

Network Controllability

IV124

Josef Spurný & Eva Výtvarová

Faculty of Informatics, Masaryk University

May 12, 2023

Introduction

Studying complex networks

- 1. Understand & Describe (Quantify)
- 2. Predict
- 3. Control

Research Questions

- Which nodes to target?
- How many nodes do we need to control the network?
- Are some networks easier to control than others?

Controllability

Controllability

A system is controllable if it can be driven from any initial state to any desired final state.

Introduction

Controllability

Even a simple oldtimer car can have several thousands of components.

Yet you only need to manipulate three components to control the car (gas, brake, steering wheel).

J. Spurný, E. Výtvarová • Control • May 12, 2023

Introduction

Controllability

With real-world networks, we are facing a inverse problem:

- We have a network, but we do not know which components control the system
- We need to identify the driver nodes (N_D)

Case study

Control of Neuronal Network in C. elegans¹

- body \approx 1000 cells
- brain: N \approx 300; E \approx 2500
- scale-free structure
- 16 % driver nodes (≈ 50 neurons)
- driver nodes avoid hubs

¹Badhwar R, Bagler G. 2015. Control of Neuronal Network in Caenorhabditis elegans.

Controlling simple linear system

$$\frac{dX}{dt} = A \times X(t) + B \times u(t)$$

- $A \in R^{N \times N}$: adjacency matrix
- X(t) $\in R^{N \times 1}$: state vector
- u(t) ∈ *R^{M×1}*: input vector (signal)
- **B** $\in R^{N \times M}$: input matrix

Note: Oriented network, only incoming links count

Transpose of the weighted adjacency matrix.

Kalman's Rank Condition²

Kalman's Rank Condition:

A system is controllable if its controllability matrix has full rank.

rank C = N $C = [B, A \times B, A^2 \times B, \cdots, A^{N-1} \times B]$

Informally, every row (column) is linearly independent of one another.

²Kalman, R.E. 1963. Mathematical description of linear dynamical systems

J. Spurný, E. Výtvarová • Control • May 12, 2023

Example 1: Controllable

Example 2: Uncontrollable

Example 2: How to control it?

We cannot change the topology, so we need to send a signal to an additional node.

Driver Nodes – N_D

- What's the minimum number of *N*_D?
- How to efficiently identify them?
- Which network characteristics determine *N*_D?

Challenges with identification of N_D

- Link weights of real-world networks are usually unknown
- Brute-force search is not feasible, as there are 2^N 1 combinations
- Kalman's rank condition is hard to check for large systems, as it has a dimension of $N \times NM$

Solution: Graph Matching theory

- Atching $M \subseteq E$ is a set of links that don't have common nodes
- Maximal matching a matching with the highest link count (more than one can be identified)
- Perfect matching a matching that covers all nodes (there are no unmatched nodes)

Matching in Directed Network³

The bipartite graph is built by splitting the node set N into two node sets N^{in} and N^{out}

³Zhang, Han & Zhang. 2015. An efficient algorithm for finding all possible input nodes for controlling complex networks

J. Spurný, E. Výtvarová • Control • May 12, 2023

Matching in Directed Network⁴

⁴Zhang, Han & Zhang. 2015. An efficient algorithm for finding all possible input nodes for controlling complex networks

J. Spurný, E. Výtvarová • Control • May 12, 2023

Time Complexity Issue

- Brute force $\mathcal{O}(2^N)$ ■ $\approx 10^{30}$ for N = 100■ not feasible
- Hopcroft-Karp Algorithm
 - $\mathcal{O}(\sqrt{NL})$ in worst case
 - $\mathcal{O}(logNL)$ in sparse graphs
 - Fast enough even for $N \approx 10^6$

N_D in real networks

- there is no observable trend across different networks
- regulatory networks have high $N_D \approx 0.8$
- social networks display lowest N_D

Hub controversy

Are hubs N_D or not?

Liu, Slotine, Barabási. Controllability of complex networks. 2011

- *N_D* tend to avoid hubs
- amount of N_D depends on degree distribution
- sparse and heterogeneous networks are harder to control than dense and homogeneous

Cowan et al. Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks. 2012

 Signal to power dominating set is enough to control most complex networks **Control Centrality**

Control Centrality Measure⁵

Control Centrality

Control centrality of node *i* captures the controllable subspace's dimension or the controllable subsystem's size when we control node *i* only.

Reminder: System dynamics: $\frac{dX}{dt} = A \times X(t) + B \times u(t)$ Kalman Controllability Matrix: $rankC = [B, A \times B, A^2 \times B, \dots, A^{N-1} \times B]$

When we control node *i* only, B reduces to single non-zero value vector $b^{(i)}$, and C becomes $C^{(i)}$

⁵Liu, Slotine, Barabási. 2012. Control Centrality and Hierarchical Structure in Complex Networks

J. Spurný, E. Výtvarová • Control • May 12, 2023

Control Centrality

Control Centrality Measure

 $\operatorname{rank} C^{(i)}$ can be used as a measure indicating the ability of the node to control the system.

- \Box $C^{(i)} = N$ means that node *i* may control the whole system
- $C^{(i)} < N$ indicates a fraction of network that node *i* may control

Hence, control centrality measure C_c may be defined as $C_c \equiv rank_g(C^{(i)})$

Control Centrality

Control Centrality: Application⁶

A targeted attack on a malicious network aiming to damage their controllability.

Challenge: To target an attack, we need to know the network's adjacency matrix, which is often not known in real systems.

Solution: Random upstream attack

- Randomly choose a fraction of nodes P
- For each of chosen nodes, remove one of the incoming (upstream) neighbors
- If there are no incoming neighbors, remove the chosen node

A random upstream attack is almost as good as a targeted attack (C_c)

⁶Liu, Slotine, Barabási. 2012. Control Centrality and Hierarchical Structure in Complex Networks

Case study

Synthetic Ablation⁷

Synthetic lethality

Simultaneous knockout of two otherwise nonessential genes (or neurons) is lethal to the organism.

⁷Towson, Barabási. 2020. Synthetic ablations in the C. elegans nervous system

J. Spurný, E. Výtvarová • Control • May 12, 2023

Synthetic Ablation

MUNI FACULTY OF INFORMATICS