

Introduction to Complex Networks, Basic Description

IV124

Josef Spurný & Eva Výtvarová

Faculty of Informatics, Masaryk University

February 24, 2023

Complex systems, complex networks

Complexity, complex system

Complex system

- many units interacting with each other
- nontrivial interaction structure

Many shared properties

- discrete entities connected by (binary) connections (links)
- emergent properties which are more then just a summation of sub-parts
- important properties on many scales (multi-scale systems)

Examples of complex systems

Natural systems

biological networks: gene expression, metabolic networks,...

inter-species interaction: food network

Social systems

- social networks: friendship, communication,...
- science: citation network
- economic network: world trade

Technological systems

■ internet, electrical network, transport network

Complex systems, complex networks

Complex Network Analysis

How? Data collection → Analysis + Visualization Why? Insight + Prediction

Graphs and networks

Graph G = (V, E):

- V set of vertices
- $E \subseteq V \times V$ set of directed edges
- or $E \subseteq \{\{a, b\}; a, b \in V\}$ undirected edges

Graphs and networks

Weighted graph G = (V, E, w)

• weight function $w: E \to \mathbb{R}$

Multigraph G = (V, E) E is a multiset

Link strength

Strong links

- Structure
- Stability in time
- Resistant to change
- Short range low prob. of new info
- Removal = high impact

Weak links

- Flexibility, adaptability
- High rate of fluctuance
- Susceptible to change
- Long range high prob. of new info
- Removal = insignificant

Optimal link ratio

20 strong : 80 weak

- Ensures "dynamic stability"
- Adaptability
- Flexibility
- Resistance to stress
- Ability to relax
- Too little weak links: rigidity, fragility
- Too many weak links: instability, chaotic behavior

Graphs and networks – examples

World trade

oriented, weighted (sum of transactions)

Social networks - friendship

undirected, unweighted

Protein interaction

undirected, unweighted, loops

Organization social network

undirected, weighted multigraph (multilayer network)

- edge vs. link / connection
- vertex vs. node / agent

A term *graph* is usually used in case of general mathematical apparatus, in models of specific systems we mostly use a term *network*.

Definition of a network describing a real system

What are the nodes? What are the edges?

- more possibilities of abstraction over the same dataset
- depends on a specific system, available data and research questions

For the same set of nodes we can create different networks

- frequency of email communication: cooperation network
- friendship network
- frequency of in-person meetings: epidemiology network

Network analysis – relevant questions

Network structure understanding

- which nodes are important in the network?
- do the nodes form clusters (communities)?
- is there any regularity in the structure of connections?

Study of network evolution

- how was the network created? How does it grow?
- Is there a suitable model for our network?

Dynamic processes on networks

- how does a diffusion of information or disease evolves?
- what is a temporary profile of a communication between nodes?

We will look into these topics in future lectures.

Data structures

List of neighbors:

list of neighbors for each node

Adjacency matrix

- rows nodes (from), columns nodes (to)
- 1 equals to existence of an edge, otherwise 0
- weighted graphs: an edge weight instead of 1

diagonal: loops

Adjacency matrix – example

Adjacency matrix – example

Adjacency matrix – example

(0	3	0	1.9	2.2\
3	0	0.5	0	0
0	0.5	0	2.1	0
1.9	0	2.1	0	6.9
2.2	0	0	6.9	o /

Zachary Karate Club

- Domain: Anthropology
- Paper: Wayne W. Zachary: An Information Flow Model for Conflict and Fission in Small Groups
- Background story:
 - New instructor introduced; after some time, he proposes increased training fee
 - Club President refuses, seeing this as his intent to make more money
 - Both figures have their own supporters
 - Tension escalates; the club splits into two

Karate Club Network

Links present if members interact outside karate lessons

Karate Club Adjacency Matrix

										1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3
	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4
1	0	1	1	1	1	1	1	1	1	0	1	1	1	1	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0
2	1	0	ī	1	0	ō	0	1	ō	0	ō	ō	0	1	ō	ō	ō	ī	0	ĩ	ő	i	õ	ō	0	ō	ő	ō	õ	ő	ĩ	ō	õ	ő
3	î	ĭ	ô	î	ŏ	ŏ	ŏ	î	ĩ	ĩ	ő	ŏ	ŏ	î	ő	ŏ	õ	ò	ŏ	ô	ő	ô	ŏ	ŏ	õ	ŏ	ŏ	ĭ	ĭ	ň	ô	ň	ĭ	ň
4	1	1	1	0	ō	ō	0	1	0	0	õ	ō	1	i	0	ō	õ	ō	ő	ō	ő	ŏ	ő	ŏ	õ	ŏ	ŏ	ò	ô	ŏ	ŏ	ŏ	ò	ŏ
5	1	0	ō	0	ō	0	1	0	0	0	ī	ō	ō	ō	0	0	0	ō	0	ō	ō	0	ō	0	õ	ō	ō	0	ō	ō	ō	õ	ō	0
6	1	0	0	0	0	0	1	0	0	0	1	0	ò	0	0	ò	1	ò	0	0	ò	0	0	ō	ō	ō	0	ò	ō	ō	ō	ō	ō	0
7	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
10	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
11	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
17	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
20	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
22	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	1
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
28	0	0	1	0	0	0	0	0	0	U	0	U	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1
29	0		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
30	0		0	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1
20	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	U U	U	1	1
32	0	0	1	0	0	0	0	0		0	0	0	0	0	1		0	0	0	0	0	0	0		1	1	0	0	1	0	0	0	1	1
24	~	0	-	0	0	5	0	3	÷		5	5	2		-		0	0	-		4	0		1	0	0		0	0	1	1	1	U	1
																											- 1 -	- 1 -						• •

Karate Club Adjacency Matrix

Gephi - Force Atlas Layout

General observations

- Giant component, no submodules
- Unweighted, undirected, unreflexive network

$$N = 34, L = 78$$

Karate Club - Node Degree Centrality

avg. degree = 4.588

Karate Club - Modularity

pink \approx 53 %, green \approx 47 %

Available tools

Matlab or R

- Networkx for Python
- Open-Source Desktop Apps:
 - CytoScape (bioinformatics)
 - Gephi (swiss knife)
 - SocNetV (built-in web crawler)
- Specific purpose: Netlytic
 - web-based
 - text and network analysis of public discussion media (Reddit, Twitter, YouTube, etc.)
- Many more...

MUNI FACULTY OF INFORMATICS