IAoo8: Computational Logic

4. Deduction

Achim Blumensath blumens@fi.muni.cz

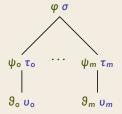
Faculty of Informatics, Masaryk University, Brno

Tableau Proofs

For simplicity: first-order logic without equality

Statements φ true or φ false

Rule



Interpretation

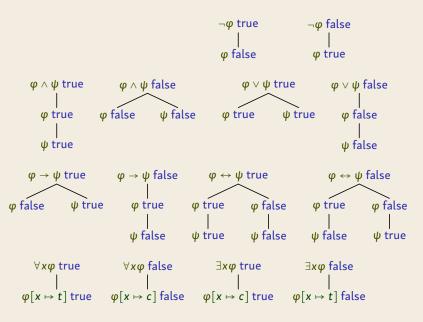
If φ σ is **possible** then so is $\psi_i \tau_i, \ldots, \vartheta_i \upsilon_i$, for some i.

Tableaux

Construction

A **tableau** for a formula φ is constructed as follows:

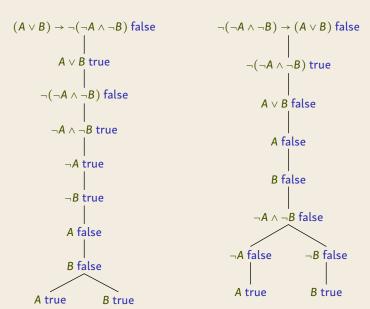
- start with φ false
- choose a branch of the tree
- choose a statement ψ value on the branch
- choose a rule with head ψ value
- add it at the bottom of the branch
- repeat until every branch contains both statements ψ true and ψ false for some formula ψ



c a new constant symbol, t an arbitrary term

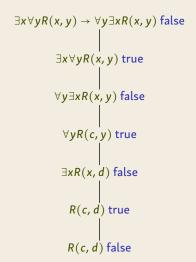
$$(A \lor B) \rightarrow \neg (\neg A \land \neg B)$$
 false

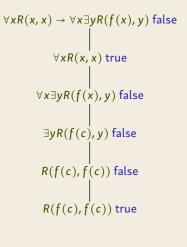
$$\neg(\neg A \land \neg B) \rightarrow (A \lor B)$$
 false



 $\exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y)$ false

 $\forall x R(x, x) \rightarrow \forall x \exists y R(f(x), y)$ false





Theorem

A first-order formula φ is valid if, and only if, there exists a tableau T for φ false where every branch is contradictory.

Theorem

A first-order formula φ is valid if, and only if, there exists a tableau T for φ false where every branch is contradictory.

Corollary

Validity of first-order formulae is **recursively enumerable**, but **not decidable**.

Theorem

A first-order formula φ is valid if, and only if, there exists a tableau T for φ false where every branch is contradictory.

Terminology

A tableau **for** a statement φ value is a tableau T where the root is labelled with φ value.

A branch θ is **contradictory** if it contains both statements ψ true and ψ false, for some formula ψ .

A branch θ is **consistent with** a structure \mathfrak{A} if

- $\mathfrak{A} \models \psi$, for all statements ψ true on θ and
- $\mathfrak{A} \not\models \psi$, for all statements ψ false on θ .

A branch θ is **complete** if, for every atomic formula ψ , it contains one of the statements ψ true or ψ false.

Proof Sketch: Soundness

Lemma

If θ is consistent with $\mathfrak A$ and we extend the tableau by applying a rule, the new tableau has a branch θ' extending θ that is consistent with $\mathfrak A$.

Corollary

If $\mathfrak{A} \not\models \varphi$, then every tableau for φ false has a branch that is not contradictory.

Corollary

If φ is not valid, there is no tableau for φ false where all branches are contradictory.

Proof Sketch: Completeness

Lemma

If every tableau for φ false has a non-contradictory branch, there exists a tableau for φ false with a branch θ that is complete and non-contradictory.

Lemma

If a branch θ is complete and non-contradictory, there exists a structure $\mathfrak A$ such that θ is consistent with $\mathfrak A$.

Corollary

If every tableau for φ false has a non-contradictory branch, there exists a structure $\mathfrak A$ with $\mathfrak A \not\models \varphi$.

Natural Deduction

Notation

$$\psi_1, \ldots, \psi_n \vdash \varphi$$
 φ is provable with assumptions ψ_1, \ldots, ψ_n

Notation

```
\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi \text{ is provable with assumptions } \psi_1, \ldots, \psi_n
\varphi \text{ is provable if } \vdash \varphi.
```

Notation

$$\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi \text{ is provable with assumptions } \psi_1, \ldots, \psi_n$$

 $\varphi \text{ is provable if } \vdash \varphi.$

Rules

$$\frac{\Gamma_1 \vdash \varphi_1 \ldots \Gamma_n \vdash \varphi_n}{\Delta \vdash \psi} \qquad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \qquad \varphi_1 \land \cdots \land \varphi_n \Rightarrow \psi$$

Notation

$$\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi \text{ is provable with assumptions } \psi_1, \ldots, \psi_n$$

 $\varphi \text{ is provable if } \vdash \varphi.$

Rules

$$\frac{\Gamma_1 \vdash \varphi_1 \ldots \Gamma_n \vdash \varphi_n}{\Delta \vdash \psi} \qquad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \qquad \varphi_1 \land \cdots \land \varphi_n \Rightarrow \psi$$

Axiom

Notation

$$\psi_1, \ldots, \psi_n \vdash \varphi$$
 φ is provable with assumptions ψ_1, \ldots, ψ_n φ is provable if $\vdash \varphi$.

Rules

$$\frac{\Gamma_1 \vdash \varphi_1 \ldots \Gamma_n \vdash \varphi_n}{\Delta \vdash \psi} \qquad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \qquad \varphi_1 \land \cdots \land \varphi_n \Rightarrow \psi$$

Axiom

$$\frac{}{\Delta \vdash \psi}$$
 rule without premises

Remark

Tableaux speak about **possibilities** while Natural Deduction proofs speak about **necesseties**.

Derivation

$$\frac{\overline{\Gamma \vdash \varphi} \quad \overline{\Delta_0 \vdash \psi_0}}{\Delta_1 \vdash \psi_1} \quad \overline{\Gamma' \vdash \varphi'}}{\Sigma \vdash \vartheta} \quad \text{tree of rules}$$

Natural Deduction (propositional part)

 (I_{\top}) $\overline{\Gamma \vdash \top}$

 $(I_{\leftrightarrow}) \frac{I, \varphi \vdash \psi \quad \Delta, \psi \vdash \psi}{I, \Lambda \vdash (0, \leftrightarrow 0)}$

$$(I_{\top}) \frac{\Gamma \vdash \varphi \quad \Delta \vdash \psi}{\Gamma, \Delta \vdash \varphi \land \psi} \qquad (E_{\wedge}) \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \qquad (E_{\wedge}) \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \qquad (E_{\vee}) \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \qquad (E_{\vee}) \frac{\Gamma \vdash \varphi \lor \psi \quad \Delta, \varphi \vdash \vartheta \quad \Delta', \psi \vdash \vartheta}{\Gamma, \Delta, \Delta' \vdash \vartheta}$$

$$(I_{\neg}) \frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \qquad (E_{\neg}) \frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi}$$

$$(E_{\perp}) \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} \qquad (E_{\perp}) \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi}$$

$$(\Gamma, \varphi \vdash \psi) \qquad (\Gamma, \varphi \vdash \varphi) \qquad (\Gamma, \varphi$$

$$(I_{\perp}) \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} \qquad (E_{\perp}) \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi}$$

$$(I_{\rightarrow}) \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} \qquad (E_{\rightarrow}) \frac{\Gamma \vdash \varphi \quad \Delta \vdash \varphi \rightarrow \psi}{\Gamma, \Delta \vdash \psi}$$

 $(\mathsf{E}_{\leftrightarrow}) \frac{\mathsf{I} + \varphi \quad \Delta \vdash \varphi \leftrightarrow \psi}{\mathsf{I} \quad \mathsf{A} \vdash \psi} \quad (+\mathsf{sym.})$

$$\vdash (\varphi \lor \psi) \to \neg (\neg \varphi \land \neg \psi)$$

$$\frac{-\frac{-\varphi \land \neg \psi \vdash \neg \varphi \land \neg \psi}{\neg \varphi \land \neg \psi \vdash \neg \varphi}}{\varphi \vdash \varphi} \frac{-\frac{-\varphi \land \neg \psi \vdash \neg \varphi \land \neg \psi}{\neg \varphi \land \neg \psi \vdash \neg \varphi}}{\neg \varphi \land \neg \psi \vdash \bot} \frac{\cdots}{\psi, \neg \varphi \land \neg \psi \vdash \bot}}{\frac{\varphi \lor \psi, \neg \varphi \land \neg \psi \vdash \bot}{\neg \varphi \lor \psi \vdash \neg (\neg \varphi \land \neg \psi)}}{\vdash (\varphi \lor \psi) \rightarrow \neg (\neg \varphi \land \neg \psi)}}$$

Natural Deduction (quantifiers and equality)

$$(I_{\exists}) \frac{\Gamma \vdash \varphi[x \mapsto t]}{\Gamma \vdash \exists x \varphi} \qquad (E_{\exists}) \frac{\Gamma \vdash \exists x \varphi \quad \Delta, \varphi[x \mapsto c] \vdash \psi}{\Gamma, \Delta \vdash \psi}$$

$$(I_{\forall}) \frac{\Gamma \vdash \varphi[x \mapsto c]}{\Gamma \vdash \forall x \varphi} \qquad (E_{\forall}) \frac{\Gamma \vdash \forall x \varphi}{\Gamma \vdash \varphi[x \mapsto t]}$$

$$(I_{=}) \frac{\Gamma \vdash s = t \quad \Delta \vdash \varphi[x \mapsto s]}{\Gamma, \Delta \vdash \varphi[x \mapsto t]}$$

c a **new** constant symbol, s, t arbitrary terms

$$s = t \vdash t = s$$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ $(E_{=})$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ $(E_{=})$

$$s = t$$
, $t = u \vdash s = u$

$$s = t \vdash t = s$$

$$\frac{s = t \vdash s = t}{s = t \vdash t = s} (E_{=})$$

$$s = t$$
, $t = u \vdash s = u$
$$\frac{\overline{t = u \vdash t = u} \quad \overline{s = t \vdash s = t}}{s = t$$
, $t = u \vdash s = u$ $(E_{=})$

$$s = t \vdash t = s$$

$$\frac{s = t \vdash s = t}{s = t \vdash t = s} \vdash (E_{=})$$

$$\exists x \forall y R(x,y) \vdash \forall y \exists x R(x,y)$$

$$s = t \vdash t = s$$

$$\frac{s = t \vdash s = t}{s = t \vdash t = s} (E_{=})$$

$$s = t$$
, $t = u \vdash s = u$
$$\frac{\overline{t = u \vdash t = u} \quad \overline{s = t \vdash s = t}}{s = t$$
, $t = u \vdash s = u$ $(E_{=})$

$$\frac{\exists x \forall y R(x,y) \vdash \forall y \exists x R(x,y)}{\exists y R(c,y) \vdash \forall y R(c,y)} \qquad (E_{\forall}) \\
\frac{\forall y R(c,y) \vdash \forall y R(c,y)}{\forall y R(c,y) \vdash \exists x R(x,d)} \qquad (I_{\exists}) \\
\frac{\exists x \forall y R(x,y) \vdash \exists x \forall y R(x,y)}{\exists x \forall y R(x,y) \vdash \forall y \exists x R(x,y)} \qquad (E_{\exists})$$

Theorem

A formula φ is provable using Natural Deduction if, and only if, it is valid.

Corollary

The set of valid first-order formulae is recursively enumerable.



Isabelle/HOL

Isabelle/HOL

Proof assistant designed for software verification.

General structure

```
theory T
imports T1 ... Tn
begin
  declarations, definitions, and proofs
end
```

Syntax

Two levels:

- the meta-language (Isabelle) used to define theories,
- the logical language (HOL) used to write formulae.

To distinguish the levels, one encloses formulae of the logical language in quotes.

Logical Language

Types

- base types: bool, nat, int,...
- **type constructors:** α list, α set,...
- function types: $\alpha \Rightarrow \beta$
- ▶ type variables: 'a, 'b,...

Terms

- **application:** $f \times y$, x + y,...
- abstraction: λx.t
- type annoation: $t :: \alpha$
- ▶ if b then t else u
- ▶ let x = t in u
- case x of $p_0 \Rightarrow t_0 \mid \cdots \mid p_n \Rightarrow t_n$

Formulae

- terms of type bool
- boolean operations

$$\neg,\,\wedge,\,\vee,\,\rightarrow$$

- quantifiers $\forall x, \exists x$
- predicates ==, <,...</p>

Basic Types

```
datatype bool = True | False
fun conj :: "bool => bool => bool" where
"conj True True = True" |
"conj _ = False"
datatype nat = 0 | Suc nat
fun add :: "nat => nat => nat" where
"add 0 n = n" |
"add (Suc m) n = Suc (add m n)"
lemma add 02: "add m 0 = m"
apply (induction m)
apply (auto)
done
```

```
lemma add_02: "add m 0 = m"
```

```
lemma add_02: "add m 0 = m"
apply (induction m)
```

```
lemma add_02: "add m 0 = m"
apply (induction m)
1. add 0 0 = 0
2. \( \text{m.}\) add m 0 = m ==> add (Suc m) 0 = Suc m
```

```
lemma add_02: "add m 0 = m"
apply (induction m)
1. add 0 0 = 0
2. \( \chim \). add m 0 = m ==> add (Suc m) 0 = Suc m
apply (auto)
```

theorem rev_rev [simp]: "rev (rev xs) = xs"

```
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)
```

```
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)
```

- 1. rev (rev Nil) = Nil
- 2. $\bigwedge x1$ xs. rev (rev xs) = xs ==>

rev (rev (Cons x1 xs)) = Cons x1 xs

```
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)
1. rev (rev Nil) = Nil
2. \( \lambda x1 \) xs. rev (rev xs) = xs ==>
    rev (rev (Cons x1 xs)) = Cons x1 xs
```

apply(auto)

```
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)
```

- 1. rev (rev Nil) = Nil
- 2. $\bigwedge x1$ xs. rev (rev xs) = xs ==>
 - rev (rev (Cons x1 xs)) = Cons x1 xs
- apply(auto) 1. ∧x1 xs.
- rev (rev xs) = xs ==>
- rev (rev xs @ Cons x1 Nil) = Cons x1 xs

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
```

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"
apply(induction xs)
apply(auto)
1. ∧x1 xs.
  rev (xs @ ys) = rev ys @ rev xs ==>
  (rev ys @ rev xs) @ Cons x1 Nil =
  rev ys @ (rev xs @ Cons x1 Nil)
```

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"
apply(induction xs)
apply(auto)
1. ∧x1 xs.
  rev (xs @ ys) = rev ys @ rev xs ==>
  (rev ys @ rev xs) @ Cons x1 Nil =
  rev ys @ (rev xs @ Cons x1 Nil)
lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply (induction xs)
apply (auto)
done
```

```
lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induction xs)
apply(auto)
done
lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induction xs)
apply(auto)
done
lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induction xs)
apply(auto)
done
theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induction xs)
apply(auto)
done
end
```

Nonmonotonic Logic

Negation as Failure

Goal

Develop a proof calculus supporting Negation as Failure as used in Prolog.

Monotonicity

Ordinary deduction is **monotone**: if we add new assumption, all consequences we have already derived remain. More information does not invalidate already made deductions.

Non-Monotonicity

Negation as Failure is non-monotone:

```
P implies \neg Q but P, Q does not imply \neg Q.
```

Default Logic

Rule

$$\frac{\alpha_0 \dots \alpha_m : \beta_0 \dots \beta_n}{\gamma} \qquad \begin{array}{c} \alpha_i & \text{assumptions} \\ \beta_i & \text{restraints} \\ \gamma & \text{consequence} \end{array}$$

Derive γ provided that we can derive $\alpha_0, \ldots, \alpha_m$, but none of β_0, \ldots, β_n .

Example

$$\frac{\mathsf{bird}(x) : \mathsf{penguin}(x) \; \mathsf{ostrich}(x)}{\mathsf{can_fly}(x)}$$

Semantics

Definition

A set Φ of formulae is **consistent** with respect to a set of rules R if, for every rule

$$\frac{\alpha_0 \ldots \alpha_m : \beta_0 \ldots \beta_n}{\gamma} \in R$$

such that $\alpha_0, \ldots, \alpha_m \in \Phi$ and $\beta_0, \ldots, \beta_n \notin \Phi$, we have $\gamma \in \Phi$.

Note

If there are no restraints θ_i , consistent sets are closed under intersection.

⇒ There is a unique smallest such set, that of all **provable** formulae.

If there are restraints, this may not be the case. Formulae that belong to all consistent sets are called **secured consequences**.

Examples

The system

$$\frac{\alpha}{\alpha}$$
 $\frac{\alpha:\beta}{\beta}$

has a unique consistent set $\{\alpha, \beta\}$.

The system

$$\frac{\alpha}{\alpha} = \frac{\alpha : \beta}{\gamma} = \frac{\alpha : \gamma}{\beta}$$

has consistent sets

$$\{\alpha, \beta\}, \{\alpha, \gamma\}, \{\alpha, \beta, \gamma\}.$$