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Random Graphs

Random Graph Model

Why model a random graph:
Properties can be mathematically derived
Useful for comparison with a real network:

What are the differences?
What does it tell us about the network?

Erdös-Rényi random graph model:
G(N, L) model, where L is a number of links randomly placed
among N nodes (proposed by Erdös and Rényi)
G(N, p), where N is the number of nodes and p is the probability
of connection between two nodes (more commonly used, but
actually proposed by Edgar Gilbert in 1959)
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Random Graphs

Erdös-Rényi Model: Properties

A probability, that a random network has exactly |E| edges, is defined
by binomial distribution:

P(|E|) =
(Emax

|E|
)
p|E|(1− p)Emax−|E|

where Emax = N(N − 1)/2 is the maximum number of edges

A probability that a randomly selected node has a degree k:
Binomial distribution: P(k) =

(N−1
k

)
pk(1− p)N−1−k(N−1

k

)
selection of k nodes

pk : probability of k edges forming
(1− p)N−1−k : absence of remaining edges
k = p(N − 1)
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Random Graphs

Erdös-Rényi Model: CC

Clustering coefficient
Ci =

Li
ki(ki−1)

substituting Li with p
ki(ki−1)

2 – probability of a link between
neighbors

hence Ci =
pki(ki−1)
ki(ki−1) = p

For real sparse networks, C is indeed very small.
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Random Graphs

Erdös-Rényi Model: Average Path Length

Derivation
consider a network with a given k

on average, a node has k
d
neighbors at a distance of d

thus, the number of nodes at a distance of d is N(d) = k
d+1−1
k−1

but N(d) ≤ N, so kdmax ≈ N and dmax = log(N)
log(k)

for most networks, a good approximation for the average path
length is d ≈ ln(N)

ln(k)
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Random Graphs

Erdös-Rényi Model: Average Path Length

δ = k = average degree
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Random Graphs

Gephi demo: Random Graphs

. . .
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Random Graphs

Netlogo demo: Random Graphs

. . .
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Giant Component

Giant Component

NG = size of the largest component
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Giant Component

Giant Component

Subcritical regime k < 1
no giant component
largest clusters NG ≈ lnN
clusters are trees of comparable size, there is no "winner"
clusters grow much slower than network, hence NG/N → 0 as
N → ∞
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Giant Component

Giant Component

Critical point k = 1
no giant component, numerous small components
largest clusters are typically much larger than in subcritical
regime, NG ≈ N2/3

still, the largest cluster connects only an insignificant fraction of
all nodes
clusters may contain loops

J. Spurný, E. Výtvarová · Network Models · March 17, 2023 11 / 33



Giant Component

Giant Component

Supercritical regime k > 1
one giant component
relevant to most real-world systems
largest clusters NG ≈ (p− pc)N, where pc is 1N
small clusters are trees (isolated vertices)

J. Spurný, E. Výtvarová · Network Models · March 17, 2023 12 / 33



Giant Component

Giant Component

Fully connected regime k ≥ lnN
one giant component
giant component absorbs all nodes and clusters, hence NG = N
(no isolated nodes)
yet the network is still relatively sparse
we receive complete graph only when k = N − 1
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Giant Component

Giant Component Evolution
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Giant Component

Netlogo demo: Component

. . .
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Giant Component

Giant Component: Resistance to Node Failure

ER(2000, 0.015)

We may need to remove up to 70% nodes before network partitions.
Removing 95% nodes, half of the remaining are still connected
through a path.
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Small Worlds

Strength of Weak Links1

Research question: How do people seek a new job?
Hypothesis: Your family would help you
Study results: Most commonly, a friend of a friend will give you a
good tip

1Granovetter, M. S. (1973). The strength of weak ties.
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Small Worlds

Small World Problem2

What is the probability that two randomly selected people will know
each other?

300 individuals from different places in the USA
the goal was to deliver a letter to a target person in Boston
through personal contacts

Results:
64 successful chains
on average 6.2 steps: 6 degrees of separation

2Milgram, S. (1967). The small world problem. Psychology today, 2(1),
60-67.
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Small Worlds

Milgram’s Experiment: Why as low as 6?

Random social networks:
assumes 500-1500 contacts per person3

for a random network, three steps involve ∼ 5003 = 125 · 106
individuals

Small World Property: d ≈ ln(N)
ln(k)

for US pop ≈ 330M and 500 contacts, d ≈ 3.16 (EU pop ≈ 450M,
then d ≈ 3.20)
in general, ln(N) ≪ N, therefore path length is of orders of
magnitude smaller than network size
small world phenomenon depends logarithmically on network size

3Pool & Kochen (1978)
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Small Worlds

Which Model to Choose?

Desired properties:
small diameter (average path length): l ≈ ln(N)
high clustering coefficient: C ≫ Crand

model clusters small diameter
Erdös Rényi no yes
Barabási-Albert4 no yes
grid yes no
? yes yes

4this model did not yet exist at the time
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Small Worlds

Watts-Strogatz Model5

WS(N, k, p)

Procedure:
start with N nodes connected to their k nearest neighbors
for each edge, with probability p, randomly rewire the target
node

For certain values of p, we obtain both high C and low l

5Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of
‘small-world’networks. Nature, 393(6684), 440-442.
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Small Worlds

Watts-Strogatz Model

6

6Sporns O. (2011)
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Small Worlds

Watts-Strogatz Model

7

http://bit.ly/1O2WBIL

7Sporns O. (2011)
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Small Worlds

Watts-Strogatz: ukázka

. . .
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Small Worlds

Forest Fire Model8

Motivation:
Watts-Strogatz model does not create a scale-free network
Random rewiring is difficult to interpret

Procedure:
At each step, we add a node u
We randomly select and ignite a connection point
The fire iteratively spreads with probability p, r times less likely
through incoming edges
We attach the burned edges to u

8Leskovec et. al (2005)
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Small Worlds

Forest Fire Model – Properties

Preferential attachment: power-law degree distribution
Community-driven attachment: clustering
Only two parameters

9

9Leskovec et. al (2005)
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Small Worlds

Small Worlds vs Efficiency10

Intuition:
In physical networks (transportation, neural, etc.), there is a
trade-off between maximum connectivity and the cost of
building connections
The evaluation function E = λL+ (1− λ)W
L is the characteristic path length, W is the total cost of
connections (for a single edge, it depends on the distance
between nodes), λ indicates a preference for L vs W

10Mathias & Gopal (2000)
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Small Worlds

Small worlds vs efficiency

Result:
When network minimizes wiring (λ → 0), regular graphs are
obtained
When network maximizes wiring (λ → 1), random networks are
obtained
For intermediate values, we get small worlds with hubs – note
that hubs do not emerge in classic WS model
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Small Worlds

11

11Mathias & Gopal (2000). Small Worlds: How and Why
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Small Worlds

Milgram’s Experiment – Navigation

Observation:
with each step, the letters get closer to their addressee
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Small Worlds

Milgram’s Experiment Nowadays12

Navigation over geo-tagged Twitter Network:
knowing only location, it is quite easy to reach the right city
however, on a smaller scale (inside the city), a letter gets ’lost’
and spends much more time looking for the right addressee
In Milgram’s experiment, participants used other than just
geographic info (e.g., occupation, social status...)

12Szüle et al. (2014). Lost in the City: Revisiting Milgram’s Experiment
in the Age of Social Networks.
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Small Worlds

Kleinberg’s Model13

Motivation:
Utilize local knowledge of the geographic location of the target
and other nodes

Procedure:
Nodes are placed on a grid
Random edges are added:
p(u, v) = d(u, v)−α

where α > 0

Findings:
there is a specific value of α which allows optimal (fast)
navigation (α = 2)
any other value requires asymptotically larger delivery time

13Kleinberg, J. (2000). Navigation in a small world.
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