Exercise 1 Let f be a binary function symbol, g, h unary, and c a constant symbol. Find the most general unifier for the following pairs of terms.
(i) $f(g(x), y)$ and $f(x, h(y))$
(ii) $f(h(x), x)$ and $f(x, h(y))$
(iii) $f(x, f(x, g(y)))$ and $f(y, f(h(c), x))$
(iv) $f(f(x, c), g(f(y, x)))$ and $f(x, g(x))$

Exercise 2 Suppose we are given a predicate flight(From, To, Time, Price) containing information about direct flights including the starting airport, the destination, the flight time, and the price of a ticket. Write a Prolog program computing a predicate travel(From, To, Stops, Time, Price) indicating all possibilities to travel from one city to another using one or several flights.

Exercise 3 Write a Prolog predicate $\mathrm{fib}(N, X)$ computing the Fibonacci sequence. Evaluate fib $(3, X)$ and $\operatorname{fib}(N, 5)$.

Exercise 4 Write Prolog definitions of the following predicates.

$$
\begin{aligned}
\text { length }(\text { List, } N) & N \text { is the length of List. } \\
\text { append }(X, Y, Z) & Z \text { is the concatenation of the lists } X \text { and } Y . \\
\text { reverse }(X, Y) & Y \text { is the reverse of the list } X . \\
\operatorname{map}(X, Y) & \text { maps a list } X=\left[X_{1}, \ldots, X_{n}\right] \text { to } Y=\left[f\left(X_{1}\right), \ldots, f\left(X_{n}\right)\right] . \\
\text { fold_left }(X, Y, Z) & \text { maps } Y=\left[Y_{1}, \ldots, Y_{n}\right] \text { to } Z=f\left(\cdots f\left(f\left(X, Y_{1}\right), Y_{2}\right) \cdots, Y_{n}\right) . \\
\text { fold_right }(X, Y, Z) & \text { maps } Y=\left[Y_{1}, \ldots, Y_{n}\right] \text { to } Z=f\left(Y_{1}, f\left(Y_{2}, \ldots, f\left(Y_{n}, X\right) \ldots\right)\right) .
\end{aligned}
$$

The Prolog notation for lists is as follows:

$$
[] \quad[X, Y, Z] \quad[X \mid Y] \quad[X, Y \mid Z] .
$$

Exercise 5 Write a naive sort function

```
naive_sort(X,Y) :- permute(X,Y), sorted(Y).
```

by implementing the relations
$\operatorname{sorted}(X) \quad$ checks that the list X is sorted.
$\operatorname{insert}(X, Y, Z) \quad$ if the list Z is obtained from Y by inserting X at an arbitrary position.
permute $(X, Y) \quad$ if the list Y is a permutation of X.
Implement merge sort using the relations

$$
\begin{aligned}
\operatorname{merge}(X, Y, Z) & \text { merges two sorted lists } X \text { and } Y \text { into } Z . \\
\operatorname{split}(X, Y, Z) & \text { splits the list } X \text { into two lists } Y \text { and } Z .
\end{aligned}
$$

Exercise 6 We consider undirected graphs of the form $\langle V, E\rangle$. Express the following relation in relational algebra.
(a) x and y are not connected by an edge.
(b) The edge $\langle x, y\rangle$ is part of a triangle.
(c) x has at least two neighbours.
(d) Every neighbour of x is also a neighbour of y.

Exercise 7 Evaluate the following Datalog program on the tree $\langle V, E, P\rangle$ to the right.

$$
\begin{aligned}
U & \leftarrow S(x, y) \wedge W(x) \wedge W(y) \\
W(x) & \leftarrow P(x) \\
W(x) & \leftarrow E(x, y) \wedge W(y) \\
S(x, y) & \leftarrow E(z, x) \wedge E(z, y) \wedge x \neq y \\
R(x, y) & \leftarrow P(x) \wedge x=y \\
R(x, y) & \leftarrow E(x, z) \wedge R(z, y) \\
R(x, y) & \leftarrow R(x, z) \wedge E(z, y)
\end{aligned}
$$

