IA159 Formal Verification Methods Property Directed Reachability (PDR/IC3)

Jan Strejček

Faculty of Informatics Masaryk University

Focus

- representation of a finite system by boolean formulas
- property directed reachability

Source

 N. Een, A. Mishchenko, and R. Brayton: Efficient Implementation of Property Directed Reachability, FMCAD 2011.

Special thanks to Marek Chalupa for providing me his slides.

IC3

- the tool introduced in 2010
 (3rd place in Hardware Model Checking Competition 2010)
- abbreviation for Incremental Construction of Inductive Clauses for Indubitable Correctness
- described in A. R. Bradley: SAT-Based Model Checking Without Unrolling, VMCAI 2011.

PDR

- name for the technique implemented in IC3
- abbreviation for Property Directed Reachability
- suggested by N. Een, A. Mishchenko, and R. Brayton
- they also simplified and improved the algorithm

- originally formulated for finite systems where states are valuations of boolean variables: good for HW, not for SW
- later generalized for other kinds of systems, in particular for program verification
- combined with predicate abstraction, k-induction, ...

IC3/PDR is currently considered to be one of the most powerfull verification techniques.

Important papers about IC3/PDR

- K. Hoder and N. Bjorner: Generalized Property Directed Reachability, SAT 2012.
- A. Cimatti, A. Griggio: Software Model Checking via IC3, CAV 2012.
- A. R. Bradley: Understanding IC3, SAT 2012.
- T. Welp, A. Kuehlmann: *QF_BV Model Checking with Property Directed Reachability*, DATE 2013.
- A. Cimatti, A. Griggio, S. Mover, S. Tonetta: IC3 Modulo Theories via Implicit Predicate Abstraction, TACAS 2014.
- J. Birgmeier, A. R. Bradley, G. Weissenbacher:

Counterexample to

Induction-Guided-Abstraction-Refinement (CTIGAR), CAV 2014.

- D. Jovanović, B. Dutertre: *Property-Directed k-Induction*, FMCAD 2016.
- A. Gurfinkel, A. Ivrii: K-Induction without Unrolling, FMCAD 2017.

IA159 Formal Verification Methods: Property Directed Reachability, (PDR/IC3)

Finite state machine

- set of state variables $\bar{x} = \{x_1, x_2, \dots, x_n\}$
- states are valuations $v: \bar{x} \to \{0, 1\}$

initial states given by a propositional formula *I* over \bar{x}

■ transition relation given by a propositional formula *T* over $\bar{x} \cup \bar{x}'$, where $\bar{x}' = \{x'_1, \dots, x'_n\}$ describe the target states

Property

siven by a propositional formula P over \bar{x}

The problem

To decide whether all reachable states of a given finite state machine (\bar{x}, I, T) satisfy a given property *P*.

$$\begin{split} \bar{x} &= \{x_{1}, x_{2}\} \\ I &= \neg x_{1} \land \neg x_{2} \\ T &= (\neg x_{1} \land \neg x_{2} \land \neg x_{1}' \land \neg x_{2}') \lor (\neg x_{1} \land x_{2} \land \neg x_{1}' \land x_{2}') \lor (\neg x_{1} \land x_{2} \land \neg x_{1}' \land \neg x_{2}') \lor (x_{1} \land x_{1}' \land x_{2}') \lor (x_{1} \land x_{1}' \land x_{2}') \lor (x_{1} \land x_{1}' \land x_{2}') \lor (x_{1} \lor x_{2} \lor \neg x_{1}' \land \neg x_{2}') \land (x_{1} \lor \neg x_{2} \lor \neg x_{1}') \land (x_{1} \lor \neg x_{2} \lor \neg x_{1}' \lor \neg x_{2}') \land (\neg x_{1} \lor \neg x_{2} \lor x_{1}') \land (\neg x_{1} \lor \neg x_{2} \lor x_{1}') \land (\neg x_{1} \lor \neg x_{2} \lor x_{2}') \land (\neg x_{1} \lor \neg x_{2} \lor x_{1}') \land (\neg x_{1} \lor \neg x_{2} \lor x_{2}') \land (\neg x_{1} \lor \neg x_{2} \lor x_{1}') \land (\neg x_{1} \lor \neg x_{2} \lor x_{2}') \end{aligned} \\ \mathcal{P} &= \neg x_{1} \lor \neg x_{2} \end{split}$$

IA159 Formal Verification Methods: Property Directed Reachability, (PDR/IC3)

- for any formula F over x̄, F' denotes the same formula over x̄'
- cube is a conjunction of literals
- clause is a disjunction of literals
- negation of a cube is a clause (and vice versa)
- **a** cube with all variables of \bar{x} represents at most one state
- a set of clauses $R = \{c_1, \ldots, c_k\}$ is interpreted as conjunction $c_1 \land \ldots \land c_k$
- each formula can be identified with a set of states (and vice versa)

Intuition

A set S of states is inductive invariant if $S \wedge T \implies S'$.

We are looking for an inductive invariant S satisfying

- \blacksquare $I \implies S$ (i.e. S contains all reachable states) and
- \blacksquare $S \implies P$ (i.e. all states of S satisfy the property).

Intuition

A set S of states is inductive invariant if $S \wedge T \implies S'$.

We are looking for an inductive invariant S satisfying

- I \implies S (i.e. S contains all reachable states) and
- \blacksquare *S* \implies *P* (i.e. all states of *S* satisfy the property).

Intuition

A set S of states is inductive invariant if $S \wedge T \implies S'$.

We are looking for an inductive invariant S satisfying

- \blacksquare $I \implies S$ (i.e. S contains all reachable states) and
- \blacksquare $S \implies P$ (i.e. all states of S satisfy the property).

Note that P does not have to be an inductive invariant.

Traces

The algorithm gradually builds traces, which are sequences R_0, R_1, \ldots, R_N of formulas called frames such that

$$\begin{array}{l} R_0 = I \text{ and for all } i < N \\ R_i \implies R_{i+1} \\ R_i \wedge T \implies R'_{i+1} \\ R_i \implies P \end{array} \end{array}$$

Traces

The algorithm gradually builds traces, which are sequences R_0, R_1, \ldots, R_N of formulas called frames such that

$$R_0 = I \text{ and for all } i < N$$
 $R_i \implies R_{i+1}$
 $R_i \land T \implies R'_{i+1}$
 $R_i \implies P$

Intuitively, each R_i represents a superset of states reachable from initial states in at most *i* steps.

Traces

The algorithm gradually builds traces, which are sequences R_0, R_1, \ldots, R_N of formulas called frames such that

$$R_0 = I \text{ and for all } i < N$$
 $R_i \implies R_{i+1}$
 $R_i \land T \implies R'_{i+1}$
 $R_i \implies P$

Intuitively, each R_i represents a superset of states reachable from initial states in at most *i* steps.

Moreover, for each i > 0 it holds that

- *R_i* is a set of clauses
- $\blacksquare R_{i+1} \subseteq R_i \text{ (which implies } R_i \implies R_{i+1})$

- let R_0, \ldots, R_N be a trace where $R_N \implies P$ does not hold
- let *s* be a state satisfying $R_N \land \neg P$
- we want to prove that s is not reachable in N steps → so called proof-obligation (s, N)

- 1 check satisfiability of $R_{k-1} \wedge T \wedge s'$
- 2 if unsatisfiable, then
 - R_{k-1} is strong enough to block *s*
 - thus we can add the clause $\neg s$ to R_k
 - we add it also to all R_1, \ldots, R_{k-1} to keep $R_{i+1} \subseteq R_i$ valid
 - proof-obligation solved
- 3 if satisfiable, then
 - *s* has some immediate predecessor *t* in R_{k-1}
 - if k 1 = 0 then return property violated and extract counterexample from proof-obligations
 - if k 1 > 0 then solve proof-obligation (t, k 1) and go to 1

Proof-obligations

Proof-obligations

IA159 Formal Verification Methods: Property Directed Reachability, (PDR/IC3)

PDR: high level view

- **1** if $I \land \neg P$ is satisfiable then return property violated
- **2** $R_0 := I$
- 3 N := 0
- 4 while $R_N \wedge \neg P$ is satisfiable do
 - find a state *s* satisfying $R_N \land \neg P$
 - solve proof-obligation (*s*, *N*)

5
$$R_{N+1} := \emptyset$$

7 propagate learned clauses

• for each *i* from 1 to N-1

• for each clause $c \in R_i$, if $R_i \wedge T \implies c'$ then add c to R_{i+1}

- 8 if $R_i = R_{i+1}$ for some *i* then return property satisfied (R_i is inductive invariant)
- 9 go to 4

Termination follows from finiteness of considered systems

- each proof-obligation must be solved in finitely many steps (either successfully or by detection of proterty violation)
- if the shortest path to a state violating *P* has *j* steps, then some state violating *P* is discovered when *N* = *j*
- if *P* is satisfied, an inductive invariant is eventually found as
 - there are only finitely many sets of states
 - **\square** R_0, R_1, \ldots, R_N always represent sets ordered by inclusion
 - if *R_i* and *R_{i+1}* become semantically equivalent, then clause propagation makes them also syntactically equivalent

Termination follows from finiteness of considered systems

- each proof-obligation must be solved in finitely many steps (either successfully or by detection of proterty violation)
- if the shortest path to a state violating *P* has *j* steps, then some state violating *P* is discovered when *N* = *j*
- if *P* is satisfied, an inductive invariant is eventually found as
 - there are only finitely many sets of states
 - **\square** R_0, R_1, \ldots, R_N always represent sets ordered by inclusion
 - if *R_i* and *R_{i+1}* become semantically equivalent, then clause propagation makes them also syntactically equivalent

Still, for a system with $\bar{x} = \{x_1, ..., x_n\}$, we may need a trace with up to 2^n elements to find an inductive invariant.

The presented algorithm is correct, but slow. PDR uses several tricks to boost efficiency, in particular it

- generalizes blocked states
- uses relative induction in proof-obligation solving
- blocks states in future frames

Generalization of blocked states

- the presented proof-obligation algorithm adds ¬s to R_k when s is blocked, i.e. R_{k-1} ∧ T ∧ s' is unsatisfiable
- PDR generalizes this state to a set of states that are blocked for the same reason
- there are several ways to achieve that
 - use ternary simulation
 - use unsat cores
 - use interpolants
 - manually drop parts of s

Generalization of blocked states

- the presented proof-obligation algorithm adds ¬s to R_k when s is blocked, i.e. R_{k-1} ∧ T ∧ s' is unsatisfiable
- PDR generalizes this state to a set of states that are blocked for the same reason
- there are several ways to achieve that
 - use ternary simulation
 - use unsat cores
 - use interpolants
 - manually drop parts of s

Use of unsat cores

- one can build the cube r' of the literals of s' that appear in the unsat core and then add ¬r to R_k
- the clause $\neg r$ is smaller than $\neg s$ and represents less states

Relative induction in proof-obligation solving

- to solve proof-obligation (s, k), we checked $R_{k-1} \wedge T \wedge s'$
- PDR checks satisfiability of $R_{k-1} \land \neg s \land T \land s'$ instead
- this query is more likely to be unsatisfied (it has one more clause) and state s can be blocked sooner
- in fact, it checks whether $\neg s$ is inductive relative to R_{k-1} : the query is unsatisfiable iff $(R_{k-1} \land \neg s \land T) \implies \neg s'$
- intuitively, in this way we ignore self-loops of the system

Relative induction in proof-obligation solving

- to solve proof-obligation (s, k), we checked $R_{k-1} \wedge T \wedge s'$
- PDR checks satisfiability of $R_{k-1} \land \neg s \land T \land s'$ instead
- this query is more likely to be unsatisfied (it has one more clause) and state s can be blocked sooner
- in fact, it checks whether $\neg s$ is inductive relative to R_{k-1} : the query is unsatisfiable iff $(R_{k-1} \land \neg s \land T) \implies \neg s'$
- intuitively, in this way we ignore self-loops of the system
- in fact, PDR combines this technique with the generalization of blocked clauses
- thus, PDR searches for a subclause (ideally minimal) $c \subseteq \neg s$ such that $I \implies c$ and $(R_{k-1} \land c \land T) \implies c'$

Thank you for your attention!

- individual oral exam (approx 30 min)
- open-book exam, what matters is your understanding
- every student gets one randomly selected topic to explain
 - overview of formal methods
 - reachability in pushdown systems
 - partial order reduction
 - ...