
Important: The validation process for blockchain transactions relies on data being encrypted
using algorithmic hashing.

A hash function takes an input string (numbers, alphabets, media files) of any length and
transforms it into a fixed length. The fixed bit length can vary (like 32-bit or 64-bit or 128-bit
or 256-bit) depending on the hash function which is being used. The fixed-length output is
called a hash. This hash is also the cryptographic byproduct of a hash algorithm. In the
blockchain we normally use SHA2.

Solving the hash starts with the data available in the block header and is essentially solving a
complex mathematical problem. Each block header contains a version number, a timestamp,
the hash used in the previous block, the hash of the Merkle Root, the nonce, and the target
hash.

Blockchain Hash Function

https://www.investopedia.com/terms/n/nonce.asp

Alice BoB 1700 bitcoins

Alice John 1200 Bitcoins

Nonce: 6584221444444

Hash Function

7a22f1d90448953194eaf71477f
67ccdf406f406f42cb1628117

Hash creation
So to recap:
•A nonce (random number) is appended to the hash.
•The string is hashed.
•The final hash + transactions, are then submitted across the
network.

•compared to the difficulty level and seen whether it’s actually
less than that or not.

Alice BoB 1700 bitcoins

Alice John 1200 Bitcoins

7a22f1d90448953194eaf71477f67ccdf406f406f42cb1628117

Alice BoB 1700 bitcoins

Alice John 1200 Bitcoins

7a22f1d90448953194eaf71477f67ccd
f406f406f42cb1628117

Endorsing peers verify signature & execute the transaction

1) The miners trying to find the write nonce

2) Mining is like a game, you solve the puzzle and you get rewards. Setting difficulty makes that
puzzle much harder to solve and hence more time-consuming.

Alice BoB 1700 bitcoins
Alice John 1200 Bitcoins

7a22f1d90448953194eaf71477f67cc
df406f406f42cb1628117

•If not, then the nonce is changed and the process repeats again.
•The miners responsible for this are rewarded with bitcoins.
• Each validated block contains a block hash that represents the work done by
the miner.
•The nodes will verify the validity of the outcome and the miners node is
rewarded with the block reward

Disseminat
e the block
to leader

peers

So to recap:

• Its is impossible to add new block into the main chain without first finding a valid
nonce.

• The nodes will verify the validity of the outcome and the miners node is rewarded
with the block reward.

• Miners need to try and guess a pseudo random number (nonce).

• The nonce, (the random number) is calculated independently , billions of times
per second by each mining hardware system.

• These mining computers calculate billions of nonces per second. There is no

manual about this, there are completely automated operation.

Hashing and data structures

A data structure is a specialized way of storing data. There are two data structure
properties that are critical if you want to understand how a blockchain works. They are:
1.Pointers.
2.Linked Lists.
Pointers
Pointers are variables in programming which stores the address of another variable.
Usually normal variables in any programming language store data.
Eg. int a = 10, means that there is a variable “a” which stores integer values. In this
case, it is storing an integer value which is 10. This is a normal variable.
Pointers, however, instead of storing values will store addresses of other variables.
Which is why they are called pointers, because they are literally pointing towards the
location of other variables.
Linked Lists
A linked list is one of the most important items in data structures. This is what a linked
list looks like:

https://blockgeeks.com/guides/understand-blockchain-business-models/
https://blockgeeks.com/guides/understand-blockchain-business-models/
https://blockgeeks.com/guides/programming-languages/

Linked Lists

A linked list is one of the most important items in data structures. This is
what a linked list looks like:

It is a sequence of blocks, each containing data that is linked to the next
block via a pointer. The pointer variable, in this case, contains the
address of the next node in it and hence the connection is made. The
last node, as you can see, has a null pointer which means that it has no
value.

One important thing to note here, the pointer inside each block contains the
address of the next block. That is how the pointing is achieved. Now you might
be asking what does that means for the first block in the list? Where does the
pointer of the first block stay?
The first block is called the “genesis block” and its pointer lies out in the
system itself. It sort of looks like this:

If you are wondering what the “hash pointer” means, we will get there in a bit.
As you may have guessed by now, this is what the structure of the blockchain is
based on. A blockchain is basically a linked list. Let’s see what the blockchain
structure looks like:

The blockchain is a linked list that contains data and a hash pointer that points to its previous block, hence
creating the chain.

A block header contains:
•Version: The block version number.
•Time: the current timestamp.
•Hash of the previous block.
•Nonce (more on this later).
•Hash of the Merkle Root.
•The current difficulty target. (More on this
later).

let’s focus on the Hash of the Merkle Root. But before that, we need
to understand what a Merkle Tree is.

Child Nodes: For a node, the nodes below its tier which are feeding into it are
its child nodes. Wrt the diagram, the nodes labeled “Hash 0-0” and “Hash 0-
1” are the child nodes of the node labeled “Hash 0”.
Root Node: The single node on the highest tier labeled “Top Hash” is the root
node.

What is a Merkle Tree?

The above diagram shows what a Merkle tree looks like. In a Merkle tree,
each non-leaf node is the hash of the values of their child nodes.
Leaf Node: The leaf nodes are the nodes in the lowest tier of the tree. So
wrt the diagram above, the leaf nodes will be L1, L2, L3 and L4.

So what does a Merkle Tree have to do with blockchains?
Each block contains thousands and thousands of transactions. It will be very time
inefficient to store all the data inside each block as a series. Doing so will make
finding any particular transaction extremely cumbersome and time-consuming. If
you use a Merkle tree, however, you will greatly cut down the time required to find
out whether a particular transaction belongs in that block or not.

Let’s see this in an example. Consider the following
Merkle tree:

Now suppose I want to find out whether this particular
data belongs in the block or not:

