Exercise 1 Prove that the set of even numbers is not first-order definable in $\langle\mathbb{Z}, \leq\rangle$.

Exercise 2 We consider structures with the empty signature. Use a back-and-forth argument to show that

$$
\mathfrak{A} \equiv_{m} \mathfrak{B} \quad \text { iff } \quad|A|=|B| \quad \text { or } \quad|A|,|B| \geq m
$$

Exercise 3 Prove that the set of all complete finite binary trees whose number of vertices is divisible by 3 is not first-order definable.

Exercise 4 Which of the following languages (over $\{a, b\}$) are first-order definable?
(a) $a^{*}(b b)^{*}$
(b) $(a b)^{*}$
(c) $\left\{a^{n^{2}} \mid n \in \mathbb{N}\right\}$
(d) $\left\{a^{n} b^{m} a^{n} \mid m, n \in \mathbb{N}\right\}$
(e) The set of all palindromes.

Exercise 5 Which of the languages in Exercise 4 are monadic second-order definable?

Exercise 6 Which of the following graph classes are first-order definable? (We assume that all graphs are finite and undirected.)
(a) graphs of degree at most 3
(b) trees
(c) paths
(d) graphs of diameter at most 3
(e) graphs of even diameter
(f) graphs with a Hamiltonian cycle

