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Models and Networks

Models and Networks

model (network) clusters small diameter hubs
Grid yes no no
Erdös-Rényi (random) no yes no
Watts-Strogatz (small world) yes yes no
Barabási-Albert (scale-free) no yes yes

Many real-world networks contain hubs:
protein-protein interaction, gene expression, metabolic networks
human communication (phone calls, emails...)
human interaction (science / movie cooperation, wealth
distribution...)
www, internet, power grids
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Models and Networks

Generating Random Networks with Given pk

General approach:
Generate a random network based on a given degree
distribution pk .
Allows for the creation of surrogate data for a real network.
Does not reveal anything about the origin of the network’s
structure itself.

Three main variants:
Degree-preserving randomization
Generative models

Configuration model
Hidden variable model
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Models and Networks

Degree-Preserving Randomization

Procedure:
Input an existing network
Randomly select a pair of edges and swap them
Multilinks are forbidden
Repeat until all links are swapped at least once
(i, j), (k, l) → (i, l), (k, j)

Properties:
Preserves the size, density, and pk of the network.
Other parameter-dependent properties are lost.
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Models and Networks

Degree-Preserving randomization

1

1Barabási: Network Science Book
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http://networksciencebook.com/chapter/4#generating-networks


Models and Networks

Configuration Model

Procedure:
Input a set of nodes with given degrees (obtained from
adjacency matrix)
Links are cut in a half such that they remain stubs
Randomly connect pairs of stubs to get links

Properties:

Probability of an edge between nodes i and j: kikj
2|E|−1 =⇒ prefers

connecting high-degree nodes
Leads to the creation of loops and multiple edges
Degree of nodes is preserved, network is random
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Models and Networks

Hidden variable model

Procedure:
start with isolated nodes
assign each node a parameter value ηi from the distribution ρ(η)

add edge (i, j) with probability ηiηj
⟨η⟩N

e.g., for scale-free networks: ηi = c/iα, i = 1, . . . ,N
results in a network with pk ≈ k−(1+ 1

α )

Properties:
does not create multi-edges and loops
flexible regarding the desired pk
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Models and Networks

Hidden variable model

2

2Barabási: Network Science Book
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http://networksciencebook.com/chapter/4#generating-networks


Models and Networks

Which model to choose?

3

3Barabási: Network Science Book
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Models and Networks

Growth models

Motivation:
we are interested in the principles behind the scale-free nature
of networks shared across vastly different systems

Observation:
real networks often form through gradual evolution (adding
nodes)
citation network, WWW, . . .
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Models and Networks

Preferential attachment

Intuition:
newly arriving nodes are more likely to be connected to popular
nodes with high ki
rich get richer effect

General procedure:
iteratively add a node with a given number of edges
the probability of connecting to an existing node j depends on kj

J. Spurný, E. Výtvarová · Preferential attachment · March 31, 2023 11 / 30



Models and Networks

Barabási-Albert Model

Procedure
each new node arrives with m edges
the probability of attaching to node i is given by:

Π(ki) =
ki∑
j kj

Resulting degree distribution:

p(k) ≈ 2m2k−3
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Models and Networks

Netlogo demo

. . .
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Models and Networks

Nonlinear preferential attachment

In general, Π(k) ∼ kα

Sublinear (α < 1)
Not enough to create hubs: random network

Linear (α ≈ 1)
Scale-free network

Superlinear (α > 1)
The tendency of rich-get-richer dominates
Winner-takes-all: star topology
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Models and Networks

4

4Barabási: Network Science Book
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http://networksciencebook.com/chapter/5#non-linear


Models and Networks

Bianconi-Barabási Model

Motivation:
BA model favors older nodes (rich-get-richer)
However, in real-world, older nodes are not necessary the
richest: Myspace vs. Facebook; Yahoo vs. Google...
capable nodes can surpass existing dominant hubs – add the
fitness parameter to the model
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Models and Networks

Bianconi-Barabási Model

Procedure
in each step, add a node with m edges and fitness η from a given
distribution ρ(η)

the probability of connecting the new incoming node to node i is
given by:

Πi =
ηiki∑
j ηjkj
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Models and Networks

Bianconi-Barabási Model

Properties:
Even a small difference in node fitness leads to large differences
in degree
If node fitness η is identical for all nodes, the model reduces to
BA

= For a uniform distribution of ρ(η), we get a scale-free network
Node "age" is not the main determining factor for the resulting
degree
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Models and Networks

Netlogo demo

. . .
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Models and Networks

Bose-Einstein Condensation

5

5Barabási: Network Science Book
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http://networksciencebook.com/chapter/6#bose-einstein


Models and Networks

Topological Phase Transition

6

6Csermely (2006). Weak links, pp 75.

J. Spurný, E. Výtvarová · Preferential attachment · March 31, 2023 21 / 30



Midterm Summary

What Do We Know So Far?
Summary + Going Above and Beyond
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Midterm Summary

Node Centralities

Degree
Number of links connected to the node. In directed network, we
distinguish in-degree and out-degree.

Eigenvector centrality
Self-referential measure of centrality – node has high eigenvector
centrality if it connects to other nodes that have high eigenvector
centrality.
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Midterm Summary

Homophily

Assortativity
A positive assortativity coefficient indicates that nodes tend to link to
other nodes with the same or similar degree.

Disassortativity
A negative assortativity coefficient indicates that nodes tend to link
to other nodes with different degree.

Rich Club Coefficient
Measures the extent to which well-connected nodes also connect to
each other.
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Midterm Summary

Communities

Local Clustering
How close are nodes’ neighbours to be a complete graph (clique).

Community structure
A subset of network that maximizes within-group links a minimizes
between-group links.

Modularity
A statistic which denotes to what extent the network may be divided
into groups.
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Midterm Summary

Paths

Path
A sequence of linked nodes that never visits a single node more than
once (as opposed to walks which allow this).

Betweenness centrality
Fraction of all shortest paths in the network that contain a given
node. High BC = many shortest paths through the node. Similarly,
edge betweenness centrality may be calculated.

Closeness centrality
Measures how short the shortest paths are from selected node to all
other nodes.
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Midterm Summary

Basic network characteristics

Avg./min./max. degree & degree distribution
Avg. path length & BC or Closeness centrality distribution
Connectedness – number of components & size of giant
component
Modularity & modularity classes (communities)
Comparison to known network models
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Midterm Summary

Models and Networks

model class model observation
static Erdös-Rényi giant component

Watts-Strogatz small worlds
generative configuration model loops and multilinks

hidden parameter model adjustable pk
growing Barabási-Albert rich-get-richer; scale-free

Bianconi-Barabási winner-takes-all
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Midterm Summary

A ZOO of Complex Networks

7

7Types of Networks
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