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Outline

Dynamics in Networks

m dynamic processes on a static network

m time-evolving network

static network in sliding window
temporal network — measures
temporal network - events in bursts
null models

network states

change points
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Time-Evolving Networks

Time-Evolving Networks

Motivation
m real networks are based on links that are subject to change in
time
m static network does not represent information about the
sequence of steps and distance in time

communication networks, face-to-face interaction, neuronal networks,
ecological networks, interaction between species ...
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Time-Evolving Networks

Time-evolving Networks - Motivation®
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T = 240 min, a) At = 60 min, b) At = 30 min

Nicosia V., 2013
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Time-Evolving Networks

m network structure = riverbed

m dynamic network = change of riverbed (friendship network)

m temporal network = river flow (network of meetings and
communication)

2Saramaki, 2014

J. Spurny, E. Vytvarova « Dynamics in Networks « May 12, 2023

5/29



Time-Evolving Networks

m network structure = aggregation in time
m dynamic network = existing links are active all the time
m temporal network = existing links are switched on and off

3Saramaki, 2014
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Time-Evolving Networks

Temporal, Time-Varying Networks

g[O,T] =9 = {le Gay .-y GM}:
Gm — network snapshot

Commonly equidistant snapshots
th1 =tm+At,m=1,... .M.

A 4

¢ fully described by
m adjacency matrix A(tpy)

m list of contacts (contact ¢ = (/,/, t, t) between nodes i, j, initial
contact 0 <t < T and its duration 6t)
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Time-Evolving Networks

Temporal Scale

Temporal window of size At
m At = T ...static network
m At — 0...infinite sequence of instantaneous networks
m Recommended: maximum possible temporal resolution

? Multiscale systems

— Utilization of knowledge from signal processing, information
theory, time series analysis, granularity of the model, time series
segmentation, ...
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Time-Evolving Networks

Temporal Scale - Interactions in a Class*
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“Bender-deMoll S., 2006, Sulo Caceres R., 2013
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Representing the temporal component

Sliding Window

m analyzing static networks in sliding window
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m temporal network analysis

*Kondor D., 2014
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Sliding Window

Topology Evaluation - Connectivity

m temporally strongly connected component of node /: In a
directed graph, node i is temporally reachable from other nodes
of the component in the time interval [0, T], and all nodes of the
component are temporally reachable from J.

m temporally weakly connected component of node i: Node i is

temporally reachable from other component nodes and vice
versa in the corresponding undirected temporal network.
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Sliding Window

Metrics - temporal paths I.

Py = {ew(tr), en(tz),...,e(t) |1 <t <--- <t}
m topological/temporal path length = number of contacts/time
between i and

m temporal distance (latency) d;; = temporal length of the shortest
temporal path

m temporal diameter of the network D = max;;d;;

B no reciprocity: a path i — j doesn’t guarantee an existence of
pathj — i

m no transitivity: a path i — j and a path j — k don’t guarantee an
existence of path i — j — k

m temporal dependence: a path i — j in a time t doesn’t guarantee
the same path in the time t’ >t
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Sliding Window

Metrics - temporal paths Il.

A B A B A B
C D C D C D
E F E F E F
P Time
T=0 T=1 T=2 T=3 6

Nodes are often temporally unreachable from each other, i.e.,
dj = oo, hence temporal (global) efficiency & = W Zijd%

®Tang J., 20009.
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Sliding Window

Metrics - clustering coefficient

ability of events to persist across frames
- Ci(tm, tmy1) topological overlap of the node’s neighborhood

m local clustering coefficient
1 M
G = M_1 mz_:l Ci(tm; tmy1)

global clustering coefficient
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Sliding Window

Metrics - centrality’

. (B _ (i)
m betweenness: C7 = > iy > ey i) o)

Useful to take into account the interval during which
information waits at the node before being sent on

- C — N-t
m closeness: (; = S 4

m broadcast, receive centrality:
m not everything is spread via shortest paths
m based on static Katz centrality (a version of eigenvector centrality
for directed graphs)
m identification of spreaders and main recipients of information

’Nicosia V., 2013, Holme & Saramaki, 2013, Newman, 2010, Grindrod &
Parsons, 2011
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Sliding Window

Static vs. temporal centrality ENRON?®

static ... corporate role in the organisation
temporal ... information dissemination and the role of information

mediators

Stotic CLOSENESS

0173

150, 122, 053,107,127 075,147, 013, 048, 067

o

SB B

0109

Static BETWEENNESS

g

1D Name Role Notes
9 Stephanie Panus (Unknown)
13 Marie Heard Legal Senior Legal Specialist
17 Mike Grigsby Manager
48  Tana Jones Executive
53  John Lavorato Trader
54 Greg Whalley President, Former Head of Trading
67 Sara Shackleton  Vice President ~ Enron Wholesale Services
73 Jeff Dasovich Trader
75 Gerald Nemec Director of Trading
107 Louise Kitchen Trader Head of Online Trading
122 Sally Beck Managing Director
127 Kenneth Lay  Chairman & CEO
139  Mary Hain Director
147 Carol Clair Trader
150 Liz Taylor Secretary Assistant to Greg Whalley

150, 122, 053,127,049 107, 053, 048, 113, 139

8Tang J., 2010. Analysing Information Flows and Key Mediators

through Temporal Centrality Metrics

J. Spurny, E. Vytvarova « Dynamics in Networks « May 12, 2023

16/29



Sliding Window

Metrics - community structure

m rearrangement of cohesive groups
m formation of new groups
m fragmentation of existing ones

@5&45’? R

L :
T T T
Time 9

B maximization of optimization function, parameters of spatial
and temporal resolution

Bassett D., 2013
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Bursts

Burstiness©

|
B
time

waiting time to next event long

sursyy —H-s—H——H
!

waiting time to next event short

m temporal inhomogeneity
m events cluster in time

B — gr—m=r
or+ms

m, ...mean time between events
or ...std of times

B = —1: periodic

B = 0: Poisson

B = 1: maximally bursty

An uncorrelated burstiness increases the latency of temporal paths.

9saramaiki, 2014, Goh K-L., 2008
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Models of Temporal Networks

Models of Temporal Networks

m Randomized null or reference models

m used to interpret significance, to understand the effects of diverse
temporal and structural characteristics
randomize a network in one way; the rest is kept as is
normalized metrics
z-scores of unnormalized metrics against normalized counterpart
there is no "'THE ONE’ null model (compared to static networks
with the configuration model)
m Generative, mechanistic and predictive models
m generative model to capture structure
m mechanistic models that explain the evolution of large-scale
structures (temporal extensions to WS small-world, BA scale-free)
m predictive models to forecast a graph behavior in the near future

"N ®>
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Models of Temporal Networks

Reference (Null) Models I.

m randomly permuted times
(DCW): disturbs all temporal
correlations, keeps static
topology and numbers of
contacts between node-pairs

o

= 0 0>
> |z [m [ B
=l

<=l
¥
- olo»

> mmm

m random swaps of whole
sequences (DCB): disturbs
correlations between >
neighboring events while o——® oti—e®
preserving a sequence
character and weights
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Models of Temporal Networks

Small but slow world: how network topology and burstiness slow down spreading™*

Diffusion in networks over time: real system and null models

Removing most

correlations
N |l Original sequence of
phone calls
0.8 B
A
Removing /%g’é- .
burstiness = 04 Bursty dynamlcs
o v significantly slows
0.2 / down diffusion!
. 0 10 20 30
Removing 0.0 L n
bottlenecks, 0 100_ 200 30
burstiness kept f (in days)

“Ka rsai et aL, 2011; D: configuration model - null model from a static network;

DCWB: as DCB but shuffles only sequences with the same number of events
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Models of Temporal Networks

Reference (Null) Models II.

m randomly shifted times in a
sequence: disturbs o+—1HO® e
correlations between -
neighboring events, leaves
nodes sequences

m random times in a sequence:

disturbs other correlations in . (™ >—> @ .
a sequence and between v
sequences
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Temporal Networks - Summary

Temporal Networks Summary

describes network topology and properties with respect to time
defined as a set of network slices tracking the flow of time
can use a fast temporal scale

... which is comparable with the temporal scale of dynamic
processes on a network

defines time-respecting paths

m real-world systems exhibit small-world characteristics and
bursty timing of events
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Change Points

Change-Point Detection

Step 2: Step 4:

picture sentence

removed removed
7 Step3:

Step 1:

m similarity between two snapshots pctre | semence |
e A P’ES‘E’"‘W P’“S‘?““’d :Predimed change point

— task-based experiments
— interictal — ictal phases

Z score

Peel, 2014

Time (seconds)

Barnett, 2014
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Change Points

Change-Point Detection I1.%2

Hyper-network

% Q Feature Extraction

.f'/‘
—) L

ChangeSet = (4,8} Community detection

27Zhu, 2018
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Network States

Network States

molecular assign simulation m
dynamics frames to states
I
[ |B9 B2 s 14 ]
[ | B3 23 0 <—>--(_>-
[ | B2 0 12
states rates processes
S— -/
Markov state model 3

m identification of stable states of a network

m dwell-time, the fraction of total time spent in each state,
transition matrix

BHusic, 2018
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Network States

Sliding Window Approaches for Correlation Networks

m sliding window approach (SW)
m Pearson’s correlation

m tapered sliding window approach (TSW)
m weighted Pearson’s correlation
m weights distributed according to Gaussian distribution
centered at t

m dynamic conditional correlations (DCC)
m Engle 2000%, Lindquist 2014
m model-based multivariate method from GARCH family
m estimates conditional variances and correlations
m uses past values

“nttps://escholarship.org/uc/item/56j4143f
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Summary

Summary

An aggregated static network leads to

m overestimating the number of paths and walks

m underestimating the effective distances

m BUT is essential for topological (rather than temporal) analysis.
Studying network dynamics allows us to

m capture network topology evolving in time

m identify network states

m detect exact change points

]

asses temporal network properties and identify key nodes in
processes on a network

m reveal real-life behavior of complex systems.
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