

Support Vector Machines. Figure . Example of maxi-

mum margin separator. Both H and H correctly separate

the examples from the two classes. But H has a wider

margin than H

�erefore, to �x the scale, we can equivalently set the

numerator of the objective min≤i≤n ∣⟨w, xi⟩ + b∣ to ,
and minimize the denominator ∥w∥:

minimize
w∈Rp , b∈R

∥w∥

,

s.t.

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⟨w, xi⟩ + b ≥  if yi = +

⟨w, xi⟩ + b ≤ − if yi = −.
∀i . ()

�is is a linearly constrained quadratic program,

which can be solved e�ciently. Hence, it becomes the

most commonly used (primal) form of SVM for the

linearly separable case.

Soft Margins

In practice, most, if not all, datasets are not linearly sep-

arable, that is, no w and b can satisfy the constraints
of the optimization problem (). In this case, we will

allow some data points to violate the margin condi-

tion, and penalize it accordingly.Mathematically, notice

that the constraints in () can be equivalently written

as yi(⟨w, xi⟩ + b) ≥ . Now we introduce a new set of

nonnegative slack variables ξi into the constraints:

yi(⟨w, xi⟩ + b) ≥  − ξi ,

max{0,1–yi(<w,xi> + b)}

yi(<w,xi> + b)

1

1

Support Vector Machines. Figure . Graph of hinge loss

and incorporate a penalty into the original objective to

derive the so� margin SVM:

minimize
w,b,ξi

λ ∥w∥

+


n

n

∑
i=

ξi

s.t. yi(⟨w, xi⟩ + b) ≥  − ξi, and ξi >  ∀i . ()

λ >  is a trade-o� factor. It is important to note that

ξi can be written as ξi = max {,  − yi(⟨w, xi⟩ + b)},
which is called hinge loss and is depicted in Fig. . �is

way, the optimization problem can be reformulated into

an unconstrained non-smooth problem:

minimize
w∈Rp , b∈R

λ

∥w∥


+


n

n

∑
i=

max {,  − yi(⟨w, xi⟩ + b)} . ()

Notice that max {,  − yi(⟨w, xi⟩ + b)} is also a convex
upper bound of δ(yi(⟨w, xi⟩+b) > ), where δ(x) =  if
x is true and  otherwise. �erefore, the penalty we use
is a convex upper bound of the average training error.

When the training set is actually separable, the so�mar-

gin problem () automatically recovers the hard margin

problem () when λ is su�ciently large.

Dual Forms and Kernelization

As the constraints in the primal form () are not con-

venient to handle, people have conventionally resorted

to the dual problem of (). Following the standard

procedures, one can derive the Lagrangian dual

min
α



λ
∑
i,j
yiyjαiαj ⟨xi, xj⟩ −∑

i
αi,

s.t. αi ∈ [,n−], and ∑
i
yiαi =  . ()

 S Support Vector Machines

which is again a quadratic program, but with much

simpler constraints: box constraints plus a single linear

equality constraint. To recover the primal solution w∗

from the dual solution α∗i , we have

w∗ =
n

∑
i=

α∗i yixi ,

and the optimal bias b can be determined by using the
duality conditions.

�e training examples can be divided into three cat-

egories according to the value of α∗i . If α∗i = , it means
the corresponding training example does not a�ect the

decision boundary, and in fact it lies beyond themargin,

that is, yi(⟨w, xi⟩+b) > . If α∗i ∈ (,n−), then the train-
ing example lies on the margin, that is, yi(⟨w, xi⟩ + b) =
. If α∗i = n− it means the training example violates
the margin, that is, yi(⟨w, xi⟩ + b)< . In the latter two
cases where α∗i > , the i-th training example is called a
support vector.

In many applications, most α∗i in the optimal solu-
tion are , which gives a sparse solution. As the

�nal classi�er depends only on those support vec-

tors, the whole algorithm is named support vector

machines.

From the dual problem (), a key observation can

be drawn that the feature of the training examples {xi}
in�uences training only via the inner product ⟨xi, xj⟩.
�erefore, we can rede�ne the feature by mapping xi
to a richer feature space via ϕ(xi) and then compute
the inner product there: k(xi, xj) := ⟨ϕ(xi), ϕ(xj)⟩. Fur-
thermore, one can even directly de�ne kwithout explic-
itly specifying ϕ. �is allows us to (a) implicitly use a
rich feature space whose dimension can be in�nitely

high, and (b) apply SVM to non-Euclidean spaces as

long as a kernel k(xi, xj) can be de�ned on it. Exam-
ples include strings and graphs (Haussler, ), which

have been widely applied in bioinformatics (Schölkopf,

Tsuda, & Vert, ). Mathematically, the objective ()

can be kernelized into



λ
∑
i,j
yiyjαiαjk(xi, xj) −∑

i
αi,

s.t. αi ∈ [,n−], and ∑
i
yiαi =  . ()

However, now thew cannot be expressed just in terms of
kernels becausew∗ = ∑n

i= α∗i yiϕ(xi). Fortunately, when

predicting on a new example xwe again only require the
inner product and hence use kernel only:

⟨w∗, x⟩ =
n

∑
i=

α∗i yi ⟨ϕ(xi), ϕ(x)⟩ =
n

∑
i=

α∗i yik(xi, x) .

Commonly used kernels on Rn include polynomial

kernels ( + ⟨xi, xj⟩)d, Gaussian RBF kernels exp(−γ
∥xi − xj∥


), Laplace RBF kernels exp(−γ ∥xi − xj∥),

etc. Kernels on strings and trees are usually based

on convolution, which requires involved algorithms

for e�cient evaluation (Borgwardt, ; Haussler,

). More details can be found in the kernel

section.

Optimization Techniques and Toolkits

�e main challenge of optimization lies in scaling

for large datasets, that is, n and p are large. Decom-
position method based on the dual problem is the

�rst popularly used method for solving large scale

SVMs. For example, sequential minimal optimization

(SMO) optimizes two dual variables αi, αj analyti-

cally in each iteration (Platt, a). An SMO-type

implementation is available in the LibSVM pack-

age http://www.csie.ntu.edu.tw/~cjlin/libsvm. Another

popular package using decomposition methods is the

SVM-light, available at http://svmlight.joachims.org.

Coordinate descent in the dual is also e�ective and con-

verges at linear rate. An implementation can be downlo-

aded from http://www.csie.ntu.edu.tw/~cjlin/liblinear.

Primal methods are also popular, most of which are

based on formulating the objective as a non-smooth

objective function like (). An important type is the sub-

gradient descent method, which is similar to gradient

descent but uses a subgradient due to the non-smooth

objective. When the dataset is large, one can further use

a random subset of training examples to e�ciently com-

pute the (approximate) subgradient, and algorithms

exist that guarantee the convergence in probability.�is

is called stochastic subgradient descent, and in prac-

tice, it can o�en quickly �nd a reasonably good solution.

A package that implements this idea can be found at

http://leon.bottou.org/projects/sgd.

Finally, cutting plane and bundle methods are also

e�ective (Tsochantaridis, Joachims, Hofmann, & Altun,

; Smola, Vishwanathan, & Le, ), and they are

especially useful for generalized SVMs with structured

http://svmlight.joachims.org
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://leon.bottou.org/projects/sgd
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Support Vector Machines S 

S

outputs. An implementation is the bundle method for

risk minimization (BMRM), available for download at

http://users.rsise.anu.edu.au/~chteo/BMRM.html.

Applications
�e above description of SVM focused on binary class

classi�cation. In fact, SVM, or the ideas of maximum

margin and kernel, have beenwidely used inmany other

learning problems such as regression, ranking and ordi-

nal regression, density estimation, novelty detection,

quantile regression, and etc. Even in classi�cation, SVM

has been extended to the case ofmulti-class,multi-label,

and structured output (Taskar, ; Tsochantaridis

et al., ).

For multi-class classi�cation and structured out-

put classi�cation where the possible label set Y can be

large, maximum margin machines can be formulated

by introducing a joint feature map ϕ on pairs of (xi, y)
(y ∈ Y). Letting ∆(yi, y) be the discrepancy between the
true label yi and the candidate label y, the primal form
can be written as

minimizew,ξi
λ

∥w∥


+


n

n

∑
i=

ξi,

s.t. ⟨w, ϕ(xi, yi) − ϕ(xi, y)⟩ ≥ ∆(yi, y) − ξi, ∀ i, y,

and the dual form is

minimizeαi,y



λ
∑

(i,y),(i′ ,y′)
αi,yαi′ ,y′ ⟨ϕ(xi, yi) − ϕ(xi, y)

ϕ(xi′ , yi′) − ϕ(xi′ , y′)⟩ −∑
i,y
∆(yi, y)αi,y

s.t. αi,y ≥ , ∀ i, y; ∑
y

αi,y =


n
, ∀i.

Again kernelization is convenient, by simply replacing

all the inner products ⟨ϕ(xi, y), ϕ(xi′ , y′)⟩ with a joint
kernel k((xi, y), (xi′ , y′)). Further factorization using
graphical models is possible, see Taskar (). Notice

when Y = {,−}, setting ϕ(xi, y) = yϕ(xi) recovers the
binary SVM formulation. E�ectivemethods to optimize

the dual objective include SMO, exponentiated gradi-

ent descent, mirror descent, cutting plane, or bundle

methods.

In general, SVMs are not trained to output the odds

of class membership, although the posterior probabil-

ity is desired to enable post-processing. Platt (b)

proposed training an SVM, and then train the parame-

ters of an additional sigmoid function to map the SVM

outputs into probabilities. A more principled approach

is the relevance vector machine, which has an iden-

tical functional form to the SVMs and uses Bayesian

inference to obtain sparse solutions for probabilistic

classi�cation.

As mentioned above, the hinge loss used in SVM

is essentially a convex surrogate of the misclassi�ca-

tion loss, that is,  if the current weight w misclassi�es
the training example and  otherwise. Minimizing the

misclassi�cation loss is proved NP-hard, so for compu-

tational convenience continuous convex surrogates are

used, including hinge loss, exponential loss, and logis-

tic loss.�eir statistical properties are studied by Jordan,

Bartlett, and McAuli�e (). For hinge loss, it has the

signi�cant merit of sparsity in the dual, which leads to

robustness and good generalization performance.

SVMs have been widely applied in real-world prob-

lems. In history, its �rst practical success was gained

in handwritten digit recognition. By incorporating

transform invariances, the SVMs developed at AT&T

achieved the highest accuracy on the MNIST bench-

mark set. It has also been very e�ective in com-

puter vision applications such as object recognition and

detection.With the special advantage in handling high-

dimensional data, SVMs have witnessed wide applica-

tion in bioinformatics such as microarray processing

(Schölkopf et al., ), and natural language process-

ing like named entity recognition, part-of-speech tag-

ging, parsing, and chunking (Joachims, ; Taskar,

).

Cross References
7Kernel Methods
7Radial Basis Function Networks

Further Reading
A comprehensive treatment of SVMs can be found

in Schölkopf and Smola () and Shawe-Taylor and

Cristianini (). Some important recent develop-

ments of SVMs for structured output are collected in

Bakir, Hofmann, Schölkopf, Smola, Taskar, and Vish-

wanathan (). As far as applications are concerned,

http://users.rsise.anu.edu.au/~chteo/ BMRM.html

 S Swarm Intelligence

see Lampert () for computer vision and Schölkopf

et al. () for bioinformatics. Finally, Vapnik ()

provides the details on statistical learning theory.

Recommended Reading
Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., &

Vishwanathan, S. V. N. (). Predicting structured data. Cam-
bridge: MIT Press.

Borgwardt, K. M. (). Graph Kernels. Ph.D. thesis, Ludwig-
Maximilians-University, Munich, Germany.

Boser, B., Guyon, I., & Vapnik, V. (). A training algorithm for

optimal margin classifiers. In D. Haussler (Ed.), Proceedings of
annual conference computational learning theory (pp. –).
Pittsburgh: ACM Press.

Cortes, C., & Vapnik, V. (). Support vector networks. Machine
Learning, (), –.

Haussler, D. (). Convolution kernels on discrete structures (Tech.
Rep. UCS-CRL--). University of California, Santa Cruz.

Joachims, T. (). Text categorization with support vector

machines: Learning with many relevant features. In Proceedings
of the European conference on machine learning (pp. –).
Berlin: Springer.

Jordan, M. I., Bartlett, P. L., & McAuliffe, J. D. (). Convexity,
classification, and risk bounds (Tech. Rep. ). University of
California, Berkeley.

Lampert, C. H. (). Kernel methods in computer vision. Foun-
dations and Trends in Computer Graphics and Vision, (),
–.

Platt, J. C. (a). Fast training of support vector machines

using sequential minimal optimization. In Advances in kernel
methods—support vector learning (pp. –). Cambridge,
MA: MIT Press.

Platt, J. C. (b). Probabilities for sv machines. In A. J. Smola, P. L.

Bartlett, B. Schölkopf, & D. Schuurmans, (Eds.), Advances in
large margin classifiers (pp. –). Cambridge: MIT Press.

Schölkopf, B., & Smola, A. (). Learning with kernels. Cambridge:
MIT Press.

Schölkopf, B., Tsuda, K., & Vert, J.-P. (). Kernel methods in
computational biology. Cambridge: MIT Press.

Shawe-Taylor, J., & Cristianini, N. (). Margin distribution and

soft margin. In A. J. Smola, P. L. Bartlett, B. Schölkopf, &

D. Schuurmans, (Eds.), Advances in large margin classifiers
(pp. –). Cambridge: MIT Press.

Shawe-Taylor, J., & Cristianini, N. (). Kernel methods for pattern
analysis. Cambridge: Cambridge University Press.

Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., & Anthony, M.

(). Structural risk minimization over data-dependent hier-

archies. IEEE Transactions on Information Theory, (), –
.

Smola, A., Vishwanathan, S. V. N., & Le, Q. (). Bundle methods

for machine learning. In D. Koller, & Y. Singer, (Eds.), Advances
in neural information processing systems (Vol. ). Cambridge:
MIT Press.

Taskar, B. (). Learning structured prediction models: A large
margin approach. Ph.D. thesis, Stanford University.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. ().

Large margin methods for structured and interdependent out-

put variables. Journal of Machine Learning Research, , –
.

Vapnik, V. (). Statistical learning theory. New York: Wiley.
Wahba, G. (). Spline models for observational data. CBMS-

NSF regional conference series in applied mathematics (Vol. ).
Philadelphia: SIAM.

Swarm Intelligence

Swarm intelligence is the discipline that studies the col-
lective behavior of systems composed of many individ-

uals that interact locally with each other and with their

environment and that rely on forms of decentralized

control and self-organization. Examples of such sys-

tems are colonies of ants and termites, schools of �sh,

�ocks of birds, herds of land animals, and also some

artifacts, including swarm robotic systems and some

computer programs for tackling optimization problems

such as7ant colony optimization and7particle swarm
optimization.

Symbolic Dynamic Programming

Scott Sanner, Kristian Kersting

Statistical Machine Learning Group,

NICTA, Canberra, ACT, Australia
Fraunhofer IAIS,

Sankt Augustin, Germany

Synonyms
Dynamic programming for relational domains; Rela-

tional dynamic programming; Relational value itera-

tion; SDP

Definition
Symbolic dynamic programming (SDP) is a generaliza-

tion of the7dynamic programming technique for solv-
ing 7Markov decision processes (MDPs) that exploits
the symbolic structure in the solution of relational and

Symbolic Dynamic Programming S 

S

�rst-order logical MDPs through a li�ed version of

dynamic programming.

Motivation and Background
Decision-theoretic planning aims at constructing a pol-

icy for acting in an uncertain environment that max-

imizes an agent’s expected utility along a sequence of

steps. For this task, Markov decision processes (MDPs)

have become the standard model. However, classical

dynamic programming algorithms for solving MDPs

require explicit state and action enumeration, which

is o�en impractical: the number of states and actions

grows very quickly with the number of domain objects

and relations. In contrast, SDP algorithms seek to avoid

explicit state and action enumeration through the sym-

bolic representation of an MDP and a corresponding

symbolic derivation of its solution, such as a value func-

tion. In essence, SDP algorithms exploit the symbolic

structure of theMDP representation to construct amin-

imal logical partition of the state space required tomake

all necessary value distinctions.

Theory and Solution
Consider an agent acting in a simple variant of the

BoxWorld problem. �ere are several cities such as

London, Paris etc., trucks truck, truck etc., and boxes
box, box etc. �e agent can load a box onto a truck
or unload it and can drive a truck from one city to

another. Only when a particular box, say box box, is in
a particular city, say Paris, the agent receives a positive
reward. �e agent’s learning task is now to �nd a policy

for action selection that maximizes its reward over the

long term.

A great variety of techniques for solving such

decision-theoretic planning tasks have been developed

over the last decades. Most of them assume atomic rep-

resentations, which essentially amounts to enumerating

all unique con�gurations of trucks, cities, and boxes. It

might then be possible to learn, for example, that taking

action action in state state is worth . and leads
to state state. Atomic representations are simple,
and learning can be implemented using simple lookup

tables. �ese lookup tables, however, can be intractably

large as atomic representations easily explode. Further-

more, they do not easily generalize across di�erent

numbers of domain objects (We use the term domain in

the �rst-order logical sense of an object universe. �e

term should not be confused with a planning problem
such as BoxWorld or BlocksWorld.).

In contrast, SDP assumes a relational or �rst-order

logical representation of an MDP (as given in Fig. ) to

exploit the existence of domain objects, relations over

these objects, and the ability to express objectives and

action e�ects using quanti�cation.

It is then possible to learn that to get box b to paris,
the agent drives a truck to the city of b, loads box on
the truck, drives the truck to Paris, and �nally unloads
the box box in Paris. �is is essentially encoded in the
symbolic value function shown in Fig. , which was

computed by discounting rewards t time steps into the
future by .t . �e key features to note here are the state

and action abstraction in the value and policy represen-

tation that are a�orded by the �rst-order speci�cation

and solution of the problem. �at is, this solution does

not refer to any speci�c set of domain objects, such

as City = {paris, berlin, london}, but rather it provides
a solution for all possible domain object instantiations.
And while classical dynamic programming techniques

could never solve these problems for large domain

instantiations (since they would have to enumerate all

states and actions), a domain-independent SDP solu-

tion to this particular problem is quite simple due to the

power of state and action abstraction.

Background: Markov Decision Processes (MDPs)

In the MDP (Puterman, ) model, an agent is

assumed to fully observe the current state and choose

an action to execute from that state. Based on that state

and action, nature then chooses a next state according

to some �xed probability distribution. In an in�nite-

horizon MDP, this process repeats itself inde�nitely.

Assuming there is a reward associated with each state

and action, the goal of the agent is to maximize the

expected sum of discounted rewards received over an

in�nite horizon (Although we do not discuss it here,

there are other alternatives to discounting such as aver-

aging the reward received over an in�nite horizon.).

�is criterion assumes that a reward received t steps in
the future is discounted by γt , where γ is a discount fac-
tor satisfying  ≤ γ < .�e goal of the agent is to choose

its actions in order to maximize the expected, dis-

counted future reward in this model.

 S Symbolic Dynamic Programming

● Domain Object Types (i.e., sorts): Box, Truck, City = {paris, . . .}

● Relations (with parameter sorts):

BoxIn(Box,City), TruckIn(Truck,City), BoxOn(Box, Truck)

● Reward: if ∃b.BoxIn(b,paris)  else 

● Actions (with parameter sorts):

– load(Box : b, Truck : t,City : c):

∗ Success Probability: if (BoxIn(b, c) ∧ TruckIn(t, c)) then . else 

∗ Add Effects on Success: {BoxOn(b, t)}

∗ Delete Effects on Success: {BoxIn(b, c)}

– unload(Box : b, Truck : t,City : c):

∗ Success Probability: if (BoxOn(b, t) ∧ TruckIn(t, c)) then . else 

∗ Add Effects on Success: {BoxIn(b, c)}

∗ Delete Effects on Success: {BoxOn(b, t)}

– drive(Truck : t,City : c,City : c):

∗ Success Probability: if (TruckIn(t, c)) then  else 

∗ Add Effects on Success: {TruckIn(t, c)}

∗ Delete Effects on Success: {TruckIn(t, c)}

– noop

∗ Success Probability: 

∗ Add Effects on Success: ∅

∗ Delete Effects on Success: ∅

Symbolic Dynamic Programming. Figure . A formal description of the BoxWorld adapted from Boutilier, Reiter, and

Price (). We use a simple STRIPS (Fikes & Nilsson, ) add and delete list representation of actions and, as a simple

probabilistic extension in the spirit of PSTRIPS (Kushmerick, Hanks, & Weld, ), we assign probabilities that an action

successfully executes conditioned on various state properties

if (∃b.BoxIn(b,paris)) then do noop (value = .)

else if (∃b,t.TruckIn(t,paris) ∧ BoxOn(b, t)) then do unload(b, t) (value = .)

else if (∃b,c,t.BoxOn(b, t) ∧ TruckIn(t, c)) then do drive(t, c,paris) (value = .)

else if (∃b,c,t.BoxIn(b, c) ∧ TruckIn(t, c)) then do load(b, t) (value = .)

else if (∃b, c, t, c.BoxIn(b, c) ∧ TruckIn(t, c)) then do drive(t, c, c) (value = .)

else do noop (value = .)

Symbolic Dynamic Programming. Figure . A decision-list representation of the optimal policy and expected dis-

counted reward value for the BoxWorld problem

Formally, a �nite state and action MDP is a tuple:

⟨S,A,T,R⟩, where S is a �nite state space, A is a �nite
set of actions, T is a transition function: T : S×A× S→
[, ], where T(s, a, ⋅) is a probability distribution over
S for any s ∈ S and a ∈ A, and R is a bounded reward
function R : S ×A→ R.

As stated earlier, our goal is to �nd a policy thatmax-

imizes the in�nite horizon, discounted reward criterion:

Eπ[∑
∞
t= γt ⋅ rt ∣s], where rt is a reward obtained at time

t, γ is a discount factor as de�ned earlier, π is the policy
being executed, and s is the initial starting state. Based
on this reward criterion, we de�ne the value function

Symbolic Dynamic Programming S 

S

for a policy π as the following:

Vπ(s) = Eπ [
∞
∑
t=

γt
⋅ rt ∣ s = s] ()

Intuitively, the value function for a policy π is the
expected sumof discounted rewards accumulatedwhile

executing that policy when starting from state s.
For theMDPmodel discussed here, the optimal pol-

icy can be shown to be stationary (Puterman, ).

Consequently, we use a stationary policy representation

of the form π : S → A, with π(s) denoting the action
to be executed in state s. An optimal policy π∗ is the
policy that maximizes the value function for all states.

We denote the optimal value function over an inde�nite

horizon as V∗(s) and note that it satis�es the following
equality:

V∗
(s) = max

a∈A
{R(s, a) + γ∑

s′∈S
T(s, a, s′) ⋅V∗

(s′)} ()

Bellman’s principle of optimality (Bellman, ) estab-
lishes the following relationship between the optimal

value function V t(s) with a �nite horizon of t steps
remaining and the optimal value function V t−(s) with

a �nite horizon of t −  steps remaining:

V t
(s) = max

a∈A
{R(s, a) + γ∑

s′∈S
T(s, a, s′) ⋅V t−

(s′)} ()

A dynamic programming approach for computing the
optimal value function over an inde�nite horizon is

known as value iteration and directly implements () to

compute  by successive approximation. As sketched in

Fig. , we start with arbitrary V(s) (e.g., ∀sV(s) = )
and perform the Bellman backup given in () for each

stateV (s) using the value ofV(s). We repeat this pro-
cess for each t to compute V t(s) from the memorized
values for V t−(s) until we have computed the intended
t-stages-to-go value function. V t(s) will converge to
V∗(s) as t →∞ (Puterman, ).

O�en, the Bellman backup is rewritten in two steps

to separate out the action regression and maximization

steps. In this case, we �rst compute the t-stages-to-go
Q-function for every action and state:

Qt
(s, a) = R(s, a) + γ ⋅ ∑

s′∈S
T(s, a, s′) ⋅V t−

(s′) ()

A1 A1A1
S1 S1

S2 S2

S1

S2

S1

S2
A2

A2

A1

A2

A2

A1

A2

A2

A1

V3 (s1) V2 (s1) V1 (s1) V0 (s1)

V3 (s2) V1 (s2) V0 (s2)V2 (s2)

Symbolic Dynamic Programming. Figure . A diagram demonstrating a dynamic programming regression-based eval-

uation of the MDP value function. Dashed lines are used in the expectation computation of the Q-function: for each

action, take the expectation over the values of possible successor states. Solid lines are used in the max computation:

determine the highest valued action to be taken in each state

 S Symbolic Dynamic Programming

�en we maximize over each action to determine the

value of the regressed state:

V t
(s) = max

a∈A
{Qt

(s, a)} ()

�is is clearly equivalent to () but is in a form that we

refer to later, since it separates the algorithm into its two

conceptual components: decision-theoretic regression

and maximization.

First-Order Markov Decision Processes

A �rst-order MDP (FOMDP) can be thought of as

a universal MDP that abstractly de�nes the state,

action, transition, and reward tuple ⟨S,A,T,R⟩ for
an in�nite number of ground MDPs. To make this

idea more concrete, consider the BoxWorld prob-

lem de�ned earlier. While we have not yet formalized

the details of the FOMDP representation, it should

be clear that the BoxWorld dynamics hold for any

instantiation of the domain objects: Box, Truck, and
City. For instance, assume that the domain instan-
tiation consists of two boxes Box = {box, box},
two trucks Truck = {truck, truck} and two cities
City = {paris, berlin}. �en the resulting ground
MDP has  state-variable atoms (each atom being

true or false in a state), four atoms for BoxIn such as
BoxIn(box, paris), BoxIn(box, paris), . . ., four atoms
for TruckIn such as TruckIn(truck, paris), . . . and four
atoms for BoxOn such as BoxOn(box, truck),
�ere are also  possible actions (eight for each of

load,unload, and drive) such as load(box, truck, paris),
load(box, truck, berlin), drive(truck, paris, paris),
drive(truck, paris, berlin), etc., where the transition
function directly follows from the ground instan-

tions of the corresponding PSTRIPS operators. �e

reward function looks like: if (BoxIn(box, paris) ∨

BoxIn(box, paris))  else .
�erefore, to solve an FOMDP, we could ground it

for a speci�c domain instantiation to obtain a corre-

sponding ground MDP. �en we could apply classical

MDP solution techniques to solve this ground MDP.

However, the obvious drawback to this approach is that

the number of state variables and actions in the ground

MDP grow at least linearly as the domain size increases.

And even if the ground MDP could be represented

within memory constraints, the number of distinct

ground states grows exponentially with the number of

state variables, thus rendering solutions that scale with

state size intractable even formoderately small numbers

of domain objects.

An alternative idea to solving an FOMDP at the

ground level is to solve the FOMDP directly at the

�rst-order level using symbolic dynamic programming,

thereby obtaining a solution that applies universally

to all possible domain instantiations. While the exact

representation and SDP solution of FOMDPs di�er

among the variant formalisms, they all share the same

basic �rst-order representation of rewards, probabili-

ties, and values that we outline next. To highlight this,

we introduce a graphical case notation to allow �rst-
order speci�cations of the rewards, probabilities, and

values required for FOMDPs:

case =

ϕ : t

: : :

ϕn : tn

Here the ϕi are state formulae and the ti are terms.
O�en the ti are constants and the ϕi partition state

space. To make this concrete, we represent our Box-

World FOMDP reward function as the following rCase
statement:

rCase =
∃b.BoxIn(b, paris) : 

¬∃b.BoxIn(b, paris) : 

Here we see that the �rst-order formulae in the case

statement divide all possible ground states into two

regions of constant value: when there exists a box in

Paris, a reward of  is achieved, otherwise a reward

of  is achieved. Likewise, the value function case
that we derive through SDP can be represented in

exactly the same manner. Indeed, as we will see shortly,

case = rCase in the �rst-order version of value
iteration.

To state the FOMDP transition function for an

action, we decompose stochastic “agent” actions into a

collection of deterministic actions, each corresponding
to a possible outcome of the stochastic action. We then

specify a distribution according to which “nature” may

Symbolic Dynamic Programming S 

S

choose a deterministic action from this set whenever

the stochastic action is executed.

Letting A(x⃗) be a stochastic action with nature’s
choices (i.e., deterministic actions) n(x⃗), . . . ,nk(x⃗),
we represent the distribution over ni(x⃗) given A(x⃗)
using the notation pCase(nj(x⃗),A(x⃗)). Continuing our
logistics example, if the success of driving a truck

depends on whether the destination city is paris (per-
haps due to known tra�c delays), then we decom-

pose the stochastic drive action into two deterministic
actions driveS and driveF, respectively denoting suc-
cess and failure.�en we can specify a distribution over

nature’s choice deterministic outcome for this stochastic

action:

pCase(driveS(t, c , c),

drive(t, c , c))
=

c = paris : .

c ≠ paris : .

pCase(driveF(t, c , c),

drive(t, c , c))
=

c = paris : .

c ≠ paris : .

Intuitively, to perform an operation on case state-

ments, we simply perform the corresponding opera-

tion on the intersection of all case partitions of the

operands. Letting each ϕi and ψj denote generic �rst-

order formula, we can perform the “cross-sum” ⊕ of

case statements in the following manner:

ϕ : 

ϕ : 
⊕

ψ : 

ψ : 
=

ϕ ∧ ψ : 

ϕ ∧ ψ : 

ϕ ∧ ψ : 

ϕ ∧ ψ : 

Likewise, we can perform ⊖, ⊗, and max operations

by respectively subtracting, multiplying, or taking the

max of partition values (as opposed to adding them)

to obtain the result. Some partitions resulting from

the application of the ⊕, ⊖, and ⊗ operators may be

inconsistent; we simply discard such partitions (since

they can obviously never correspond to any world

state).

We de�ne another operation on case statements

max∃x⃗ that is crucial for SDP. Intuitively, the mean-
ing of max∃x⃗ case(x⃗) is a case statement where the
maximal value is assigned to each region of state

space where there exists a satisfying instantiation

of x⃗. To make these ideas concrete, following is
an exposition of how the max∃x⃗ may be explicitly
computed:

max∃x⃗

ψ(x⃗) : 

ψ(x⃗) : 

ψ(x⃗) : 

=

∃x⃗ ψ(x⃗) : 

¬(∃x⃗ ψ(x⃗)) ∧ ∃x⃗ ψ(x⃗) : 

¬(∃x⃗ ψ(x⃗)) ∧ ¬(∃x⃗ ψ(x⃗)) ∧ ∃x⃗ ψ(x⃗) : 

Here we have simply sorted partitions in order of values

and have ensured that the highest value is assigned to

partitions in which there exists a satisfying instantiation

of x⃗ by rendering lower value partitions disjoint from
their higher-value antecedents.

Symbolic Dynamic Programming

SDP is a dynamic programming solution to FOMDPs

that produces a logical case description of the optimal

value function. �is is achieved through the operations

of �rst-order decision-theoretic regression (FODTR)

and symbolic maximization that perform the tradi-

tional dynamic programming Bellman backup at an

abstract level without explicit enumeration of either the

state or action spaces of the FOMDP.Amongmany uses,

the application of SDP leads to a domain-independent

value iteration solution to FOMDPs.

Suppose that we are given a value function in the

form case. �e FODTR (Boutilier et al., ) of this
value function through an action A(x⃗) yields a case
statement containing the logical description of states

and values that would give rise to case a�er doing action
A(x⃗). �is is analogous to classical goal regression, the
key di�erence being that action A(x⃗) is stochastic. In
MDP terms, the result of FODTR is a case statement

representing a Q-function.

 S Symbolic Dynamic Programming

We de�ne the FODTR operator in the following
manner:

FODTR[vcase,A(x⃗)] = rCase⊕ ()

γ [⊕j{pCase(nj(x⃗))⊗

Regr[vcase,A(x⃗)]}]

Note that we have not yet de�ned the regression opera-

tor Regr[vcase,A(x⃗)]. As it turns out, the implementa-
tion of this operator is speci�c to a given FOMDP lan-

guage and SDP implementation.We simply remark that

the regression of a formulaψ through an actionA(x⃗) is a
formula ψ′ that holds prior to A(x⃗) being performed i�
ψ holds a�er A(x⃗). However, regression is a determin-
istic operator and thus FODTR takes the expectation of

the regression over all possible outcomes of a stochastic

action according to their respective probabilities.

It is important to note that the case statement result-

ing from FODTR contains free variables for the action

parameters x⃗. �at is, for any constant binding c⃗ of
these action parameters such that x⃗ = c⃗, the case state-
ment speci�es a well-de�ned logical description of the

value that can be obtained by taking action A(c⃗) and
following a policy so as to obtain the value given by

vcase therea�er. However, what we really need for sym-
bolic dynamic programming is a logical description of

a Q-function that tells us the highest value that can be

achieved for any action instantiation. �is leads us to
the following qCase(A(x⃗)) de�nition of a �rst-order
Q-function that makes use of the previously de�ned

max∃x⃗ operator:

qCaset(A(x⃗)) = max∃x⃗.FODTR[vcaset−,A(x⃗)] ()

Intuitively, qCaset(A(x⃗)) is a logical description of the
Q-function for action A(x⃗) indicating the best value
that could be achieved by any instantiation of A(x⃗).
And by using the case representation and action quan-

ti�cation in the max∃x⃗ operation, FODTR e�ectively
achieves both action and state abstraction.
At this point, we can regress the value function

through a single action, but to complete the dynamic
programming step, we need to know the maximum

value that can be achieved by any action (e.g., in the
BoxWorld FOMDP, our possible action choices are

unload(b, t, c), load(b, t, c), and drive(t, c, c)). Fortu-
nately, this turns out to be quite easy. Assuming we have

m actions {A(x⃗), . . . ,Am(x⃗m)}, we can complete the
SDP step in the following manner using the previously

de�ned max operator:

vcaset = max
a∈{A(x⃗),. . .,Am(x⃗m)}

qCaset(a) ()

While the details of SDP may seem very abstract at

the moment, there are several examples for speci�c

FOMDP languages that implement SDP as described

earlier, for which we provide references next. Nonethe-

less, one should note that the SDP equations given

here are exactly the “li�ed” versions of the traditional

dynamic programming solution to MDPs given previ-

ously in () and (). �e reader may verify — on a

conceptual level — that applying SDP to the -stages-

to-go value function (i.e., case = rCase, given previ-
ously) yields the following - and -stages-to-go value

functions in the BoxWorld domain (¬“ indicating the

conjunction of the negation of all higher value parti-

tions):

case =

∃b.BoxIn(b, paris) : .

¬“ ∧ ∃b, t.TruckIn(t, paris) ∧ BoxOn(b, t) : .

¬“ : .

case =

∃b.BoxIn(b, paris) : .

¬“ ∧ ∃b, t.TruckIn(t, paris) ∧ BoxOn(b, t) : .

¬“ ∧ ∃b, c, t.BoxOn(b, t) ∧ TruckIn(t, c) : .

¬“ : .

A�er su�cient iterations of SDP, the t-stages-to-go
value function converges, giving the optimal value func-

tion (and corresponding policy) from Fig. .

Applications
Variants of SDP have been successfully applied

in decision-theoretic planning domains such as

BlocksWorld, BoxWorld, ZenoWorld, Eleva-

tors, Drive, PitchCatch, and Schedule. �e

Symbolic Dynamic Programming S 

S

�rst-order approximate linear programming (FOALP)

system (Sanner & Boutilier, ) was runner-up at

the probabilistic track of the th International Planning

Competition (IPC-). Related techniques have been

used to solve path planning problems within robotics

and instances of real-time strategy games, Tetris, and

Digger.

Future Directions
�e original SDP (Boutilier et al., ) approach is a
value iteration algorithm for solving FOMDPs based on

Reiter’s situations calculus. Since then, a variety of exact

algorithms have been introduced to solve MDPs with

relational (RMDP) and �rst-order (FOMDP) structure

(We use the term relational MDP to refer to models that
allow implicit existential quanti�cation, and FOMDP
for those with explicit existential and universal quanti�-

cation.). First-order value iteration (FOVIA) (Hölldobler
& Skvortsova, ; Karabaev & Skvortsova, ) and

the relational Bellman algorithm (ReBel) (Kersting, van
Otterlo,&deRaedt, ) are value iteration algorithms

for solving RMDPs. In addition, �rst-order decision dia-
grams (FODDs) have been introduced to compactly
represent case statements and to permit e�cient appli-

cation of SDP operations to solve RMDPs via value

iteration (Wang, Joshi, & Khardon, ) and policy

iteration (Wang & Khardon, ). All of these algo-

rithms have some form of guarantee on convergence

to the (є-)optimal value function or policy. �e expres-
siveness of FOMDPs has been extended to support

inde�nitely factored reward and transition functions in

FOMDPs (Sanner & Boutilier, ).

A class of linear-value approximation algorithms

have been introduced to approximate the value func-

tion as a linear combination of weighted basis func-

tions. FOALP (Sanner & Boutilier, ) directly

approximates the FOMDP value function using a lin-

ear program. First-order approximate policy iteration
(FOAPI) (Sanner & Boutilier, ) approximately

solves for the FOMDP value function by iterating

between policy and value updates in a policy-iteration

style algorithm. Somewhat weak error bounds can

be derived for a value function approximated via

FOALP (Sanner & Boutilier, ) while generally

stronger bounds can be derived from the FOAPI solu-

tion (Sanner & Boutilier, ).

Finally, there are a number of heuristic solu-

tions to FOMDPs and RMDPs. Approximate policy
iteration (Fern, Yoon, & Givan, ) induces rule-
based policies from sampled experience in small-

domain instantiations of RMDPs and generalizes these

policies to larger domains. In a similar vein, induc-
tive policy selection using �rst-order regression (Gret-
ton & �iebaux, ) uses the action regression

operator in the situation calculus to provide the �rst-

order hypothesis space for an inductive policy learn-

ing algorithm. Approximate linear programming (for
RMDPs) (Guestrin, Koller, Gearhart, & Kanodia, )
is an approximation technique using linear program

optimization to �nd a best-�t value function over a

number of sampled RMDP domain instantiations.

Cross References
7Dynamic Programming
7Markov Decision Processes

Recommended Reading
Bellman, R. E. (). Dynamic programming. Princeton, NJ: Prince-

ton University Press.

Boutilier, C., Reiter, R., & Price, B. (). Symbolic dynamic

programming for first-order MDPs. In IJCAI- (pp.–)
Seattle.

Fikes, R. E., & Nilsson, N. J. (). STRIPS: A new approach to the

application of theorem proving to problem solving. Artificial
Intelligence, , –.

Fern, A., Yoon, S., & Givan, R. (). Approximate policy iteration

with a policy language bias. In NIPS-. Vancouver.
Gretton, C., & Thiebaux, S. (). Exploiting first-order regression

in inductive policy selection. In UAI-. (pp.–) Banff,
Canada.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (). Gen-

eralizing plans to new environments in relational MDPs. In

IJCAI-. Acapulco, Mexico.
Hölldobler, S., & Skvortsova, O. (). A logic-based approach to

dynamic programming. In AAAI- Workshop on Learning and
Planning in MDPs (pp.–). Menlo Park, CA.

Karabaev, E., & Skvortsova, O. (). A heuristic search algo-

rithm for solving first-order MDPs. In UAI- (pp.–).
Edinburgh, Scotland.

Kersting, K., van Otterlo, M., & De Raedt, L. (). Bellman goes

relational. In ICML-. New York ACM Press.
Kushmerick, N., Hanks, S., & Weld, D. (). An algorithm for

probabilistic planning. Artificial Intelligence, , –.
Puterman, M. L. (). Markov decision processes: Discrete stochas-

tic dynamic programming. New York: Wiley.
Sanner, S., & Boutilier, C. (). Approximate linear programming

for first-order MDPs. In UAI-. Edinburgh, Scotland.
Sanner, S., & Boutilier, C. () Practical linear evaluation tech-

niques for first-order MDPs. In UAI-. Boston.

 S Symbolic Regression

Sanner, S., & Boutilier, C. (). Approximate solution techniques

for factored first-order MDPs. In ICAPS-. Providence, RI.
pp. –.

Wang, C., Joshi, S., & Khardon, R. (). First order decision

diagrams for relational MDPs. In IJCAI. Hyderabad, India.
Wang, C., & Khardon, R. (). Policy iteration for relational

MDPs. In UAI. Vancouver, Canada.

Symbolic Regression

7Equation Discovery

Symmetrization Lemma

Synonyms
Basic lemma

Definition
Given a distribution P over a sample space Z , a �nite
sample z = (z, . . . , zn) drawn i.i.d. from P and a

function f : Z → R we de�ne the shorthand EPf =

EP[f (z)] and Ezf = 

n ∑
n
i= f (zi) to denote the true and

empirical average of f .�e symmetrization lemma is an
important result in the learning theory as it allows the

true averageEPf found in7generalization bounds to be
replaced by a second empirical average Ez′ f taken over
an independent ghost sample z′ = (z′, . . . z′n) drawn i.i.d.
from P. Speci�cally, the symmetrization lemma states
that for any є >  whenever nє ≥ 

Pn ⎛

⎝
sup
f ∈F

∣EPf −Ezf ∣ > є
⎞

⎠
≤ Pn

⎛

⎝
sup
f ∈F

∣Ez′ f −Ezf ∣ >
є


⎞

⎠
.

�is means the typically di�cult to analyze behavior of

EPf – which involves the entire sample space Z – can
be replaced by the evaluation of functions from F over
the points in z and z′.

Synaptic E.Cacy

7Weight

	S
	Sample Complexity
	Samuel's Checkers Player
	Definition
	Description of the Learning System
	Cross References
	Recommended Reading

	Saturation
	SDP
	Search Bias
	Search Engines: Applications of ML
	Definition
	Motivation and Background
	Structure of the Learning System
	Retrieval Methods
	Query Classification
	Cross References
	Recommended Reading

	Self-Organizing Feature Maps
	Self-Organizing Maps
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Programs and Data
	Applications
	Cross References
	Recommended Reading

	Semantic Mapping
	Semi-Naive Bayesian Learning
	Definition
	Motivation and Background
	Taxonomy of Semi-Naive Bayesian Techniques
	Methods That Apply Naive Bayes to a Subset of Attributes
	Methods That Alter Naive Bayes by Allowing Interdependencies between Attributes
	Methods That Apply Naive Bayes to a Subset of the Training Set
	Methods That Calibrate Naive Bayes' Probability Estimates
	Methods That Introduce Hidden Variables to Naive Bayes
	Selection Between Semi-Naive Bayesian Methods
	Cross References
	Recommended Reading

	Semi-Supervised Learning
	Synonyms
	Definition
	Motivation and Background
	Theory
	Generative Models
	Semi-Supervised Support Vector Machines
	Graph-Based Models
	Co-training and Multiview Models
	A PAC Bound for Semi-Supervised Learning

	Applications
	Future Directions
	Cross References
	Recommended Reading

	Semi-Supervised Text Processing
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Generative Models
	Discriminative Approaches
	Multiview Approaches
	Graph-Based Approaches
	Approaches that Exploit Background Knowledge

	Recommended Reading

	Sensitivity
	Synonyms

	Sensitivity and Specificity
	Definition
	Cross References

	Sequence Data
	Sequential Data
	Synonyms

	Sequential Inductive Transfer
	Sequential Prediction
	Set
	Shannon's Information
	Shattering Coefficient
	Synonyms
	Definition

	Similarity Measures
	Synonyms
	Definition
	Motivation and Background
	Classes of Similarity Functions
	Cross References
	Recommended Readings

	Simple Bayes
	Simple Recurrent Network
	Synonyms
	Definition
	Recommended Reading

	SMT
	Solution Concept
	Solving Semantic Ambiguity
	SOM
	SORT
	Spam Detection
	Specialization
	Cross References

	Specificity
	Synonyms

	Spectral Clustering
	Speedup Learning
	Definition
	Motivation and Background
	Structure of Learning System
	Dimensions of Speedup Learning
	Examples of Intra-Problem Speedup Learning
	Examples of Inter-Problem Speedup Learning

	Cross References
	Recommended Reading

	Speedup Learning For Planning
	Spike-Timing-Dependent Plasticity
	Cross References

	Sponsored Search
	Squared Error
	Squared Error Loss
	Stacked Generalization
	Synonyms
	Definition
	Recommended Reading

	Stacking
	Starting Clause
	State
	Statistical Learning
	Statistical Machine Translation
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Modeling
	Estimation

	Programs and Data

	Statistical Physics Of Learning
	Statistical Relational Learning
	Definition
	Motivation and Background
	Theory
	Statistical Relational Languages
	Case Study: Markov Logic Networks
	Case Study: ProbLog

	Learning
	Parameter Estimation
	Structure Learning

	Applications
	Future Directions
	Cross References
	Recommended Reading

	Stochastic Finite Learning
	Motivation and Background
	Definition
	Detail
	Learning Monomials
	Learning Pattern Languages
	Cross References
	Recommended Reading

	Stratified Cross Validation
	Stream Mining
	Cross References

	String kernel
	String Matching Algorithm
	Structural Credit Assignment
	Structural Risk Minimization
	Definition
	Recommended Reading

	Structure
	Structured Data Clustering
	Structured Induction
	Definition
	Motivation and Background

	Structure of Learning System
	Structured Versus Unstructured Induction
	Related Work
	Cross References
	Recommended Reading

	Subgroup Discovery
	Definition
	Recommended Reading

	Sublinear Clustering
	Definition
	Motivation and Background
	Structure of the Learning System
	Theory/Solution
	Clustering Problems
	Radius k-Clustering:
	Diameter k-Clustering:
	k-Median:
	k-Means:

	Random Sampling and Sublinear-Time Algorithms
	Quality of Uniformly Random Sampling:
	Property Testing of the Quality of Clustering:

	Core-Sets: Sublinear Space Representations with Applications
	Constructing a Core-Set:
	Applications

	Recommended Reading

	Subspace Clustering
	Subsumption
	Cross References
	Recommended Reading

	Supersmoothing
	Supervised Descriptive Rule Induction
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Applications
	Future Directions
	Cross References

	Supervised Learning
	Definition
	Cross References

	Support Vector Machines
	Definition
	Motivation and Background
	Theory
	Optimal Hyperplane for Linearly Separable Examples
	Soft Margins
	Dual Forms and Kernelization
	Optimization Techniques and Toolkits

	Applications
	Cross References
	Further Reading
	Recommended Reading

	Swarm Intelligence
	Symbolic Dynamic Programming
	Synonyms
	Definition
	Motivation and Background
	Theory and Solution
	Background: Markov Decision Processes (MDPs)
	First-Order Markov Decision Processes
	Symbolic Dynamic Programming

	Applications
	Future Directions
	Cross References
	Recommended Reading

	Symbolic Regression
	Symmetrization Lemma
	Synonyms
	Definition

	Synaptic E.Cacy

