Exercise 1 Let f be a binary function symbol, g, h unary, and c a constant symbol. Find the most general unifier for the following pairs of terms.

- (i) f(g(x), y) and f(x, h(y))
- (ii) f(h(x), x) and f(x, h(y))
- (iii) f(x, f(x, g(y))) and f(y, f(h(c), x))
- (iv) f(f(x,c),g(f(y,x))) and f(x,g(x))

Exercise 2 Suppose we are given a predicate flight(*From*, *To*, *Time*, *Price*) containing information about direct flights including the starting airport, the destination, the flight time, and the price of a ticket. Write a Prolog program computing a predicate travel(*From*, *To*, *Stops*, *Time*, *Price*) indicating all possibilities to travel from one city to another using one or several flights.

Exercise 3 Write a Prolog predicate fib(N, X) computing the Fibonacci sequence. Evaluate fib(3, X) and fib(N, 5).

Exercise 4 Write Prolog definitions of the following predicates.

length(List, N)	N is the length of <i>List</i> .
append(X, Y, Z)	Z is the concatenation of the lists X and Y .
reverse (X, Y)	Y is the reverse of the list X .
map(X, Y)	maps a list $X = [X_1,, X_n]$ to $Y = [f(X_1),, f(X_n)]$.
$fold_left(X, Y, Z)$	maps $Y = [Y_1,, Y_n]$ to $Z = f(\dots f(f(X, Y_1), Y_2) \dots, Y_n)$.
$fold_right(X, Y, Z)$	maps $Y = [Y_1,, Y_n]$ to $Z = f(Y_1, f(Y_2,, f(Y_n, X))))$.

The Prolog notation for lists is as follows:

 $\begin{bmatrix} X, Y, Z \end{bmatrix} \begin{bmatrix} X|Y \end{bmatrix} \begin{bmatrix} X, Y|Z \end{bmatrix}.$

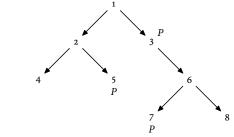
Exercise 5 Write a naive sort function

```
naive_sort(X,Y) :- permute(X,Y), sorted(Y).
```

by implementing the relations

sorted(X)	checks that the list <i>X</i> is sorted.
insert(X, Y, Z)	if the list Z is obtained from Y by inserting X at an arbitrary position.
permute(X, Y)	if the list Y is a permutation of X .

Implement merge sort using the relations


merge(X, Y, Z)	merges two sorted lists X and Y into Z .
$\operatorname{split}(X, Y, Z)$	splits the list X into two lists Y and Z.

Exercise 6 We consider undirected graphs of the form $\langle V, E \rangle$. Express the following relation in relational algebra.

- (a) *x* and *y* are not connected by an edge.
- (b) The edge $\langle x, y \rangle$ is part of a triangle.
- (c) x has at least two neighbours.
- (d) Every neighbour of *x* is also a neighbour of *y*.

Exercise 7 Evaluate the following Datalog program on the tree $\langle V, E, P \rangle$ to the right.

 $U \leftarrow S(x, y) \land W(x) \land W(y)$ $W(x) \leftarrow P(x)$ $W(x) \leftarrow E(x, y) \land W(y)$ $S(x, y) \leftarrow E(z, x) \land E(z, y) \land x \neq y$ $R(x, y) \leftarrow P(x) \land x = y$ $R(x, y) \leftarrow E(x, z) \land R(z, y)$ $R(x, y) \leftarrow R(x, z) \land E(z, y)$

