IAoo8: Computational Logic 4. Deduction

Achim Blumensath blumens@fimuni.cz
Faculty of Informatics, Masaryk University, Brno

Tableaux

Tableau Proofs

For simplicity: first-order logic without equality
Statements φ true or φ false
Rule

Interpretation
If $\varphi \sigma$ is possible then so is $\psi_{i} \tau_{i}, \ldots, \vartheta_{i} u_{i}$, for some i.

Tableaux

Construction

A tableau for a formula φ is constructed as follows:

- start with φ false
- choose a branch of the tree
- choose a statement ψ value on the branch
- choose a rule with head ψ value
- add it at the bottom of the branch
- repeat until every branch contains both statements ψ true and ψ false for some formula ψ

$\exists x \varphi$ false

c a new constant symbol, t an arbitrary term

Example

$(A \vee B) \rightarrow \neg(\neg A \wedge \neg B)$ false

$$
\neg(\neg A \wedge \neg B) \rightarrow(A \vee B) \text { false }
$$

Example

$\neg(\neg A \wedge \neg B) \rightarrow(A \vee B)$ false

$A \vee B$ false

B false $\neg A \wedge \neg B$ false

Example

$\exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y)$ false
$\forall x R(x, x) \rightarrow \forall x \exists y R(f(x), y)$ false

Example

$\exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y)$ false

$\forall x R(x, x) \rightarrow \forall x \exists y R(f(x), y)$ false

Soundness and Completeness

Theorem
A first-order formula φ is valid if, and only if, there exists a tableau T for φ false where every branch is contradictory.

Soundness and Completeness

Theorem
A first-order formula φ is valid if, and only if, there exists a tableau T for φ false where every branch is contradictory.

Corollary
Validity of first-order formulae is recursively enumerable, but not decidable.

Soundness and Completeness

Theorem

A first-order formula φ is valid if, and only if, there exists a tableau T for φ false where every branch is contradictory.

Terminology

A tableau for a statement φ value is a tableau T where the root is labelled with φ value.
A branch B is contradictory if it contains both statements ψ true and ψ false, for some formula ψ.
A branch B is consistent with a structure \mathfrak{A} if

- $\mathfrak{A} \vDash \psi$, for all statements ψ true on B and
- $\mathfrak{A} \nLeftarrow \psi$, for all statements ψ false on B.

A branch B is complete if, for every atomic formula ψ, it contains one of the statements ψ true or ψ false.

Proof Sketch: Soundness

Lemma

If B is consistent with \mathfrak{A} and we extend the tableau by applying a rule, the new tableau has a branch B^{\prime} extending b that is consistent with \mathfrak{A}.

Corollary
If $\mathfrak{A} \not \vDash \varphi$, then every tableau for φ false has a branch that is not contradictory.

Corollary
If φ is not valid, there is no tableau for φ false where all branches are contradictory.

Proof Sketch: Completeness

Lemma

If every tableau for φ false has a non-contradictory branch, there exists a tableau for φ false with a branch B that is complete and non-contradictory.

Lemma

If a branch B is complete and non-contradictory, there exists a structure \mathfrak{A} such that B is consistent with \mathfrak{A}.

Corollary

If every tableau for φ false has a non-contradictory branch, there exists a structure \mathfrak{A} with $\mathfrak{A} \nRightarrow \varphi$.

Natural Deduction

Proof Calculi

Notation
$\psi_{1}, \ldots, \psi_{n} \vdash \varphi \quad \varphi$ is provable with assumptions $\psi_{1}, \ldots, \psi_{n}$

Proof Calculi

Notation

$\psi_{1}, \ldots, \psi_{n} \vdash \varphi \quad \varphi$ is provable with assumptions $\psi_{1}, \ldots, \psi_{n}$ φ is provable if $\vdash \varphi$.

Proof Calculi

Notation

$\psi_{1}, \ldots, \psi_{n} \vdash \varphi \quad \varphi$ is provable with assumptions $\psi_{1}, \ldots, \psi_{n}$ φ is provable if $\vdash \varphi$.

Rules

$$
\frac{\Gamma_{1} \vdash \varphi_{1} \ldots \Gamma_{n} \vdash \varphi_{n}}{\Delta \vdash \psi} \quad \begin{aligned}
& \text { premises } \\
& \text { conclusion }
\end{aligned} \quad \varphi_{1} \wedge \cdots \wedge \varphi_{n} \Rightarrow \psi
$$

Proof Calculi

Notation

$\psi_{1}, \ldots, \psi_{n} \vdash \varphi \quad \varphi$ is provable with assumptions $\psi_{1}, \ldots, \psi_{n}$
φ is provable if $\vdash \varphi$.
Rules

$$
\frac{\Gamma_{1} \vdash \varphi_{1} \ldots \Gamma_{n} \vdash \varphi_{n}}{\Delta \vdash \psi} \quad \begin{aligned}
& \text { premises } \\
& \text { conclusion }
\end{aligned} \quad \varphi_{1} \wedge \cdots \wedge \varphi_{n} \Rightarrow \psi
$$

Axiom
$\overline{\Delta \vdash \psi} \quad$ rule without premises

Proof Calculi

Notation

$\psi_{1}, \ldots, \psi_{n} \vdash \varphi \quad \varphi$ is provable with assumptions $\psi_{1}, \ldots, \psi_{n}$
φ is provable if $\vdash \varphi$.
Rules

$$
\frac{\Gamma_{1} \vdash \varphi_{1} \ldots \Gamma_{n} \vdash \varphi_{n}}{\Delta \vdash \psi} \quad \begin{aligned}
& \text { premises } \\
& \text { conclusion }
\end{aligned} \quad \varphi_{1} \wedge \cdots \wedge \varphi_{n} \Rightarrow \psi
$$

Axiom

$$
\overline{\Delta \vdash \psi} \quad \text { rule without premises }
$$

Remark

Tableaux speak about possibilities while Natural Deduction proofs speak about necesseties.

Proof Calculi

Derivation

$$
\frac{\frac{\overline{\Gamma \vdash \varphi} \quad \overline{\Delta_{\mathrm{o}} \vdash \psi_{\mathrm{o}}}}{\Delta_{1} \vdash \psi_{1}} \overline{\Gamma^{\prime} \vdash \varphi^{\prime}}}{\Sigma \vdash \vartheta}
$$

tree of rules

Natural Deduction (propositional part)

$$
\begin{array}{ll}
\left(\mathrm{I}_{\mathrm{T}}\right) \frac{\Gamma \vdash \mathrm{T}}{\Gamma \vdash} & (\mathrm{Ax}) \frac{\Gamma, \varphi \vdash \varphi}{\Gamma} \\
\left(\mathrm{I}_{\wedge}\right) \frac{\Gamma \vdash \varphi \Delta \vdash \psi}{\Gamma, \Delta \vdash \varphi \wedge \psi} & \left(\mathrm{E}_{\wedge}\right) \frac{\Gamma \vdash \varphi \wedge \psi}{\Gamma \vdash \varphi} \frac{\Gamma \vdash \varphi \wedge \psi}{\Gamma \vdash \psi} \\
\left(\mathrm{I}_{\vee}\right) \frac{\Gamma, \neg \psi \vdash \varphi}{\Gamma \vdash \varphi \vee \psi} \frac{\Gamma, \neg \varphi \vdash \psi}{\Gamma \vdash \varphi \vee \psi} & \left(\mathrm{E}_{\vee}\right) \frac{\Gamma \vdash \varphi \vee \psi \Delta, \varphi \vdash \vartheta \quad \Delta^{\prime}, \psi \vdash \vartheta}{\Gamma, \Delta, \Delta^{\prime} \vdash \vartheta} \\
\left(\mathrm{I}_{\neg}\right) \frac{\Gamma, \varphi \vdash \perp}{\Gamma \vdash \neg \varphi} & \left(\mathrm{E}_{\neg}\right) \frac{\Gamma, \neg \varphi \vdash \perp}{\Gamma \vdash \varphi} \\
\left(\mathrm{I}_{\perp}\right) \frac{\Gamma \vdash \varphi}{\Gamma \vdash \Gamma \vdash \neg \varphi} \\
\left(\mathrm{I}_{\rightarrow}\right) \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} & \left(\mathrm{E}_{\perp}\right) \frac{\Gamma \vdash \perp}{\Gamma \vdash \varphi} \\
\left(\mathrm{I}_{\leftrightarrow}\right) \frac{\Gamma, \varphi \vdash \psi}{\Gamma, \Delta \vdash \varphi \leftrightarrow \psi \psi} & \left(\mathrm{E}_{\rightarrow}\right) \frac{\Gamma \vdash \varphi \quad \Delta \vdash \varphi \rightarrow \psi}{\Gamma, \Delta \vdash \psi} \\
\end{array}
$$

Examples

$$
\vdash(\varphi \vee \psi) \rightarrow \neg(\neg \varphi \wedge \neg \psi)
$$

Examples

Natural Deduction (quantifiers and equality)

$$
\begin{array}{ll}
\left(\mathrm{I}_{\exists}\right) \frac{\Gamma \vdash \varphi[x \mapsto t]}{\Gamma \vdash \exists x \varphi} & \left(\mathrm{E}_{\exists}\right) \frac{\Gamma \vdash \exists x \varphi}{} \Delta, \varphi[x \mapsto c] \vdash \psi \\
\left(\mathrm{I}_{\forall}\right) \frac{\Gamma \vdash \varphi[x \mapsto \mathrm{\vdash})}{\Gamma \vdash \forall x \varphi} \\
\left(\mathrm{I}_{=}\right) \frac{\Gamma \vdash t+\mathrm{E}}{\Gamma \vdash t=t} & \left(\mathrm{E}_{\forall}\right) \frac{\Gamma \vdash \forall x \varphi}{\Gamma \vdash \varphi[x \mapsto t]} \\
\Gamma, \Delta \vdash \varphi[x \mapsto t]
\end{array}
$$

c a new constant symbol, s, t arbitrary terms

Examples

$$
s=t \vdash t=s
$$

Examples

$$
s=t \vdash t=s \quad \frac{\overline{s=t \vdash s=t} \quad \overline{\vdash s=s}}{s=t \vdash t=s} \quad\left(E_{=}\right)
$$

Examples

$$
s=t \vdash t=s \quad \frac{\overline{s=t \vdash s=t} \quad \overline{\vdash s=s}}{s=t \vdash t=s} \quad\left(E_{=}\right)
$$

$$
s=t, t=u \vdash s=u
$$

Examples

$$
s=t \vdash t=s \quad \frac{s=t \vdash s=t \quad \vdash s=s}{s=t \vdash t=s} \quad\left(E_{=}\right)
$$

$$
\begin{equation*}
s=t, t=u \vdash s=u \quad \overline{t=u \vdash t=u} \overline{s=t \vdash s=t} \tag{=}
\end{equation*}
$$

Examples

$$
\begin{align*}
& s=t \vdash t=s \quad \frac{s=t \vdash s=t \quad \vdash s=s}{s=t \vdash t=s} \quad\left(E_{=}\right) \tag{=}\\
& s=t, t=u \vdash s=u \quad \frac{\overline{t=u \vdash t=u} \quad \overline{s=t \vdash s=t}}{s=t, t=u \vdash s=u} \tag{=}
\end{align*}
$$

$\exists x \forall y R(x, y) \vdash \forall y \exists x R(x, y)$

Examples

$$
\begin{align*}
& s=t \vdash t=s \quad \frac{s=t \vdash s=t}{s=t \vdash t=s} \overline{\vdash s=s} \quad\left(\mathrm{E}_{=}\right) \\
& s=t, t=u \vdash s=u \quad \frac{\overline{t=u \vdash t=u} \quad \overline{s=t \vdash s=t}}{s=t, t=u \vdash s=u} \quad\left(\mathrm{E}_{=}\right. \tag{=}\\
& \exists x \forall y R(x, y) \vdash \forall y \exists x R(x, y) \quad \frac{\frac{\square y R(c, y) \vdash \forall y R(c, y)}{\forall y R(c, y) \vdash R(c, d)}}{\frac{\forall y R(c, y) \vdash \exists x R(x, d)}{\forall y R(c, y) \vdash \forall y \exists x R(x, y)}}
\end{align*}
$$

Soundness and Completeness

Theorem
A formula φ is provable using Natural Deduction if, and only if, it is valid.

Corollary
The set of valid first-order formulae is recursively enumerable.

Isabelle/HOL

Isabelle/HOL

Proof assistant designed for software verification.

General structure

```
theory T
imports T1 ... Tn
begin
    declarations, definitions, and proofs
end
```


Syntax

Two levels:

- the meta-language (Isabelle) used to define theories,
- the logical language (HOL) used to write formulae.

To distinguish the levels, one encloses formulae of the logical language in quotes.

```
datatype 'a list = Nil ("[]")
    | Cons 'a "'a list" (infixr "#" 65)
```

primrec app :: "'a list => 'a list => 'a list" $\begin{aligned} & (i n f i x r ~ " @ " ~ 65) ~\end{aligned}$
where

```
"[] @ ys = ys" |
"(x # xs) @ ys = x # (xs @ ys)"
```


Logical Language

Types

- base types: bool, nat, int,...
- type constructors: α list, α set,...
- function types: $\alpha \Rightarrow \beta$
- type variables: ' $a, ~ ' b, . .$.

Terms

- application: $f x y, x+y, \ldots$
- abstraction: $\lambda x . t$
- type annoation: $t:: \alpha$
- if b then t else u
- let $x=t$ in u
- case x of $p_{o} \Rightarrow t_{0}|\cdots| p_{n} \Rightarrow t_{n}$

Formulae

- terms of type bool
- boolean operations

$$
\neg, \wedge, \vee, \rightarrow
$$

- quantifiers $\forall x, \exists x$
- predicates $==,<, \ldots$

Basic Types

```
datatype bool = True | False
fun conj :: "bool => bool => bool" where
"conj True True = True" |
"conj _ _ = False"
datatype nat = 0 | Suc nat
fun add :: "nat => nat => nat" where
"add 0 n = n" |
"add (Suc m) n = Suc (add m n)"
lemma add_02: "add m 0 = m"
apply (induction m)
apply (auto)
done
```


Proofs

lemma add_02: "add m 0 = m"

Proofs

lemma add_02: "add m 0 = m"
apply (induction m)

Proofs

lemma add_02: "add m 0 = m" apply (induction m)

1. add $00=0$
2. $\wedge \mathrm{m}$. add $\mathrm{m} 0=\mathrm{m}==>$ add (Suc m$) 0=$ Suc m

Proofs

lemma add_02: "add m 0 = m" apply (induction m)

1. add $00=0$
2. $\wedge \mathrm{m}$. add $\mathrm{m} 0=\mathrm{m}==>$ add (Suc m) $0=$ Suc m apply (auto)
```
datatype 'a list = Nil ("[]")
    | Cons 'a "'a list" (infixr "#" 65)
```

fun app :: "'a list => 'a list => 'a list"
(infixr "@" 65)
where

```
"[] @ ys = ys" |
"(x # xs) @ ys = x # (xs @ ys)"
```

fun rev :: "'a list => 'a list" where
"rev [] = []" |
"rev (x \# xs) = (rev xs) @ (x \# [])"
theorem rev_rev [simp]: "rev (rev xs) = xs"
theorem rev_rev [simp]: "rev (rev xs) = xs" apply(induction xs)
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)

1. $\mathrm{rev}(r e v \mathrm{Nil})=\mathrm{Nil}$
2. $\wedge x 1 \times s . r e v(r e v x s)=x s==>$ rev (rev (Cons x1 xs)) = Cons x1 xs
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)
3. $\mathrm{rev}(r e v \mathrm{Nil})=\mathrm{Nil}$
4. $\wedge x 1 \times s$. $r e v(r e v x s)=x s==>$ $r e v(r e v(C o n s ~ x 1 ~ x s)) ~=~ C o n s ~ x 1 ~ x s ~$ apply(auto)
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)
5. $\mathrm{rev}(r e v \mathrm{Nil})=\mathrm{Nil}$
6. $\wedge x 1 \times s . r e v(r e v x s)=x s==>$
$r e v(r e v(C o n s ~ x 1 ~ x s)) ~=~ C o n s ~ x 1 ~ x s ~$
apply (auto)
7. $\wedge x 1 \times s$.
rev (rev xs) = xs ==>
rev (rev xs @ Cons x1 Nil) = Cons x1 xs
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply (auto)
done
lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs" apply(induction xs)
apply (auto)
8. $\wedge x 1 \times s$.
$r e v(x s$ @ ys) = rev ys @ rev xs ==>
(rev ys @ rev xs) @ Cons x1 Nil = rev ys @ (rev xs @ Cons x1 Nil)
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply (auto)
done
lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs" apply(induction xs)
apply (auto)
9. $\wedge x 1 \times s$.
$r e v(x s ~ @ ~ y s) ~=~ r e v ~ y s ~ @ ~ r e v ~ x s ~==>~$
(rev ys @ rev xs) @ Cons x1 Nil = rev ys @ (rev xs @ Cons x1 Nil)
lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" apply (induction xs)
apply (auto)
done
```
lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induction xs)
apply(auto)
done
lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induction xs)
apply(auto)
done
lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induction xs)
apply(auto)
done
theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induction xs)
apply(auto)
done
end
```


Nonmonotonic Logic

Negation as Failure

Goal
Develop a proof calculus supporting Negation as Failure as used in Prolog.

Monotonicity

Ordinary deduction is monotone: if we add new assumption, all consequences we have already derived remain. More information does not invalidate already made deductions.

Non-Monotonicity

Negation as Failure is non-monotone:

$$
P \text { implies } \neg Q \quad \text { but } \quad P, Q \text { does not imply } \neg Q \text {. }
$$

Default Logic

Rule

Derive γ provided that we can derive $\alpha_{0}, \ldots, \alpha_{m}$, but none of b_{0}, \ldots, b_{n}.

Example

$\frac{\operatorname{bird}(x): \text { penguin }(x) \text { ostrich }(x)}{\text { can_fly }(x)}$

Semantics

Definition

A set Φ of formulae is consistent with respect to a set of rules R if, for every rule

$$
\frac{\alpha_{0} \ldots \alpha_{m}: b_{0} \ldots b_{n}}{\gamma} \in R
$$

such that $\alpha_{0}, \ldots, \alpha_{m} \in \Phi$ and $B_{0}, \ldots, b_{n} \notin \Phi$, we have $\gamma \in \Phi$.

Note

If there are no restraints b_{i}, consistent sets are closed under intersection.
\Rightarrow There is a unique smallest such set, that of all provable formulae.
If there are restraints, this may not be the case. Formulae that belong to all consistent sets are called secured consequences.

Examples

The system

$$
\bar{\alpha} \quad \frac{\alpha: b}{b}
$$

has a unique consistent set $\{\alpha, \beta\}$.
The system

$$
\bar{\alpha} \quad \frac{\alpha: b}{\gamma} \quad \frac{\alpha: \gamma}{b}
$$

has consistent sets

$$
\{\alpha, b\}, \quad\{\alpha, \gamma\}, \quad\{\alpha, \beta, \gamma\}
$$

