Fabric-samples

Fabric-samples is a folder provided by the Hyperledger Fabric
project containing multiple sample application projects,
necessary binary files and 61scripts meant to provide
developers with a starting point.

Docker containers

Docker containers are used to represent the entities in the network by implementing yaml files, providing the
necessary information needed by each entity to identify and communicate in the network.

The yaml files enable us to configure each entity according to their purpose, by mapping crypto-material to
each container we can specify the necessary identifications for the docker container to be able to join the
network, create channels, provide information on the other entities in the network, and invoke/query

transactions.

The network configurations are also set in each yaml file, to enable TLS (Transport Layer Security)
each communicating entity will have TLS enabled and the necessary crypto-material provided.
Setting up the necessary yaml files for each entity can be done in several ways, a developer
may want to use one file for each entity or have all entities in the same file.

« One yaml file for each peer, containing identification of the peer container, crypto-material for the peer
to be able to join a channel, propose transactions and possibly change configurations. Each
organization will have one leader peer configured to act as our anchor peer, by enabling gossip we
configure the other peers in each organization to point to our leader peer, this way the Orderer sends
updates to the leader which then the leader propagates to the other peers.

* One main yaml file containing the Orderer settings and informationthat each Orderer shares, here the
developers can decide the ledgertype, the consensus, and batch timeout.

« One yaml file for each client in the network, the client containers contain the chaincode which the client
will invoke on their respective peers.

Cryptogen

cryptogen is an utility for generating Hyperledger Fabric key material. It is provided as a means of preconfiguring a
network for testing purposes. It would normally not be used in the operation of a production network.

In order to generate the crypto-material for the network, we utilize cryptogen, utilized for a preconfigured
network in order to quickly setup the necessary key material, and should therefore not be used
inproduction. Cryptogen generates the key material through a template file;the file specifies the number of
organizations, the number of peers in eachorganization and the number of Orderers.

cryptogen generate

1. Generating the crypto-material will take the template
file asinput and generate a folder with the material

2. Generating the genesis block with the channel policy as
the-profile parameter.

3. Generating the channel file with the path to store.

Configtxgen takes a yaml file used to generate the genesis block and the channel.tx file, both needed
for the network to create a channel and join. The file is usually known as configtx.yaml and contains five
different sections; we will only mention four of the sections as one of the sections isoptional and not used
in this project.

configtx.yaml

*Organization section:Contains the details about the organizations in the network. The organizations in the
network are declared underthis section; each organization is named and given an id. The MSPDirvariable
needs the path for the crypto-material generated for the organization. The anchor peers of the organizations
are also declared,with their port numbers.

 Orderer section:Contains Orderer details related to whether the Orderer is "solo" or "Kafka" and the Orderer
addresses and their portnumbers. BatchTimeout and BatchSize specify the block generationfor the Orderer; the
Orderer will use one of these two to generate eachblock, whether the BatchTimeout is reached before the
BatchSize, orvice versa, a block is generated. These configurations are applicationspecific, each network could
have a different block configurationpolicy, and therefore no specific combination was provided byHyperledger

e We based our configurations on the fact that we would like to have a balanced amount of data in
each block, therefore we selected 100 transactions, and in cases where the transactions mighttake
some time to reach the Orderer, we selected a time of 5 seconds. The maximum block size was set to 1
MB to limit the block sizes, wedo not want each block to take too much memory space, as we would
rather have more blocks with a balanced amount of transactions,rather than a few blocks with a lot of

data.

— MaxMessageCountsets the maximum number of messagespermitted in a batch
— AbsoluteMaxBytessets the maximum number of bytes in eachmessage for each batch
— PreferredMaxBytessets the preferred maximum number ofbytes per batch

1 Orderer : &U0rdererDefaults

2

3 OrdererType: Kafka

4 Addresses:

5 - orderer0.example . com: 7050
6 - ordererl .example . com: 7050
7 - orderer2 . .example . com: 7050
B BEatchTimeout : bs

9 BatchSize:

10 MaxMessageCount: 100

AbsoluteMaxBytes: 1 MEBE
PreferredMaxBytes: 512 KB
Kafka :

BErokers:

- kEafkaO :9092

— kafkal : 9092

- kKafkaZ :9092

- kafka3 :9092

[= =
[s L | B

[These variables will allow us to select how the Orderer batches the transaction into blocks; the
code section below shows our configur-ations.

O For example, we would like to have a balanced latency and throughput, therefore we have
selected a BatchTimeout of five seconds, MaxMessageCount of 100 transactions,
AbsoluteMaxBytesof 1 mb and a PreferredMaxBytes of 512 kb.

O The standard Batch-Timeout used by the demo networks of Fabric utilize two seconds, as the
transactions are small and the network does not cause high throughput. For our networks, we
wish to test several thousands of transactions and have, therefore increased the BatchTimeout
in or-der to gather more transactions per batch, either the network takes5 seconds to create a
block, or it creates a block for every 100 trans-actions. We will also limit each block to be a
maximum of 1mb, asour invocations will contain small datasets, with more frequent in-vokes. If
the network uses Kafka mode, the Kafka brokers and their port numbers must be specified.

Solo

The Solo ordering service consists of a single node. When you use Solo, your network is clearly not decentralized and is not
fault tolerant — but that’s OK because, again, it is just for development purposes. Solo is designed to provide the ordering
service in its simplest possible form so that you can focus on other matters, such as the development of your chaincode and
application, without having to worry about the ordering service. However, this is obviously not suitable for production
deployments. For production, Fabric 1.4.0 provides the Kafka ordering service.

Kafka

The Kafka ordering service leverages a cluster of Kafka brokers and a Zookeeper ensemble to provide for a crash fault
tolerant (CFT) ordering service. It is possible for your ordering service to consist of several ordering nodes that are under
the control of different organizations on your network. However, while the result is distributed, it is still not fully
decentralized. The difference lies in the point of control because Kafka and Zookeeper are not designed to be run across
large networks, but rather in a tight group of hosts. This means that practically speaking you need to have one organization
run both the Kafka cluster and the Zookeeper ensemble. Given that, having ordering nodes run by different organizations
doesn’t give you much in terms of decentralization because they will all go to the same Kafka cluster, which is under the
control of a single organization.

» Capabilities section: This section ensures that all of the
members in the channel use the same Fabric version, in
order to avoid any impact a peer with a different version
may have on the channel.

Capabilities:

Global: &ChannelCapabilities
Vi _2: true

Orderer: &OrdererCapabilities
Vi_1: true

50 I SR I L

Profile section: The profile section consists of two parts, the first part contains the rules
generated in the previous sections given to the genesis block, and the second part
consists of the generated rules for the channel. Both of these sections are used to
generate the genesis file and the channel file, respectively.

Configtxlator allows for the update of already set configurations on the ledger, by fetching the
latest configuration block, Configtxlator translates the data to human-readable JSON versions
allowing users or applications to edit the configuration. After the edit, Configtxlator will encode
it back, the accessing user or application will sign the changes and submit to the ledger. Once
the policies are set, and the crypto-material generated, the necessary keys are mapped in the
yaml files.

OrdererOrgs:

- Name: Orderer
Domain: example.com
Template:

Count: 3
FPeerOrgs:
- Name: Orgl

WoE W =

] o

8 Domain: orgl.example.com
9 Template:

10 Count: 2

11 Users:

12 Count: 2

13 - Name: Org2

14 Domain: org2.example.com
15 Template:

16 Count: 2

17 Users:

15 Count: 2

Private data collection

Private data collection is meant for organizations on a channel to keep data private from other
organizations on the same channel, although creating a channel separated from those organizations
would solve the issue. In use cases where a network would want all of the parties to see the transaction

where EXP
represents one of the two boolean expressions AND,

1 /*#*The syntax for the endorsement policies,
OR, E is either a member or a nested EXP. */
EXPR(EL, E....]1)

/*Requests one signature from both Orgl and Org2. =*/

AND(’0Orgl .member ?,’0rg2.member ?)

e =] S N e W P2

[
—
—

peer chaincode instantiate -C <chamnelid> -mn <
chaincode name> -P "AND(’0Orgl.member’, ’0Org2.
membher ?) "

while also keeping part of the transaction private, a new channel would not be a solution. Private
data collection allows a subset of the organizations on a channel to see the plaintext data, while
others only receive a hash. We further utilized this method by splitting organizations into single
homes, to minimize the subset of homes that may read the data to only one single home. A JSON
file handles the policies for the Private data collection; the example below is a Private data
collection policy.

1 /*In addition to the endorsement policies, private
data requires the file path of the collection
config. json file */

2

3 peer chaincode instantiate -o orderer(.example.com
: 70560 --tls --cafile $O0RDERER_CA -C mychannel -c
{"Args":["Init"]}’ -n device -v vO0O -P "OR(?
OrgiMSP.member ’, ’0rg2.member)" --collections-
config $COLLECTIONS_PATH/collections_config. json

L R R

11
12
13

14
15
16
17
18
19

"name": "collectionSmarthomes",
"policy": "OR(’0OrglMSP.member’, ’0rg2MSP.

member ’, ’0rg3MSP.member’)",

"requiredPeerCount": O,

"maxPeerCount": 2,

"blockToLive": b,

"memberOnlyRead": true

"name" :"collectionSmarthomesPrivate",

"policy": "OR(’0OrgiMSP.member’, ’0rg2MSP.
member *) ",

"requiredPeerCount": 0,

"maxPeerCount": 2,

"blockToLive": b,

"memberUnlyRead": true

Each collection definition consists of six properties, these properties handle
the endorsement time, the control over the propagation of theprivate data and
the time of data purge.

Name: The name of the collection, used in the chaincode to specifythe policy
used for the invocation.

*Policy: Defines the policy for the access of the data, the organizationsthat
have access to the data are defined in a similar fashion to theendorsement

policy.

*RequiredPeerCount: The minimal number of authorized peers thatneed the
data propagated to, before the transaction is signed by thepeer and returned
to the client.

MaxPeerCount: The maximum number of authorized peers thedata will be
propagated to, for data redundancy. In cases wherethe endorsing peer
becomes unavailable between endorsement andcommit time, other
authorized peers may ask for the private data tothe other peers that received
the private data. If the value is set to Othe data will not be propagated.

*BlockToLive:The number of blocks needed before the
data is purged,to keep the data indefinitely the number
must be set to 0.

‘MemberOnlyRead:Indicates that peers will enforce that
only clientsfrom the authorized organizations are allowed
read and write accessto the data, once set to true.

Chaincode software design (in Go language

HyperLdger was one of the first platforms to support go, node.js and java as smart contract languages.
Chaincode is simply a smart contract written in any of the supported languages which implement the
prescribed interface.

The HyperLedger chaincode runs in a docker container separate from the peer who is endorsing it.
Chaincode acts as a middleware which uses the transactions submitted by the application to manage the state
of the Ledger. We are using go language for writing the chaincode.

Chaincode in smart home

The implemented application bases itself around a network of smart homes; each home will
have a set of loT devices that may generate loadon the blockchain network. The payload is
implemented as a struct withdata fields, depending on whether the network uses Private data
collection,an extra struct is implemented for the private data field, this will enable usto specify
which fields are public and which are private

Struct

The payload generated by each loT device is stored in a struct, the structcontains the necessary
information in the form of data fields. Depending onwhether the blockchain network utilizes private
data, an extra struct needs to be used for the private data to be stored. If that is the case
DeviceReading loses its Data field, and the device data is stored in the DeviceData struct instead.
The same id will be used for both structs, in order for the queries to be kept simple and orderly.

A struct containing information about the data to be
uploaded in data fields

1 // DeviceReading struct

2 type DeviceReading struct{

3 objectType string ‘json:"docType"*
4 ID string ‘jsomn:"id"*

5 Type string ‘json:"Type"

6 Data string ‘json:"data"‘

7

5 T

Private data requires an extra struct for the generation and
storage of the data to be kept private

//Data that is kept private

type DeviceData struct{
objectType string ‘json:"docType""
1D string ‘json:"id"‘¢
Data string ‘json:"data"‘

Data fields

The following fields are generated for each invoke transaction:70
IdA unique id for each device used to identify the transactioninvoked to the chain, based on a client
identification library that getsthe unique id of each client.

*TypeThis field will specify the type of device, the intention is forpossible filtering of data by device type for
future use.

DataThe data field will contain the data generated by each device,this field is the main field used in our
tests, as it will vary in size foreach test.

*DoctypeMainly used to distinguish the objects store in the statedatabase, we have set it to "document” for
each transaction.

Functions

The chaincode utilizes two main functions, for each function we have alsoimplemented an
extra function that utilizes the Private data collection:

*SendDeviceReading: Invoke function that generates the data to be uploaded to the
chain,stored as a JSON-object. SendDeviceReading needs two parameterstypeused to
specify the type of device uploading the data, andDatawhich is the payload generated by
the device.

*ReadDevice: Query function that returns the queried data as a JSON object. Usesthe
client id to query the data uploaded by the device.*SendDeviceReadingPrivate:Similar
toSendDeviceReading, but hashes the data field for everyparticipant but the invoker.

*ReadDevicePrivate: Similar toReadDevice, but enables the reading ofSendDeviceRead-
ingPrivatefor the peer that has access.

Hyperledger Caliper

Hyperledger Caliper provided by the Hyperledger project is a benchmark-ing tool for blockchains, used to
measure the performance of specific block-chain implementations. The primary purpose of Caliper is to provide
developers with a helping hand in trying to find the right blockchain frame-work, calculate resource
consumptions, and cost estimation for setting up the network. The supported metrics are success rate,
transaction through-put, transaction latency, and resource consumption (CPU, memory).

e Success rate indicates the number of transactions successfully com-mitted to the ledger. Failures can be caused by
multiple factors suchas time-outs, network limitations, peer resources, chaincode, to namea few, and therefore, a failure
cause is not easily identifiable.

e Transaction throughput indicates the number of transactions submit-ted to the ledger per second.

e Transaction latency indicates the time a transaction takes to beavailable across the whole network; this metric is
calculated pertransaction.

Hyperledger Calipers has structured its architecture into three mainlayers: the adaptation layer, the
interface and core layer, and lastly thebenchmark layer. Each layer provides functionalities that allow
Caliper to communicate with the ledger, test the performance, and generate a reportbased on the tests

e Adaptation layer: Uses framework-specific adaptors to integrate thee xisting blockchain network into the
Caliper framework.

e Interface and Core layer: Used to implement core functionalities that Caliper provides, these consist of:

—Blockchain operating interfaces: consist of operations to deploy,| nstantiate, install, invoke, and query smart
contracts.

—Resource monitor: consists of the operations for starting ands topping the monitor that fetches the resource
consumption statuses such as CPU and memory of the running network.Currently, only two types of monitors are
supported, one that monitors the local process, and one that monitors the dockerc ontainers

—Performance analyzer: consists of the operations that provide the network statistics such as TPS, delay, and
success ratio, ther esults are printed to the terminal.

—Report generator: consists of the operations that generate theHTML formatted file containing the
benchmark results.

—Resource monitor: consists of the operations for starting andstopping the monitor that fetches the resource
consumptionstatuses such as CPU and memory of the running network.Currently, only two types of monitors
are supported, one thatmonitors the local process, and one that monitors the dockercontainers.

e Benchmark layer: consists of the configuration file that
defines thetopology of the blockchain network and the
configuration files thatdefine the test cases.

Hyperledger Composer

Hyperledger composer is a toolset provided by the Hyperledger project to simplify application development
for the fabric blockchaina rchitecture and support the business-end of blockchain development; through the
use of a simplified modeling language for the definition of the network logic and entities. Their primary goal
for the framework s to accelerate application development and easier integration to the already existing or

newly developed blockchain network.

