IA038 Types and Proofs

5. The Normalization Theorem

Jiří Zlatuška
March 14, 2023

Notation:

- $\longrightarrow \ldots$ one-step reduction, reducing one redex occurence into a contractum within a term
$-\rightarrow \ldots$ multi-step reduction, zero to any number of single step reductions
\checkmark means $\left(\longrightarrow \cup \longrightarrow^{-1}\right)^{\star}$ (or just equality from the denotational semantics)

Uniqueness of the normal form

Reduction \longrightarrow satisfies Church-Rosser property $\left(\longrightarrow\right.$ is CR) iff for any M, M_{1}, M_{2} such that $M \longrightarrow M_{1}$ and $M \longrightarrow M_{2}$, there is a term M_{3} such that $M_{1} \longrightarrow M_{3}$ and $M_{2} \longrightarrow M_{3}$.
Diagramatically, the following diagram comutes:

When Church-Rosser property holds true, we have:

When

$$
M=N
$$

there exists a term Z such that

The proof follows from the definition of CR by induction on transitivity definition of $=$:
When $M=N$ follows from $M \longrightarrow N$, we can have $N \equiv Z$.
When $M=N$ follows from $N=L$ and $L=M$, then by induction assumption (IA) there are terms Z_{1} and Z_{2} such that $N \longrightarrow Z_{1}, L \longrightarrow Z_{1}$ a $L \longrightarrow Z_{2}, M \longrightarrow Z_{2}$. Church-Rosser property now yields the existence of Z, such that $Z_{1} \longrightarrow Z$ and $Z_{2} \longrightarrow Z$.

Proof schema:

Hence Church-Rosser property guarantees for normal forms:
reachability For N being a normal form of M such that $M=N$, there is $M \longrightarrow N$
(When $M=N$, there is Z s.t. $N \longrightarrow Z$ and $M \longrightarrow Z$, but N is normal, hence $Z \equiv N$.)
uniqueness For any term, there axists at most one normal form.
(For two normal forms, N_{1}, N_{2}, there is $N_{1}=N_{2}$ based on transtivity of $=$; from CR there exists a term Z, for which $N_{1} \longrightarrow Z$ and $N_{2} \longrightarrow Z$, normality gives $N_{1} \equiv Z$ and $N_{2} \equiv Z$ and thus $N_{1} \equiv N_{2}$.)

Property: Reduction in the λ-calculas is CR.
Proving CR means analyzing redex/contractum behavior and development of redexes dusring subsequent reductions.

Just beware of the fact that the definition of CR cannot be simplified to single/step reductions in the assumption:
Weak Church-Rosser property:

CR generally does not follow from WCR when the existence of normal forms is not guaranteed: The following is and infinite graph of a reduction which is WCR but not CR:

The weak normalization theorem

Weakly normalizing reduction: for every term there exists a reduction into normal form
Strongly normalizing reduction: Any reduction sequence terminates (with a normal form).
Reduction in the λ-calculus is weakly normalizing.
Proof by Alan Turing (found by Hindley-Seldin in 1980):
Define redex degree for a redex

as the number of symbols in the type T_{1}.
Typed terms can be ordered by the highers redex degree contained in them, or by highest different degree of differing redex in case the highest are equal, or by the length of terms in case all redexes are of the same degree.
Converting (reducing) a redex with the highest order, no other redexes of that order arise. Hence this reduction lowers the degree, yielding a finite maximum length of any reduction sequence converting redexes of the highest degree.

Strong normalization proof by Gandy:

Define λI-terms based on λ-terms and interpreted by numerical values and functions.
Typed λI-terms are defined as a subset of λ-terms only allowing to form abstractions when bound variable occurs in the bodz, i.e.
$\| \lambda x . M$ is a λI-term for M being a λI-term and x a variable only if $x \in \mathrm{FV}(M)$.
Provide a fixed interpretation of types by a function \mathcal{J} assigning $\mathcal{J}(T) \equiv \mathcal{N}$, for any atomic type T.
Use monotonic functions defined as a family H :
For every type T define a structure
consisting of a set with an ordering:

as:

$$
\begin{aligned}
& \xrightarrow{H_{T} \subseteq H_{T} \times H_{T}}
\end{aligned}
$$

(The initial ordering $<_{\mathcal{N}}$ it the less relation over natural numbers.)

This defines a hierarchy of sets H_{T} as subsets of T containing just monotonic functions preserving the ordering when applied to arguments).
Property: When λI-terms only use members of H_{T}, they define monotonic functions of its free variables with members from H_{T} i
Let M be a λI-term of type T. For φ an interpretation assigning to free variables of M values from H, then the value

$$
\mathcal{E} \llbracket M \rrbracket] \varphi
$$

is monotonic and belongs to H_{T}.
Proof by induction on the structure of M :

1. For $M \equiv x$ we assumed $\mathcal{E} \llbracket x \rrbracket\rfloor \varphi \in H_{T}$ is monotonic.
2. For $M \equiv M_{1} M_{2}$, from the inductive assumption it follows that

$$
\mathcal{E}\left[\left[M_{1}\right]\right] \varphi \in H_{T_{1} \rightarrow T}
$$

and

$$
\mathcal{E}\left[\left[M_{2}\right]\right] \varphi \in H_{T_{1}},
$$

both monotonic it their free variables.
From the definition of $H_{T_{1} \rightarrow T}$ it follows

$$
\left.\left(\mathcal{E}\left[\left[M_{1}\right]\right\rfloor \varphi\right)\left(\mathcal{E} \llbracket\left[M_{2}\right]\right] \varphi\right) \in H_{T}
$$

and this is again monotonic function of the free variables from $M_{1} M_{2}$.
3. For $M \equiv \lambda x \cdot M_{1}$, if follows from the induction assumption,

$$
\mathcal{E}\left[\left[M_{1}\right]\right] \varphi^{\prime} \in H_{T_{2}}
$$

for any φ^{\prime}, which assigns a value from $H_{T_{1}}$ to variable x of type T. This means

$$
\forall a \in H_{T_{1}}:\left(\lambda \backslash \boldsymbol{x} \mathcal{E}\left[\left[M_{1}\right]\right][x \leftarrow \boldsymbol{x}] \varphi\right) a \in H_{T_{2}}
$$

and also (because $\mathcal{E}\left[\left[M_{1}\right]\right] \varphi^{\prime}$ is monotonic function of its free variables and $x \in \mathrm{FV}\left(M_{1}\right)$)

$$
\forall a, a^{\prime} \in H_{T_{1}}:\left(\boldsymbol{\lambda} \boldsymbol{x} \mathcal{E}\left[\left[M_{1}\right]\right][x \leftarrow \boldsymbol{x}] \varphi\right) a<\left(\lambda \boldsymbol{x} \mathcal{E}\left[\left[M_{1}\right]\right][x \leftarrow \boldsymbol{x}] \varphi\right) a^{\prime}
$$

and so

$$
\mathcal{E}[[\lambda x . M]] \varphi \in H_{T}
$$

whioch is again monotonic in its free variables.

For definition of term norms, define several base functions over natural numbers:

1. For each atomic type T define the following constants:

$$
\begin{aligned}
& \mathcal{N} \begin{array}{l}
0^{T} \text { of type } T, \\
\text { of type } T \rightarrow T \mathrm{a} \\
\text { interpreted so that } \\
\text { in type } T \rightarrow T \rightarrow T,
\end{array} \\
& \qquad \begin{array}{r}
\varphi\left(0^{T}\right)=0, \\
\varphi\left(S_{T}\right)=\text { successor function } \mathcal{N} \rightarrow \mathcal{N} \text { a } \\
\varphi\left(+_{T}\right)=\text { addition function } \mathcal{N} \rightarrow \mathcal{N} \rightarrow \mathcal{N}(\equiv \mathcal{N} \times \mathcal{N} \rightarrow \mathcal{N}) .
\end{array}
\end{aligned}
$$

Applications of contants $+_{T}$ will be written in infix notation,
instead of

2. For any types T_{1}, T_{2} define terms $S_{T_{1} \rightarrow T_{2}},+T_{1} \rightarrow T_{2}$ as

and

$$
+_{T_{1} \rightarrow T_{2}} \equiv \lambda f^{T_{1} \rightarrow T_{2}} g^{T_{1} \rightarrow T_{2}} x^{T_{1}} \cdot(f x)+T_{2}(g x) .
$$

3. Let T be an atomic type, T_{1}, T_{2} general types. Define a family of typed terms L as

(a) $L^{T} \equiv 0^{T}$
(b) $L^{T \rightarrow T} \equiv \lambda x^{T} \cdot x$
(c) $L^{\left(T_{1} \rightarrow T_{2}\right) \rightarrow T} \equiv \lambda f^{T_{1} \rightarrow T_{2}} \cdot L^{T_{2} \rightarrow T} \cdot f L^{T_{1}}$
(d) $L^{T_{1} \rightarrow\left(T_{2} \rightarrow T_{3}\right)} \equiv \lambda x^{T_{1}} y^{T_{2}} .\left(L^{T_{1} \rightarrow T_{3}} x\right)+T_{3}\left(L^{T_{2} \rightarrow T_{3}} y\right)$

In particular, we have now the constant $0 \in \mathcal{N}$, ther successor function $\mathcal{N} \rightarrow \mathcal{N}$ and the addition function $\mathcal{N} \times \mathcal{N} \rightarrow \mathcal{N}$, plus an extension of those in all types together with functions $L^{T_{1} \rightarrow T}$, with T atomic, allowing to project those into natural numbers.
Each of these functions is monotonic and belonging into H :
For any interpretation φ and any type T the following can be easily proved:

1. $\mathcal{E}\left[\left[0^{T}\right]\right\} \varphi \in H^{T}$,
2. $\mathcal{E}\left[\left[S_{T}\right]\right] \varphi \in H^{T \rightarrow T}$,
3. $\mathcal{E}\left[\left[+_{T}\right]\right] \varphi \in H^{T \rightarrow T \rightarrow T}$,
4. $\mathcal{E}\left[\left[L^{T}\right]\right] \varphi \in H^{T}$.

Now define a transformation || || صhapping terms of any tzpe into a base type (and thus to natural numbers).

In order to define $\|\|$, general λ-terms have to be embedded into λI-terms using $\overbrace{\star}$ transformation: For any term M define λI-term M^{\star} as:

1. $x^{\star} \equiv x$, for x a variable.
2. $(M N)^{\star} \equiv M^{\star} N^{\star}$.
3. $\left(\lambda x^{T_{1}} \cdot M^{T}\right)^{\star} \equiv \lambda x \cdot S_{T_{1}}\left(M^{\star}\right)+\underbrace{\left.L^{T_{1} \rightarrow T_{2}} x\right)}$.

A key property: Let M be a redex and N the corresponding contractum, i.e.

$$
M \longrightarrow N .
$$

Then it holds true
for any interpretation φ. For proof, take

$$
\begin{gathered}
M \equiv(\lambda x . P) Q \\
N \equiv P[Q / x] . \\
\\
M^{\star} \equiv\left(\lambda x \cdot S\left(P^{\star}+L x\right)\right) Q^{\star} \\
\equiv \equiv\left(S\left(P^{\star}+L x\right)\right)\left[Q^{\star} / x\right] \\
\equiv S\left(P^{\star}\left[Q^{\star} / x\right]+L Q^{\star}\right)
\end{gathered}
$$

and

Then
and

$$
\begin{aligned}
N^{\star} & \equiv(P[Q / x])^{\star} \\
& \equiv P^{\star}\left[Q^{\star} / x\right] .
\end{aligned}
$$

The result follows from monotonicity of λI-terms.

Monoonicity of reductions

Let M, N be terms satisfying

Then it holds true

$$
M \rightarrow N
$$

Norms of general terms

Transformation || || can now be defined as:
For any term M of type T_{1} define $\|M\|$ as

$$
\|M\| \equiv \mathcal{E}\left[\left[L^{T_{1} \rightarrow T}\left(M^{\star}\right)\right]\right] \varphi
$$

where T is atomic.
Hence for M, N terms satisfying
it holds true that

Strong normalization of typed λ-terms:

The typed λ-calculus reduction is strongly normalizing.

No infinite sequence of reductions

$$
M \longrightarrow M_{1} \longrightarrow M_{2} \longrightarrow \cdots \longrightarrow \cdots
$$

may exist for any term M because of the monotonicity property: The value of $\|M\|$ is finite, and decreases after any reduction
so that

There is no decreasing infinite sequence of natural numbers starting with $\|M\|$, so alse no infinite sequence of reductions.

The value of $\|M\|$ is uniquely defined for any interpretation φ because of CR.
The upper bound for the length of any sequence of reductions starting with M can be given as $\|M\|$.

