
Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Code optimization for GPUs

Jǐŕı Filipovič

spring 2023

Jǐŕı Filipovič Code optimization for GPUs 1 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

GPU Parallelism

Parallel algorithms need to be designed w.r.t. the parallelism
available in the HW

GPU: array of SIMT multiprocessors working using shared
memory

Decomposition for GPU

coarse-grained decomposition of the problem into the parts
that don’t need intensive communication

fine-grained decomposition similar to vectorization (but SIMT
is more flexible)

Jǐŕı Filipovič Code optimization for GPUs 2 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

SIMT

A multiprocessor of G80 has one unit executing an instruction

all 8 SPs have to execute the same instruction

new instruction is executed every 4 cycles

32 threads (so called warp) need to execute the same
instruction, warp size is fixed for all existing CUDA hardware

How about code branching?

if different parts of a warp perform different instructions, they
are serialized

decreases performance—should be avoided

The multiprocessor is thus (nearly) MIMD (Multiple-Instruction
Multiple-Thread) from programmer’s perspective and SIMT
(Single-Instruction Multiple-Thread) from performance perspective.

Jǐŕı Filipovič Code optimization for GPUs 3 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Thread Properties

GPU threads are very lightweight compared to CPU threads.

their run time can be very short (even tens of instructions)

there should be many of them

they should not use large amount of resources

Threads are aggregated into blocks

all threads of the block always run on the same multiprocessor
(multiple blocks can run at one multiprocessor)

having sufficient number of blocks is substantial to achieve
good scalability

Number of threads and thread blocks per multiprocessor is limited.

Jǐŕı Filipovič Code optimization for GPUs 4 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Memory Latency Masking

Memory has latency

global memory has high latency (hundreds of cycles)

registers and shared memory have read-after-write latency

Memory latency hiding is different from CPU

no instructions are executed out of order (but ILP can be
exploited by forcing finalization of load instruction just before
loaded data are needed)

no or limited cache

When a warp waits for data from memory, another warp may be
executed

allows memory latency hiding

requires execution of more threads than the number of GPU
cores

thread execution scheduling and switching is implemented
directly in HW without overhead

Jǐŕı Filipovič Code optimization for GPUs 5 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Global Memory Access Optimization

Performance of global memory becomes a bottleneck easily

global memory bandwdith is low relatively to arithmetic
performance of GPU (GT200 ≥ 24 FLOPS/float, GF100 ≥
30, GK110 ≥ 62, GM200 ≥ 73, GP100 ≥ 53, GV100 ≥ 67,
TU102 ≥ 76, GA100 ≥ 50, AD102 ≥ 72, GH100 ≥ 20, but ≥
295 with 32-bit tensor ops)

400–600 cycles latency

The throughput can be significantly worse with bad parallel access
pattern

the memory has to be accessed coalesced

use of just certain subset of memory regions should be
avoided (partition camping)

Jǐŕı Filipovič Code optimization for GPUs 6 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Coalesced Memory Access (C. C. < 2.0)

A half of a warp can transfer data using single transaction or one
to two transactions when transferring a 128 B word

it is necessary to use large words

one memory transaction can transfer aligned 32 B, 64 B, or
128 B words

GPUs with c. c. ≤ 1.2

the accessed block has to begin at an address divisible by 16×
data size
k-th thread has to access k-th block element
some threads may not participate

if these rules are not obeyed, each element is retrieved using a
separate memory transaction

Jǐŕı Filipovič Code optimization for GPUs 7 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Coalesced Memory Access (C. C. < 2.0)

GPUs with c. c. ≥ 1.2 are less restrictive

each transfer is split into 32 B, 64 B, or 128 B transactions in a
way to serve all requests with the least number of transactions

order of threads can be arbitrarily permuted w.r.t. transferred
elements

Jǐŕı Filipovič Code optimization for GPUs 8 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Coalesced Memory Access (C. C. < 2.0)

Threads are aligned, element block is contiguous, order is not
permuted – coalesced access on all GPUs

Jǐŕı Filipovič Code optimization for GPUs 9 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Unaligned Memory Access (C. C. < 2.0)

Threads are not aligned, contiguous elements accessed, order is
not permuted – one transaction on GPUs with c. c. ≥ 1.2

Jǐŕı Filipovič Code optimization for GPUs 10 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Unaligned Memory Access (C. C. < 2.0)

Similar case may result in a need for two transactions

Jǐŕı Filipovič Code optimization for GPUs 11 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Unaligned Memory Access Performance (C. C. < 2.0)

Older GPUs perform smallest possible transfer (32 B) for each
element, thus reducing performance to 1/8
Newer GPUs perform (c. c. ≥ 1.2) two transfers

Jǐŕı Filipovič Code optimization for GPUs 12 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Interleaved Memory Access Performance (C. C. < 2.0)

The bigger the spaces between elements, the bigger performance
drop on GPUs with c. c. ≥ 1.2 – the effect is rather dramatic

Jǐŕı Filipovič Code optimization for GPUs 13 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Global Memory Access with Fermi (C. C. = 2.x)

Fermi has L1 and L2 cache

L1: 256 B per row, 16 kB or 48 kB per multiprocessor in total

L2: 32 B per row, 768 kB on GPU in total

What are the advantages?

more efficient programs with unpredictable data locality

more efficient when shared memory is not used from some
reason

unaligned access – no slowdown in principle

interleaved access – data needs to be used before it is flushed
from the cache, otherwise the same or bigger problem as with
c. c. < 2.0 (L1 cache may be turned of to avoid overfetching)

Jǐŕı Filipovič Code optimization for GPUs 14 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Global Memory Access with ”gaming” Kepler (C. C. = 3.0)

There is only L2 cache for read/write global memory access

L2: 32 B per row, up to 1.5 MB per GPU

L1: for local memory, 16 KB, 32 KB or 48 KB in total

Jǐŕı Filipovič Code optimization for GPUs 15 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Global Memory Access with fully-featured Kepler, Maxwell
and Pascal (3.5 ≤ C. C. ≤ 6.0)

Read-only data cache

shared with textures

compiler tries to use, we can help with restrict and
ldg()

slower than Fermi’s L1

No L1 cache for local memory

inefficient for programs heavily using local memory

Jǐŕı Filipovič Code optimization for GPUs 16 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Global Memory Access with Volta and newer (C. C. ≥ 6.0)

Faster L1 is back

the same hardware as shared memory, but for read-only buffers

Jǐŕı Filipovič Code optimization for GPUs 17 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

HW Organization of Shared Memory

Shared memory is organized into memory banks, which can be
accessed in parallel

c. c. 1.x 16 banks, c. c. ≥ 2.0 32 banks

memory space mapped in an interleaved way with 32 b shift or
64 b shift (c.c. 3.x)

to use full memory performance, we have to access data in
different banks

broadcast implemented – if all threads access the same data

Jǐŕı Filipovič Code optimization for GPUs 18 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Bank Conflict

Bank conflict

occurs when some threads in warp/half-warp access data in
the same memory bank with several exceptions

threads access exactly the same data
threads access different half-words of 64 b word (c.c. 3.x)

when occurs, memory access gets serialized

performance drop is proportional to number of parallel
operations that the memory has to perform to serve a request

Jǐŕı Filipovič Code optimization for GPUs 19 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Access without Conflicts

Jǐŕı Filipovič Code optimization for GPUs 20 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

n-Way Conflicts

Jǐŕı Filipovič Code optimization for GPUs 21 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Broadcast

Jǐŕı Filipovič Code optimization for GPUs 22 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Access Patterns

Alignment is not needed, bank conflicts not generated

int x = s [threadIdx . x + offset] ;

Interleaving does not create conflicts if c is odd, for c .c . ≥ 3.0 no
conflict if c = 2 and 32 b numbers are accessed

int x = s [threadIdx . x ∗ c] ;

Access to the same variable never generates conflicts on c. c. 2.x,
while on 1.x only if thread count accessing the variable is multiple
of 16

int x = s [threadIdx . x / c] ;

Jǐŕı Filipovič Code optimization for GPUs 23 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

CPU-GPU memory transfers

Transfers between host and GPU memory

need to be minimized (often at cost of decreasing efficiency of
computation on GPU)

may be accelerated using page-locked memory

it is more efficient to transfer large blocks at once

computations and memory transfers should be overlapped

Jǐŕı Filipovič Code optimization for GPUs 24 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Matrix Transposition

From theoretical perspective:

a trivial problem

a trivial parallelization

trivially limited by the memory throughput (no arithmetic ops
done)

__global__ void mtran (float ∗odata , float∗ idata , int n){
int x = blockIdx . x ∗ blockDim . x + threadIdx . x ;
int y = blockIdx . y ∗ blockDim . y + threadIdx . y ;
odata [x∗n + y] = idata [y∗n + x] ;

}

Jǐŕı Filipovič Code optimization for GPUs 25 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Performance

When running the code on GeForce GTX 280 with large enough
matrix 4000× 4000, the throughput will be 5.3 GB/s
Where’s the problem?

Access to odata is interleaved. After modification (copy instead of
transpose matrices):

odata [y∗n + x] = idata [y∗n + x] ;

the throughput is 112.4 GB/s. If idata is accessed in an
interleaved way too, the resulting throughput would be 2.7 GB/s.

Jǐŕı Filipovič Code optimization for GPUs 26 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Performance

When running the code on GeForce GTX 280 with large enough
matrix 4000× 4000, the throughput will be 5.3 GB/s
Where’s the problem?
Access to odata is interleaved. After modification (copy instead of
transpose matrices):

odata [y∗n + x] = idata [y∗n + x] ;

the throughput is 112.4 GB/s. If idata is accessed in an
interleaved way too, the resulting throughput would be 2.7 GB/s.

Jǐŕı Filipovič Code optimization for GPUs 26 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Removing Interleaving

The matrix can be processed per tiles

we read the tile into the shared memory row-wise

we will store its transposition into the global memory row-wise

thus having both reading and writing without interleaving

What size of tiles should be used?

lets consider square tiles for simplicity

for aligned reading, the row size has to be multiple of 16

we can consider tile sizes of 16× 16, 32× 32, and 48× 48
because of shared memory size limitations

best size can be determined experimentally

Jǐŕı Filipovič Code optimization for GPUs 27 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Removing Interleaving

The matrix can be processed per tiles

we read the tile into the shared memory row-wise

we will store its transposition into the global memory row-wise

thus having both reading and writing without interleaving

What size of tiles should be used?

lets consider square tiles for simplicity

for aligned reading, the row size has to be multiple of 16

we can consider tile sizes of 16× 16, 32× 32, and 48× 48
because of shared memory size limitations

best size can be determined experimentally

Jǐŕı Filipovič Code optimization for GPUs 27 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Tiled Transposition

__global__ void mtran_coalesced (float ∗odata , float ∗idata , int n)
{

__shared__ float tile [TILE_DIM] [TILE_DIM] ;

int x = blockIdx . x ∗ TILE_DIM + threadIdx . x ;
int y = blockIdx . y ∗ TILE_DIM + threadIdx . y ;
int index_in = x + y∗n ;
x = blockIdx . y ∗ TILE_DIM + threadIdx . x ;
y = blockIdx . x ∗ TILE_DIM + threadIdx . y ;
int index_out = x + y∗n ;

for (int i = 0 ; i < TILE_DIM ; i += BLOCK_ROWS)
tile [threadIdx . y+i] [threadIdx . x] = idata [index_in+i∗n] ;

__syncthreads () ;

for (int i = 0 ; i < TILE_DIM ; i += BLOCK_ROWS)
odata [index_out+i∗n] = tile [threadIdx . x] [threadIdx . y+i] ;

}

Jǐŕı Filipovič Code optimization for GPUs 28 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Performance

The highest performance was measured for 32× 32 tile size and
32× 8 thread block size – 75.1 GB/s

that’s significantly better but still less than simple copying

the kernel is more complex, contains synchronization

we need to figure out whether we got the maximum or there’s
still a problem somewhere

if we only copy within the blocks, we get 94.9GB/s

something is still sub-optimal

Jǐŕı Filipovič Code optimization for GPUs 29 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Performance

The highest performance was measured for 32× 32 tile size and
32× 8 thread block size – 75.1 GB/s

that’s significantly better but still less than simple copying

the kernel is more complex, contains synchronization

we need to figure out whether we got the maximum or there’s
still a problem somewhere

if we only copy within the blocks, we get 94.9GB/s

something is still sub-optimal

Jǐŕı Filipovič Code optimization for GPUs 29 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Performance

The highest performance was measured for 32× 32 tile size and
32× 8 thread block size – 75.1 GB/s

that’s significantly better but still less than simple copying

the kernel is more complex, contains synchronization

we need to figure out whether we got the maximum or there’s
still a problem somewhere

if we only copy within the blocks, we get 94.9GB/s

something is still sub-optimal

Jǐŕı Filipovič Code optimization for GPUs 29 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Performance

The highest performance was measured for 32× 32 tile size and
32× 8 thread block size – 75.1 GB/s

that’s significantly better but still less than simple copying

the kernel is more complex, contains synchronization

we need to figure out whether we got the maximum or there’s
still a problem somewhere

if we only copy within the blocks, we get 94.9GB/s

something is still sub-optimal

Jǐŕı Filipovič Code optimization for GPUs 29 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Shared Memory

When reading from the global memory, we write into the shared
memory row-wise

tile [threadIdx . y+i] [threadIdx . x] = idata [index_in+i∗n] ;

When writing to the global memory, we read from the shared
memory column-wise

odata [index_out+i∗n] = tile [threadIdx . x] [threadIdx . y+i] ;

That’s reading with interleaving which is multiple of 16, the whole
column is in a single memory bank – thus creating 16-way bank
conflict.
A solution is padding:

__shared__ float tile [TILE_DIM] [TILE_DIM + 1] ;

Jǐŕı Filipovič Code optimization for GPUs 30 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Shared Memory

When reading from the global memory, we write into the shared
memory row-wise

tile [threadIdx . y+i] [threadIdx . x] = idata [index_in+i∗n] ;

When writing to the global memory, we read from the shared
memory column-wise

odata [index_out+i∗n] = tile [threadIdx . x] [threadIdx . y+i] ;

That’s reading with interleaving which is multiple of 16, the whole
column is in a single memory bank – thus creating 16-way bank
conflict.

A solution is padding:

__shared__ float tile [TILE_DIM] [TILE_DIM + 1] ;

Jǐŕı Filipovič Code optimization for GPUs 30 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Shared Memory

When reading from the global memory, we write into the shared
memory row-wise

tile [threadIdx . y+i] [threadIdx . x] = idata [index_in+i∗n] ;

When writing to the global memory, we read from the shared
memory column-wise

odata [index_out+i∗n] = tile [threadIdx . x] [threadIdx . y+i] ;

That’s reading with interleaving which is multiple of 16, the whole
column is in a single memory bank – thus creating 16-way bank
conflict.
A solution is padding:

__shared__ float tile [TILE_DIM] [TILE_DIM + 1] ;

Jǐŕı Filipovič Code optimization for GPUs 30 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Performance

Now our implementations shows 93.4 GB/s.

as good as simple copying

it seems we can’t do much better for given matrix

beware of different input data sizes (partition camping)

Jǐŕı Filipovič Code optimization for GPUs 31 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Performance Summary

All optimizations were only toward better accommodation of HW
properties

however, we got 17.6× speedup

when creating an algorithm, it is necessary to understand HW
limitations

otherwise we wouldn’t have to develop specifically for GPUs –
developing a good CPU algorithm would have been just
fine. . .

Jǐŕı Filipovič Code optimization for GPUs 32 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Instructions performance

Some instructions are relatively slower than with CPUs

integer division and modulo

32-bit integer multiplication with c.c. 1.x

24-bit integer multiplication with c.c. 2.x and newer

Some instructions are relatively faster than with CPUs

lower-precision arithmetics performed by SFUs

sinf(x), cosf(x), expf(x), sincosf(x), rsqrtf(x) etc.

Jǐŕı Filipovič Code optimization for GPUs 33 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Loops

Small loops have significant overhead

jumps

conditions

control variable updates

significant part of instructions may be pointer arithmetics

low ILP

Loop unrolling is an option

partially may be done by the compiler

we can do manual unrolling or use #pragma unroll

Jǐŕı Filipovič Code optimization for GPUs 34 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Vector Reduction

Let v be the vector of size n. We want to compute x =
∑n

i=1 vi .

C code (not very reasonable for floats)

int x = 0 ;
for (int i = 0 ; i < n ; i++)

x += v [i] ;

There is flow dependency across iterations.

we cannot compute completely parallel

addition is (at least in theory :-)) associative

so, we do not need to add numbers in sequential order

Jǐŕı Filipovič Code optimization for GPUs 35 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Vector Reduction

Let v be the vector of size n. We want to compute x =
∑n

i=1 vi .
C code (not very reasonable for floats)

int x = 0 ;
for (int i = 0 ; i < n ; i++)

x += v [i] ;

There is flow dependency across iterations.

we cannot compute completely parallel

addition is (at least in theory :-)) associative

so, we do not need to add numbers in sequential order

Jǐŕı Filipovič Code optimization for GPUs 35 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Vector Reduction

Let v be the vector of size n. We want to compute x =
∑n

i=1 vi .
C code (not very reasonable for floats)

int x = 0 ;
for (int i = 0 ; i < n ; i++)

x += v [i] ;

There is flow dependency across iterations.

we cannot compute completely parallel

addition is (at least in theory :-)) associative

so, we do not need to add numbers in sequential order

Jǐŕı Filipovič Code optimization for GPUs 35 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Parallel Algorithm

The sequential algorithm performs seven steps:

((((((v1 + v2) + v3) + v4) + v5) + v6) + v7) + v8

Addition is associative... so let’s reorder brackets:
((v1 + v2) + (v3 + v4)) + ((v5 + v6) + (v7 + v8))
We can work in parallel now:

four additions in the first step

two additions in the second step

one addition in the third step

In summary, we perform n − 1 additions in log2 n parallel steps!

Jǐŕı Filipovič Code optimization for GPUs 36 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Parallel Algorithm

The sequential algorithm performs seven steps:

((((((v1 + v2) + v3) + v4) + v5) + v6) + v7) + v8

Addition is associative... so let’s reorder brackets:
((v1 + v2) + (v3 + v4)) + ((v5 + v6) + (v7 + v8))

We can work in parallel now:

four additions in the first step

two additions in the second step

one addition in the third step

In summary, we perform n − 1 additions in log2 n parallel steps!

Jǐŕı Filipovič Code optimization for GPUs 36 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Parallel Algorithm

The sequential algorithm performs seven steps:

((((((v1 + v2) + v3) + v4) + v5) + v6) + v7) + v8

Addition is associative... so let’s reorder brackets:
((v1 + v2) + (v3 + v4)) + ((v5 + v6) + (v7 + v8))
We can work in parallel now:

four additions in the first step

two additions in the second step

one addition in the third step

In summary, we perform n − 1 additions in log2 n parallel steps!

Jǐŕı Filipovič Code optimization for GPUs 36 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Parallel Algorithm

We have found the parallel algorithm

the same number of additions as the serial algorithm

in logarithmic time (if we have enough cores)

We add results of previous additions

flow-dependency across threads

we need global barrier

Jǐŕı Filipovič Code optimization for GPUs 37 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Naive Approach

The simplest scheme of the algorithm:

for even i , i < n perform v[i] += v[i+1]

repeat for n /= 2 untill n > 1

The performance is not ideal

2n numbers loaded from global memory

n numbers stored to global memory

log2 n kernel invocations

We have three memory accesses to one arithmetics operation and
considerable kernel invocation overhead.

Jǐŕı Filipovič Code optimization for GPUs 38 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Exploiting Data Locality

We can add more than pairs during single kernel call.

each block bx loads m numbers into shared memory

it reduces the input (in shared memory in log2m steps)

it stores only one number containing
∑m·bx+m

i=m·bx vi

Reduces both memory transfers and number of kernel invocations

number of loads: n + n
m + n

m2 + .. + n
mlogm n = (n − 1) m

m−1
approximately n + n

m numbers read, n
m written

logm n kernel invocations

Jǐŕı Filipovič Code optimization for GPUs 39 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 1

__global__ void reduce1 (int ∗v){
extern __shared__ int sv [] ;

unsigned int tid = threadIdx . x ;
unsigned int i = blockIdx . x∗blockDim . x + threadIdx . x ;
sv [tid] = v [i] ;
__syncthreads () ;

for (unsigned int s=1; s < blockDim . x ; s ∗= 2) {
if (tid % (2∗ s) == 0)

sv [tid] += sv [tid + s] ;
__syncthreads () ;

}

if (tid == 0)
v [blockIdx . x] = sv [0] ;

}

Jǐŕı Filipovič Code optimization for GPUs 40 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Performance

Beware modulo operation.
High degree of divergence

during the first iteration, only half of threads is working

during the second iteration, only quarter of threads is working

etc.

Performance on GTX 280: 3.77 GB/s (0.94 MElem/s).

Jǐŕı Filipovič Code optimization for GPUs 41 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 2

We will modify indexation

for (unsigned int s = 1 ; s < blockDim . x ; s ∗= 2) {
int index = 2 ∗ s ∗ tid ;
if (index < blockDim . x)

sv [index] += sv [index + s] ;
__syncthreads () ;

}

Performance: 8.33 GB/s (2.08 MElem/s).
The code is free of modulo and divergence, but generates shared
memory bank conflicts.

Jǐŕı Filipovič Code optimization for GPUs 42 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 3

So we can try another indexing...

for (unsigned int s = blockDim . x /2 ; s > 0 ; s >>= 1) {
if (tid < s)

sv [tid] += sv [tid + s] ;
__syncthreads () ;

}

No divergence and no conflicts.
Performance 16.34 GB/s (4.08 MElem/s).
Half of threads do not compute...

Jǐŕı Filipovič Code optimization for GPUs 43 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 4

We can add numbers during loading them from global memory.

unsigned int i = blockIdx . x ∗(blockDim . x ∗2) + threadIdx . x ;
sv [tid] = v [i] + v [i+blockDim . x] ;

Performance 27.16 GB/s (6.79 MElem/s).
There is no problem with data access, but the performance is still
low – we will focus to instructions.

Jǐŕı Filipovič Code optimization for GPUs 44 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 5

The number of active threads decreases during computation in
shared memory.

in the last six iterations, only the last warp is active

the warp is synchronized implicitly on GPUs with c.c. < 7.0,
so we do not need syncthreads()

we need volatile variable in this case

condition if (tid < s) does not spare any computation

So we can unroll the last warp...

Jǐŕı Filipovič Code optimization for GPUs 45 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 5

float mySum = 0 ;

for (unsigned int s = blockDim . x /2 ; s > 32 ; s >>= 1){
if (tid < s)

sv [tid] = mySum = mySum + sv [tid + s] ;
__syncthreads () ;

}

if (tid < 32){
volatile float ∗s = sv ;
s [tid] = mySum = mySum + s [tid + 32] ; // s y n c t h r e a d s () ;
s [tid] = mySum = mySum + s [tid + 16] ; // s y n c t h r e a d s () ;
s [tid] = mySum = mySum + s [tid + 8] ; // s y n c t h r e a d s () ;
s [tid] = mySum = mySum + s [tid + 4] ; // s y n c t h r e a d s () ;
s [tid] = mySum = mySum + s [tid + 2] ; // s y n c t h r e a d s () ;
s [tid] = mySum = mySum + s [tid + 1] ;

}

We save time in all warps (the last warp is simpler, others exits
earlier from the for loop).
Performance: 37.68 GB/s (9.42 MElem/s).

Jǐŕı Filipovič Code optimization for GPUs 46 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 5

For c.c. 3.0 or greater, we can use warp shuffle:

if (tid < 32){
mySum += sdata [tid + 32] ;
for (int offset = warpSize /2 ; offset > 0 ; offset /= 2)

mySum += __shfl_down_sync (mySum , offset) ;
}

This is safe for all GPUs.

Jǐŕı Filipovič Code optimization for GPUs 47 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 6

Can we unroll the for loop?
If we know the number of iterations, we can unroll it

the number of iterations depends on the block size

Can we implement it generically?

algorithm uses blocks of size 2n

the block size is upper-bound

if we know the block size during compilation, we can use a
template

template <unsigned int blockSize>
__global__ void reduce6 (int ∗v)

Jǐŕı Filipovič Code optimization for GPUs 48 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 6

Conditions using blockSize are evaluated during compilation:

if (blockSize >= 512){
if (tid < 256)

sv [tid] += sv [tid + 256] ;
__syncthreads () ;

}
if (blockSize >= 256){

if (tid < 128)
sv [tid] += sv [tid + 128] ;

__syncthreads () ;
}
if (blockSize >= 128){

if (tid < 64)
sv [tid] += sv [tid + 64] ;

__syncthreads () ;
}

Performance: 50.64 GB/s (12.66 MElem/s).

Jǐŕı Filipovič Code optimization for GPUs 49 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 7

Can we implement faster algorithm?
Let’s reconsider the complexity:

log n parallel steps

n − 1 additions

time complexity for p threads running in parallel (using p
processors): O(np + log n)

Cost of parallel computation

defined as number of processors multiplied by time complexity

if we assign one thread to one data element, we get p = n

and the cost is O(n · log n)

which is not efficient

Jǐŕı Filipovič Code optimization for GPUs 50 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 7

Decreasing the cost

we use O(n
log n) threads

each thread performs O(log n) sequential steps

after that, it performs O(log n) parallel steps

time complexity is the same

the cost is O(n)

What it means in practice?

we reduce overhead of the computation (e.g., integer
arithmetics)

advantage if we have much more threads that is needed to
saturate GPU

Jǐŕı Filipovič Code optimization for GPUs 51 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 7

We modify loading into shared memory

unsigned int gridSize = blockSize ∗2∗ gridDim . x ;
sv [tid] = 0 ;

while (i < n){
sv [tid] += v [i] + v [i+blockSize] ;
i += gridSize ;

}
__syncthreads () ;

Performance: 77.21 GB/s (19.3 MElem/s).

You can find those implementations in CUDA SDK.

Jǐŕı Filipovič Code optimization for GPUs 52 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Implementation 7

We modify loading into shared memory

unsigned int gridSize = blockSize ∗2∗ gridDim . x ;
sv [tid] = 0 ;

while (i < n){
sv [tid] += v [i] + v [i+blockSize] ;
i += gridSize ;

}
__syncthreads () ;

Performance: 77.21 GB/s (19.3 MElem/s).

You can find those implementations in CUDA SDK.

Jǐŕı Filipovič Code optimization for GPUs 52 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Problem Choice

Before we start with code acceleration, we should consider
carefully, if it is meaningful.
The accelerated code should be

critical for application performance (profile... and profile on
real data)

large enough (usually not ideal for relatively simple but
latency critical application)

parallelizable (problematic, e.g., in simulation of a small
system evolving for a long time)

sufficient number of flops to memory transfers (consider slow
PCI-E)

Jǐŕı Filipovič Code optimization for GPUs 53 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Parallelization

Vector addition

simple to formulate data-parallel code

no synchronization

Reduction

may seem sequential at a glance

but can be computed in log n steps

needs some thinking about how to parallelize

Jǐŕı Filipovič Code optimization for GPUs 54 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Code divergence

Code divergence

hurts performance when divergence occurs within the warp

it can be easy to remove

reduction

but also hard to remove

graph processing, many independent automata
sometimes different algorithm needs to be formulated

Jǐŕı Filipovič Code optimization for GPUs 55 / 56

Parallelism Memory access optimization Matrix Transposition Instructions Speed Reduction General Advices

Scattered memory access

Scattered memory access

if not accessed in coalesced way, memory bandwidth is reduced

often difficult to work-around

graph processing

sometimes we can investigate different data structures

sparse matrices

with more regular structures, we can use shared memory

matrix transposition

Jǐŕı Filipovič Code optimization for GPUs 56 / 56

	Parallelism
	Parallelism

	Memory access optimization
	Global Memory
	Shared Memory
	CPU-GPU memory transfers

	Matrix Transposition
	Naive transposition
	Coalesced transposition

	Instructions Speed
	Slow and fast
	Others

	Reduction
	Problem Analysis
	Naive Approach
	Implementation 1
	Implementation 2
	Implementation 3
	Implementation 4
	Implementation 5
	Implementation 6
	Implementation 7

	General Advices
	General Advices

