

Dynamics in Networks

IV124

Josef Spurný & Eva Výtvarová

Faculty of Informatics, Masaryk University

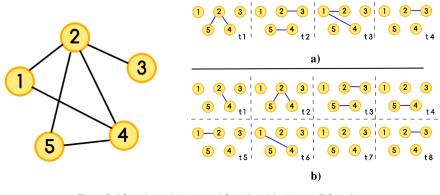
May 12, 2023

Dynamics in Networks

dynamic processes on a static network

time-evolving network

- static network in sliding window
- temporal network measures
- temporal network events in bursts
- null models
- network states
- change points


Time-Evolving Networks

Motivation

- real networks are based on links that are subject to change in time
- static network does not represent information about the sequence of steps and distance in time

communication networks, *face-to-face* interaction, neuronal networks, ecological networks, interaction between species ...

Time-evolving Networks – Motivation¹

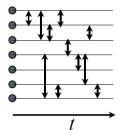
T = 240 min, a) $\Delta t = 60$ min, b) $\Delta t = 30$ min

¹Nicosia V., 2013

- network structure = riverbed
- dynamic network = change of riverbed (friendship network)
- temporal network = river flow (network of meetings and communication)

²Saramäki, 2014

J. Spurný, E. Výtvarová • Dynamics in Networks • May 12, 2023

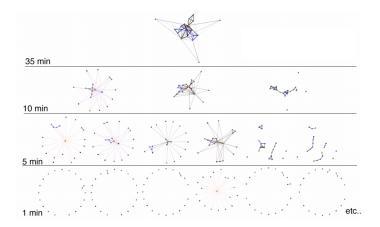

- network structure = aggregation in time
- dynamic network = existing links are active all the time
- temporal network = existing links are switched on and off

³Saramäki, 2014

Temporal, Time-Varying Networks

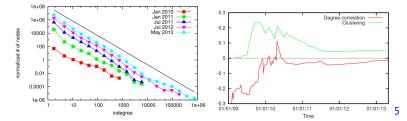
 $\mathscr{G}_{[0,T]} \equiv \mathscr{G} = \{G_1, G_2, \dots, G_M\},\ G_m$ - network snapshot

Commonly equidistant snapshots $t_{m+1} = t_m + \Delta t$, m = 1, ..., M.


- ${\mathscr G}$ fully described by
 - adjacency matrix $A(t_m)$
 - list of contacts (contact $c = (i, j, t, \delta t)$ between nodes i, j, initial contact $0 \le t \le T$ and its duration δt)

Temporal Scale

Temporal window of size Δt


- $\Delta t = T \dots$ static network
- $\Delta t \rightarrow 0$... infinite sequence of instantaneous networks
- Recommended: maximum possible temporal resolution
- ? Multiscale systems
- → Utilization of knowledge from signal processing, information theory, time series analysis, granularity of the model, time series segmentation, ...

Temporal Scale – Interactions in a Class⁴

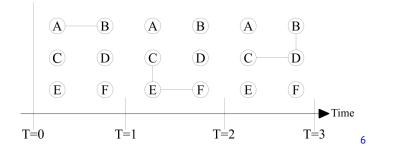
⁴Bender-deMoll S., 2006, Sulo Caceres R., 2013

Representing the temporal component

analyzing static networks in sliding window

temporal network analysis

⁵Kondor D., 2014


Topology Evaluation – Connectivity

- temporally strongly connected component of node *i*: In a directed graph, node *i* is temporally reachable from other nodes of the component in the time interval [0, *T*], and all nodes of the component are temporally reachable from *i*.
- temporally weakly connected component of node *i*: Node *i* is temporally reachable from other component nodes and vice versa in the corresponding undirected temporal network.

Metrics - temporal paths I.

- $\mathcal{P}_{ij} = \{e_{ik}(t_1), e_{kl}(t_2), \ldots, e_{xj}(t_L) \mid t_1 \leq t_2 \leq \cdots \leq t_L\}$
 - topological/temporal path length = number of contacts/time between i and j
 - temporal distance (latency) d_{ij} = temporal length of the shortest temporal path
 - temporal diameter of the network $D = max_{ij}d_{ij}$
 - no reciprocity: a path $i \rightarrow j$ doesn't guarantee an existence of path $j \rightarrow i$
 - no transitivity: a path $i \rightarrow j$ and a path $j \rightarrow k$ don't guarantee an existence of path $i \rightarrow j \rightarrow k$
 - temporal dependence: a path $i \rightarrow j$ in a time t doesn't guarantee the same path in the time t' > t

Metrics - temporal paths II.

Nodes are often temporally unreachable from each other, i.e., $d_{ij} = \infty$, hence temporal (global) efficiency $\mathscr{E} = \frac{1}{N(N-1)} \sum_{ij} \frac{1}{d_{ij}}$

⁶Tang J., 2009.

Metrics - clustering coefficient

- ability of events to persist across frames
- $C_i(t_m, t_{m+1})$ topological overlap of the node's neighborhood
- local clustering coefficient

$$C_i = \frac{1}{M-1} \sum_{m=1}^{M-1} C_i(t_m, t_{m+1})$$

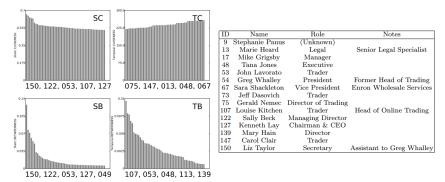
global clustering coefficient

$$C=\frac{1}{N}\sum_{i}C_{i}$$

Metrics – centrality⁷

• betweenness: $C_i^B = \sum_{j \in V} \sum_{k \in V, k \neq j} \frac{\sigma_{jk}(i)}{\sigma_{jk}}$

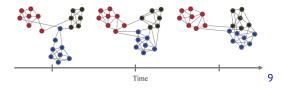
Useful to take into account the interval during which information waits at the node before being sent on


• closeness:
$$C_i^C = \frac{N-1}{\sum_j d_{ij}}$$

- *broadcast, receive* centrality:
 - not everything is spread via shortest paths
 - based on static Katz centrality (a version of eigenvector centrality for directed graphs)
 - identification of spreaders and main recipients of information

⁷Nicosia V., 2013, Holme & Saramäki, 2013, Newman, 2010, Grindrod & Parsons, 2011

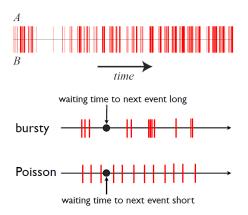
Static vs. temporal centrality ENRON⁸


static ... corporate role in the organisation
temporal ... information dissemination and the role of information
mediators

⁸Tang J., 2010. Analysing Information Flows and Key Mediators through Temporal Centrality Metrics

Metrics – community structure

- rearrangement of cohesive groups
- formation of new groups
- fragmentation of existing ones



 maximization of optimization function, parameters of spatial and temporal resolution

⁹Bassett D., 2013

Bursts

Burstiness¹⁰

temporal inhomogeneityevents cluster in time

 $B = rac{\sigma_{\tau} - m_{\tau}}{\sigma_{\tau} + m_{\tau}}$

- m_{τ} ... mean time between events σ_{τ} ... std of times
- B = -1: periodic
- B = 0: Poisson
- B = 1: maximally bursty

An uncorrelated burstiness increases the latency of temporal paths.

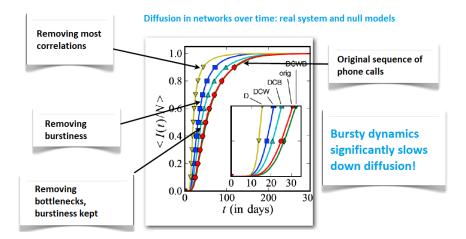
¹⁰Saramäki, 2014, Goh K.-L., 2008

Models of Temporal Networks

Randomized null or reference models

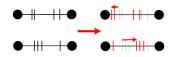
- used to interpret significance, to understand the effects of diverse temporal and structural characteristics
- A randomize a network in one way; the rest is kept as is
- B normalized metrics
- C z-scores of unnormalized metrics against normalized counterpart
- there is no 'THE ONE' null model (compared to static networks with the configuration model)
- Generative, mechanistic and predictive models
 - generative model to capture structure
 - mechanistic models that explain the evolution of large-scale structures (temporal extensions to WS small-world, BA scale-free)
 - predictive models to forecast a graph behavior in the near future

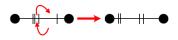
Reference (Null) Models I.


 randomly permuted times (DCW): disturbs all temporal correlations, keeps static topology and numbers of contacts between node-pairs

 random swaps of whole sequences (DCB): disturbs correlations between neighboring events while preserving a sequence character and weights

Small but slow world: how network topology and burstiness slow down spreading¹¹

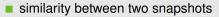



¹¹Karsai et al., 2011; D: configuration model – null model from a static network; DCWB: as DCB but shuffles only sequences with the same number of events

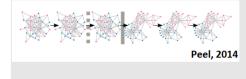
Reference (Null) Models II.

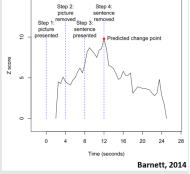
 randomly shifted times in a sequence: disturbs correlations between neighboring events, leaves nodes sequences

 random times in a sequence: disturbs other correlations in a sequence and between sequences


Temporal Networks – Summary

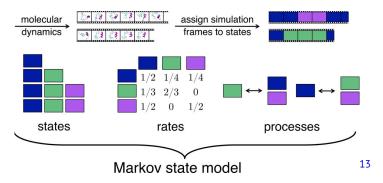
Temporal Networks Summary


- describes network topology and properties with respect to time
- defined as a set of network slices tracking the flow of time
- can use a fast temporal scale
- ... which is comparable with the temporal scale of dynamic processes on a network
- defines time-respecting paths
- real-world systems exhibit small-world characteristics and bursty timing of events


Change-Point Detection

identification of important moments


- task-based experiments
- interictal ictal phases



Change Points

Change-Point Detection II.¹²

Network States

- identification of stable states of a network
- dwell-time, the fraction of total time spent in each state, transition matrix

¹³Husic, 2018

J. Spurný, E. Výtvarová • Dynamics in Networks • May 12, 2023

Network States

Sliding Window Approaches for Correlation Networks

sliding window approach (SW)

Pearson's correlation

tapered sliding window approach (TSW)

- weighted Pearson's correlation
- weights distributed according to Gaussian distribution centered at t

dynamic conditional correlations (DCC)

- Engle 2000¹⁴, Lindquist 2014
- model-based multivariate method from GARCH family
- estimates conditional variances and correlations
- uses past values

¹⁴https://escholarship.org/uc/item/56j4143f

Summary

An aggregated static network leads to

- overestimating the number of paths and walks
- underestimating the effective distances
- BUT is essential for topological (rather than temporal) analysis.

Studying network dynamics allows us to

- capture network topology evolving in time
- identify network states
- detect exact change points
- asses temporal network properties and identify key nodes in processes on a network
- reveal real-life behavior of complex systems.

MUNI FACULTY OF INFORMATICS