
IA158 - Scheduler

Jan Koniarik

February 20, 2023

Agenda

Project information

Scheduler requirements

API introduction

Example task

Jan Koniarik · IA158 - Scheduler · February 20, 2023 2 / 35

Project information

Project

Your goal is to write a scheduler in C.
It has to schedule multiple sets of tasks, two are specific:

Custom A set of three predefined tasks, you have to add
one task of your own. 1

Sporadic Two periodic tasks, and one special task for
sporadic jobs.

Your scheduler has to meet all the requirements, and you have
three attempts at submission.
You have to work alone.

1Please be creative

Jan Koniarik · IA158 - Scheduler · February 20, 2023 3 / 35

Scheduler requirements

Scheduler assumptions

Assumptions:
Jobs are non-preemptible
Tasks are periodic
One processor
No resources/priorities/precedence
Synchronized

Jan Koniarik · IA158 - Scheduler · February 20, 2023 4 / 35

Scheduler requirements

Scheduler requirements

Requirements:
Schedule our sets of tasks
The schedule has to be valid
The schedule shall not be hardcoded
You have to use our clock API for time.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 5 / 35

Scheduler requirements

Git

During third or fourth week of the semester, you will get a repository
for this course on https://gitlab.fi.muni.cz. We have access
to the repository and we will deploy skeleton for the project there.
You can’t share this repository with anybody, except for the teachers
of this course. It will serve as submission mechanism for the course.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 6 / 35

https://gitlab.fi.muni.cz

Scheduler requirements

Skeleton

There will be a simple C skeleton with CMake as a build system. The
skeleton defines two components: scheduler library and demo
application.
Only your library is evaluated and rated by us, we will link that library
to our tests the same way it is linked to the demo application. That
implies that if you break compability you fail the submission. 2

2We suggest that you do not touch the CMakeLists.txt

Jan Koniarik · IA158 - Scheduler · February 20, 2023 7 / 35

Scheduler requirements

Skeleton

Each set of tasks is defined in the skeleton, and schedulable with an
algorithms based on the lecture. (But beware of your custom task!)
Your solution has to schedule all sets of tasks correctly, in case there
is an error - the project will not be accepted, and you fail.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 8 / 35

Scheduler requirements

Preemptability

But the non-preemptable scheduling is NP-hard.

We designed our tasks in a way that is solvable with an algorithm
that expects preemptable jobs. It is your burden to design your task
in a way, that it does not require preemptability.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 9 / 35

Scheduler requirements

Sporadic project server

One set of tasks has to support sporadic jobs. For that, you shall
implement a periodic task representing a server. This server is
specific to this project, lets call it a project server.
This server shall have abillity to queue up reasonable amount of jobs,
and execute those once it’s periodic job is executed. User of your
schedule is expected to use ‘scheduler_on_sporadic‘ to insert a
sporadic job into the system.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 10 / 35

Scheduler requirements

Sporadic project server

The implementation details of the server is up to you, only formal
requirement is that the server is implement as any other periodic
task. That is, there should be an instance of struct task that represent
the server.
Apart from that, there are more requirements of what the server
should be able to handle:
1. there should always be a capacity for at least one job appearing
in any time during a 5s period

2. that job has relative deadline at least 2s
3. maximum execution time of said job is 20ms
The servers periodic job has to be configured in a way to meet these
demands.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 11 / 35

Scheduler requirements

Sporadic job

The requirements of the sporadic job can be visualized in a following
way:

5 sec.5 sec.5 sec.5 sec.5 sec.

You can see that during each 5s window, one job can appear at any
time point. The jobs are represented with a black dots.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 12 / 35

Scheduler requirements

Sporadic job

There is one job in the formal requirements of this file. The project
contains something that does not correlate to the requirements and
may seem ... weird.
The key property of sporadic jobs is that the scheduler may deny
them. The project intetionally generates more sporadic jobs than
required by the formal requirements - so we can actually see the
denial happening.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 13 / 35

Scheduler requirements

Implementation

We will check your implementation of the scheduler - write it in
a way that we can understand it.

Code quality (readability) is a necessity for a good scheduler, as
the code has to be easy to understand and debug.

You can not use dynamic memory.
Use fixed size buffers and fill them only partially.
Dyn. memory is not necessary in case the number of tasks is
predictable and small.
The goal of the limitation is to constrain your creativity, there is
simple solution to the project and this should partially prevent
you from overengineering it.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 14 / 35

API introduction

API introduction

Jan Koniarik · IA158 - Scheduler · February 20, 2023 15 / 35

API introduction

Interface

File task.h contains a definition of the structure holding the
tasks, job pointers, and sporadic tasks.
∗_tasks.c/h files provide a description of each set of tasks.
clock.h/c contains API to work with time.
scheduler.h/c contains API and structure for the scheduler that
you have to implement.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 16 / 35

API introduction

Time limitations

To ease the development cycle you are developing on your OS. That
is not real time and there is high chance you will notice the limits
during development of the project.
Specifically, the functions designed for time management are not
reliable. We decided to keep this solution that is simple, but not
perfect.
We will tolerate any problems caused by the nature of OS, but it’s
your task to recognize that it is the OS, not your code that is the
source of the problems.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 17 / 35

Example task

Example task

Jan Koniarik · IA158 - Scheduler · February 20, 2023 18 / 35

Example task

Tasks

We will explain how this works on the first task set. We expect that
you can handle the rest by yourself. These assigments are here for
practice and are not part of the final project.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 19 / 35

Example task

First set

The three provided tasks have these properties. All values are in
milliseconds: 3

led period: 250, deadline: 50, max. exec. time: 1
uart period: 251, deadline: 251, max. exec. time: 40
fib period: 1499, deadline: 1499, max. exec. time: 40

The led task will be implemented as an example in this presentation.

3We will not change the values for tests. Hardcoded solutions for
these numbers will be denied.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 20 / 35

Example task

Assignment
1. Download project skeleton from git.
2. Check that you can compile it (find how to use CMake properly)
3. Open main.c file

Jan Koniarik · IA158 - Scheduler · February 20, 2023 21 / 35

Example task

Step 1: Write job function

The led task blinks a LED on imaginary embedded device.

#include " task . h"

uint32_t i = 0;

void led_job (struct scheduler * , void *) {
pr intf (" Status of green led : %i " , i) ;
i = (i + 1) % 2;

}

Using a global variable is ugly, but we will live with that for now.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 22 / 35

Example task

Step 2: Write an instantiation of task structure

We want the job of blinking LED to be executed at the 250ms period.
This gives us 4 blinks per second. The maximum execution time is
estimated at 1 ms. 4

struct task LED_TASK_SIMPLE = { . period = 250 ,
. max_execution_time = 1 ,
. relative_deadline = 50 ,
. job = &led_job ,
. data = nullptr } ;

4All time units are in milliseconds

Jan Koniarik · IA158 - Scheduler · February 20, 2023 23 / 35

Example task

Step 3: Write simple scheduler

As an example, we can show a simple execution of one task - a
simple while loop. In the example, we use busy waiting to ensure the
period the task has specified.

void schedule_single_task (struct scheduler *sched , struct
task * task_ptr) {
while (true) {

uint32_t end_time = clock_time () + task_ptr −>period ;
task_ptr −>job (sched , task_ptr −>data) ;
clock_delay_ms (end_time − clock_time ()) ;

}
}

Jan Koniarik · IA158 - Scheduler · February 20, 2023 24 / 35

Example task

Assignment
Implement all three steps in previous slides.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 25 / 35

Example task

More complex task

We just made a really simple task with the scheduler capable of
executing only that one task.
This task only prints something based on the global variable.
Usage of the global variable is not optimal - what if we would
want to have multiple tasks with this job function?

That can be necessary for a lot of non-trivial tasks!

We will fix that in the following modification!

Jan Koniarik · IA158 - Scheduler · February 20, 2023 26 / 35

Example task

Step 4: Data structure

The idea is to use different data for tasks with the same job function.
For each task, remember a pointer for data and pass it to the function
each time it is called. Given that we are working with C, we have to
use void*.

struct led_task_data {
uint8_t i ;

} ;
struct led_task_data LED_DATA = { . i = 0 } ;
struct task LED_TASK = { . period = 250 ,

. max_execution_time = 20 ,

. relative_deadline = 50 ,

. job = &led_job2 ,

. data = (void *)&LED_DATA } ;

Jan Koniarik · IA158 - Scheduler · February 20, 2023 27 / 35

Example task

Step 5: Modify function

Now, we can use that data structure in the function itself:

void led_job (struct scheduler * , void * void_data) {
struct led_task_data *data = void_data ;
pr intf (" Status of green led : %i " , data−> i) ;
data−> i = (data−> i + 1) % 2;

}

Jan Koniarik · IA158 - Scheduler · February 20, 2023 28 / 35

Example task

Assignment
Implement the fourth and fifth steps.
Make a new instance of led task, with different data instances
and same function.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 29 / 35

Example task

Scheduler interface

The scheduler itself will have to use our API and data structure. See
file scheduler.h. We use one instance of struct scheduler to represent
the data of the scheduler. The definition of struct is empty, but you
should fill it wisely for the scheduler. Periodic tasks call the function
scheduler_on_sporadic to add a sporadic job into the scheduler
structure. See the periodic tasks in sporadic set for details.
The function ‘scheduler‘ is the core function that does the scheduling.
We expect that the function will never return. See ‘main‘ in demo app
to understand how it is used.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 30 / 35

Example task

Sporadic task

One set of tasks contains a sporadic jobs. These occur from within
the other tasks at random moments. Remember to correctly deny the
job in case you are not able to schedule it.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 31 / 35

Example task

API Summary

Summary of the API:
The basic unit is struct task contains:

timing constraints - period, relative deadline, and execution time
job function and job data

API uses void pointer to pass data - you have to convert the
pointer types manually
Key function is ‘schedule‘ that executes the scheduling

Jan Koniarik · IA158 - Scheduler · February 20, 2023 32 / 35

Example task

Project

Implement the scheduler for the task sets.
There will be examination dates in the IS for project submission
- you have to sign up.

Beware that the end of reservation date and submission date are
apart from each other.
Once the submission date and time ends, we will pull the project
from your repository for this course.
Only commits before the deadline will be taken into account.
In case you fail to submit the project, you lose one of the
attempts for submission.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 33 / 35

Example task

Communication

Prefered communication channels:
email 433337@mail.muni.cz

Or contact us in any other way you see fit. We will try to answer all of
your questions, but we do not guarantee a fast response, and it may
take me some time. Please be patient.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 34 / 35

Example task

Experiment

As a little social experiment, please do send us an email once you
finish reading this document. We promise that we won’t judge you for
when that happens.

Jan Koniarik · IA158 - Scheduler · February 20, 2023 35 / 35

	Project information
	Scheduler requirements
	API introduction
	Example task

