Exercise 1 We consider (undirected) graphs as structures of the form $\mathfrak{G}=\langle V, E\rangle$ where E is the binary edge relation. Express the following statements in first-order logic.
(a) All vertices are neighbours.
(b) The graph contains a triangle.
(c) Every vertex has exactly three neighbours.
(d) Every pair of vertices is connected by a path of length at most 3 .

Exercise 2 Let f be a binary function symbol, g, h unary, and c a constant symbol.
(a) Find the most general unifier for the following pairs of terms.
(i) $f(g(x), y)$ and $f(x, h(y))$
(ii) $f(h(x), x)$ and $f(x, h(y))$
(iii) $f(x, f(x, g(y)))$ and $f(y, f(h(c), x))$
(iv) $f(f(x, c), g(f(y, x)))$ and $f(x, g(x))$
(b) Solve the following set of term equations

$$
x=f(y, z), \quad y=g(u), \quad z=h(y), \quad u=f(v, w), \quad v=f(c, w)
$$

Exercise 3 Consider the following formulae.
(a) $\exists x \exists y \forall z[z=x \vee z=y]$
(b) $\forall x[\exists y R(x, y) \rightarrow \exists y R(y, x)]$
(c) $\forall x[\forall y \exists z[R(x, f(y, z))] \rightarrow \forall y \forall z[R(f(x, y), f(x, z)) \vee R(y, z)]]$
(d) $\exists x \forall y R(x, y) \wedge \forall x \exists y R(x, y) \wedge \forall x \forall y[R(x, y) \rightarrow \exists z[R(x, z) \wedge R(z, x)]]$

For each of them
(1) transform it into Skolem normal form;
(2) transform it into a set of clauses.

Exercise 4 Use the resolution method to check that the following formulae are inconsistent.
(a) $\forall x \forall y[x \leq y \rightarrow(P(x) \leftrightarrow P(y))] \wedge \forall x \forall y[x \leq y \vee y \leq x] \wedge \exists x P(x) \wedge \exists x \neg P(x)$
(b) $\forall x \exists y[y \leq x \wedge \neg E(x, y)] \wedge \forall x \forall y[x \leq y \wedge y \leq x \rightarrow E(x, y)] \wedge \exists x \forall y[x \leq y]$
(c) $\forall x \forall y[R(x, y) \rightarrow(P(x) \leftrightarrow \neg P(y))] \wedge \forall x \forall y[R(x, y) \rightarrow \exists z[R(x, z) \wedge R(z, y)]] \wedge \exists x \exists y R(x, y)$
(d) $\forall x R(x, f(x)) \wedge \forall x \forall y \forall z[R(x, y) \wedge R(y, z) \rightarrow R(x, z)] \wedge \forall x \forall y[E(x, y) \rightarrow \neg R(x, y)]$ $\wedge \exists x E(x, f(f(x)))$

Exercise 5 Use SLD resolution to check that the following set of Horn-formulae is inconsistent.
(a) $\forall x T(x, x)$,
$\forall x \forall y \forall z[E(x, y) \wedge T(y, z) \rightarrow T(x, z)]$,
$E(a, b)$,
$E(b, c)$,
$E(c, d)$,
$\neg T(a, d)$.
(b) $\forall x T(x, x)$,
$\forall x \forall y \forall z[T(x, y) \wedge E(y, z) \rightarrow T(x, z)]$,
$E(a, b)$,
$E(b, c)$,
$E(c, d)$,
$\neg T(a, d)$.
(c) $R(c, x, x)$, $\forall x \forall y \forall z \forall w[R(x, f(y, z), w) \rightarrow R(f(y, x), z, w)]$, $\neg \forall x \forall y[R(f(x, f(y, c)), c, f(y, f(x, c)))]$.

