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Rules of engagement – proposal
Regular lectures (like this one) versus pre-recorded lectures
combined with an interactive seminar at the regular scheduled
time
Interactive seminar form:

Your questions
More detailed discussion around selected topics
Questions through Sli.do
Examination questions/subjects

Examination will be in an Open Book format
IS MU
The first (mandatory) examination on 18th May at 4 PM (the time
of the last possible lesson in the semester)
Other terms as needed (for those who can’t make it for serious
reason)

However, due to the AI ChatGPT (and derivatives), this form can’t
by confirmed yetLuděk Matyska · Introduction · Spring 2023 2 / 69



High Performance Computing

Formula One in the IT area
Extremely expensive machines, but with exceptional features
(performance, memory, ...)

Specific users’ groups
Extensive simulations
Modelling (automobile, airplanes, physical phenomena, ...)
Recently also Artificial Intelligence (DNN)

Appetite comes with eating
Requirements rise faster than performance
Also the complexity of processors rises

Quality of programming (code generation) defines the usability
and real performance
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High Performance Computing II

Processors
CISC
RISC
Vector processors
Streaming processors (e.g. GPU, TPU)
Special processors

Programmable – FPGA
Static – ASICs

Memories – performance (speed) lagging behind processors
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HPC–requirements

The ratio Theoretical vs. Actual performance decreases
Reaction: need to better understand

architecture of the used processor and computer
reasons, why a specific code is much faster than seemingly similar
equivalent code
tools and methods how to measure real performance (of a
program or a computer)

Luděk Matyska · Introduction · Spring 2023 5 / 69



High Throughput Computing

Highest actual performance vs Highest utilization
long-term efficient use of computer systems
large number of smaller tasks

the processing time of a single task is not critical
the time of processing all tasks is critical

Efficiency
maximizing “investment”
total throughput of the system
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Clouds and HPC
Clouds – virtualized infrastructure

higher flexibility (use as much as you need (and can pay for))
robustness (high availability)
hidden and exposed heterogeneity
massive capacity

resembles High Throughput Computing goals

Basic scenario – overcommitment
not directly usable in the HPC environment

The flexibility and fast availability of resources may be the
primary force for using clouds in the HPC environment

But it may broke some of the efficiency expectations
New features are needed

Area to follow (e.g. EOSC or GAIA X)
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Fundamental aspects – what influences performance
Latency (delay)

processing and transmission of signals within processors and
memories
transmission between processor and memory
intra-memory latency

Speed of (signal) recovery (cycle times)
speed of circuits switching
circuits frequency (internal “clock”)
memory refresh (dynamic memories)

Throughput (speed of the data unit transfer)
speed of data transport on a chip
number of instructions per a cycle
transport speed between components

Granularity
density on a chip
memory density
task sizeLuděk Matyska · Processors · Spring 2023 8 / 69



Processors – CISC

Complex Instruction Set Computer
Examples:

PDP 11, VAX, IBM 370, Intel 80x86, Motorola 680x0, ...
Principle:

Don’t use program where you can use hardware

The term “CISC” was in fact created as an opposite to RISC (i.e.
not used since the introduction of CISC processors)
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Raison d’etre

Size and speed of memory
when compared with the speed of processors

CISC directly supports compilers (principles of co-design)
Rich addressing modes (how to address data in a memory)
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Microprogramming

CISC – complex instructions
Control part of the processor too complex/extensive

Microinstructions: decomposition to simpler instructions

Complex instruction == microprogram
Simpler hardware design

Instructions are in fact emulated (internal “computer”)
It is “easy” to change instruction set of a particular computer
=⇒ computer families (IBM 360, 370, VAX, ...)
Disadvantages: too complex instructions, increasingly complex
instruction analysis, cross instruction relationships, backward
compatibility cost (within a family)
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Performance increase

Clock cycles define processor’s performance
Limited by contemporary technology
Impossible to continuously increase

dependencies between components
signal transport speed

Solution: parallelization
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Pipelining
Overlap of instructions in different stages of processing
instruction −→ 1 — 2 — 3 — 4 — 5 −→

−→ 1 — 2 — 3 — 4 — 5 −→
−→ 1 — 2 — 3 — 4 — 5 −→
−→ 1 — 2 — 3 — 4 — 5 −→
−→ 1 — 2 — 3 — 4 — 5 −→
−→ 1 — 2 — 3 — 4 — 5 −→
−→ 1 — 2 — 3 — 4 — 5 −→ results

Three basic areas:
1. Instruction processing
2. Memory access
3. Floating point instructions
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Pipelining II

“Standard” (classical) instruction decomposition (five-stage
pipelining):

Instruction Fetch instruction is loaded from a memory
Instruction Decode instruction is decoded (recognized)
Operand Fetch operands are ready (fetched from registers

and/or memory)
Execute instruction is executed
Writeback results are written back (to registers and/or memory)

Individual stages are processed in parallel, shifted by one stage
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Pipelines and memory

“Invisible” pipelines
Reading (writing) from (to) memory is moved ahead of the actual
instruction that works with the data

“Visible” pipelines
Explicit instructions, with know number of cycles to complete
E.g. Intel 80860
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Processors – RISC

Reduced Instruction Set Computer
First RISC: CDC 6600 (Seymour Cray)

First half of sixties (1964)

Explicit RISC concept during eighties
(Favourable) conditions for RISC processors

Introduction of caches
Dramatic decrease in the memory cost paralleling increase of
memory size
Better pipelining
Improved compilers
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RISC conditions II

Architecture removed the speed of memory access bottleneck
use of caches
use of internal registers (decreased number of direct memory
accesses)

Size of a program became irrelevant (even extensive code can fit
into a memory)
Problem: stall when waiting for a next instruction execution
finalization (too complex relationship between instructions,
microcode, ...)
Solution: complex instructions are not needed, microprograms
can be replaced by explicit code

also, readability of code (assembler) no more critical
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RISC characteristics
All instructions of the same size/length (e.g. 4 bytes)
Careful selection of really needed instructions
Simple addressing
Load/Store architecture
Sufficient number of internal registers
“Delayed’ branches
Examples:

Initially some foreruners: MIPS (Stanford) a SUN SPARC (UoC,
Berkeley) architectures
IBM and their Power Architecture (PowerPC, family of POWER
processors)
HP with PA-RISC
DEC Alpha
Intel I860 and i960 or Motorola 88000
ARC, ARM, ...

Luděk Matyska · Processors · Spring 2023 18 / 69



RISC – advanced design

First generation RISC ideal:
One instruction finished per each clock tick

Reality nowadays:
Several instructions graduated in a single clock tick
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New features

Superscalar
Superpipeline
(Very) Long Instruction Word, (V)LIW
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Superscalar processors

Multiple processing units
Arithmetic (ALU), Floating point (FPU) and other

Examples:
RS/6000, SuperSPARC and newer, Motorola 88110, HP PA 7100
and newer, DEC Alpha, MIPS R8000 and newer, Intel processors,
IBM POWER processor, ARM
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Superscalar processors – features

Parallelism in a hardware
Sequential programs
“Automatic” parallelization (intra-processor parallelization)

Several instructions fetched to pipeline
MADD (Multiply Add)

Operation X*Y+Z
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Superpipeline

Another circuits simplification
More extensive pipeline decomposition
Faster execution of individual stages

resulting in faster processing
A different form of parallelism

These pipelines also called deep pipelines
16 and more stages
instructions use only some of the whole set of stages
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16 stage pipeline
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VLIW
Analogy of superscalar processors (many units)
Parallelization under compiler control

Increased complexity of compilers
Simplified hardware leads to higher performance
Decision which instructions can be run in parallel taken by the
compiler

Advantages:
Simpler instructions
No complex control hardware needed
Lower energy consumption (at least a potential for it)

Examples:
Intel i860
triMedia media processors
C6000 DSP family (Texas Instruments)
Itanium IA-64 EPIC (partially)
Crusoe processors from Transmeta
Russian supercomputers ElbrusLuděk Matyska · Processors · Spring 2023 25 / 69



RISC – additional features

Register’s bypass
Register’s renaming
Branches

null operation
conditional assignment (a = b<c ? d : e;)
multiple “pre-fetch” from memory
buffer of potential branch targets
branch prediction

static (complied)
dynamic
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ANDES

Architecture with Non-sequential Dynamic Execution Scheduling
Foundations

Waiting for data causes a slowdown
Dynamic parallelism can help

Examples
HP PA 8000, MIPS R10000, ...

Also called out-of-order execution (OoOE) or dynamic execution
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ANDES – Architecture

Multiple instructions queues
a queue for fixed point (arithmetic and logic) instructions
an address queue for Load/Store instructions
a queue for floating point instructions

Independent pipeline for each queue
Features

readiness decides which instructions are executed
the original order of instructions in the program is not kept
instruction graduation guarantees restoration of the original order
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ANDES – speculative execution

Fetch Decode Graduate

Issue Execute Complete
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ANDES – Additional properties

Speculative branches:
execution continues through predicted branch
does not wait for the result of the actual branch instruction

Non-blocking Load/Store instructions
Register renaming

Just part revealed (to a complier)
Multiple versions of the “same” register
Allows new data to be taken to a register “blocked” by a not yet
finished execution of another instruction
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ANDES – Summary

Instead of waiting for memory access, other instructions are
executed
Internally changes the program order of instructions to the data
order

instructions are executed when their operands are ready (in
registers)
the original program order is not relevant

Avoids (or at least reduces) stalling of execution
Speculates on branches or even takes both branches in parallel

Only one branch graduates

Complex circuitry, higher power consumptions
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ANDES – Problems
Meltdown and Spectre vulnerabilities

Disclosed in January 2018
Many variants followed

Consequences of speculative execution
The not yet graduated instruction should not cause an exception

it may never graduate
yet it can have side effects that are observable

Speed of access to the cache
Depends on whether the item is already in cache or not
You can force upload of a memory that is not accessible through
your program
and measure the time it takes

More at https://meltdownattack.com/ and also
https://arxiv.org/pdf/1811.05441.pdf
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Memory

Memory organization:
rows and columns (a 2D matrix)
address has two parts
page mode – a block or continuous bytes (the “row”) is read in one
shot
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Memory Features

Memory access time
access row plus access column plus access (read or write) data

Memory cycle time
defines how often we can read data from a memory

Both depends on type of the memory (static or dynamic)
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Virtual Memory

Physical vs. logical address
More address spaces

Translation Lookaside Buffer (TLB)
translates logical addresses to their physical equivalent
a part of processor hardware
TLB can have misses like any other cache

Virtual memory and supercomputers
usually not used in specialized architectures
now common due to the synergic architecture (clusters)
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Cache

Size: several kB to tens of MB
Organization: fixed length rows (16–128 bytes)
Types:

direct mapped
set-associative
fully-associative

Hit ratio
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Memory Architectures

Harvard Memory Architecture
separated memory for data and instructions

Programmable cache
cache directly controlled at some superscalar processors (e.g. DEC
Alpha)
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Direct mapped cache

Static mapping
each cache row can keep only pre-defined memory rows

Fast
Simple circuits
Potentially inefficient

used data may map to a single cache row
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Fully associative cache

Dynamic mapping
associative memory
each row in a cache knows where data lie in the main memory
access to cache goes to all rows
need to select a row for invalidation

Very efficient
Very complex circuits – expensive
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Set associative cache

Sets of direct addressable caches
Combination of positive properties of the previous cases

usually 2 and 4 way

Not full associativity (cheaper)
Still options where a memory row can be stored

invalidated row selection
must keep the memory address
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Width of data flow

Bandwidth = maximal throughput of a memory system
measured in bytes per second

Throughput is not the same among all components
Processor – registers – cache – main memory – external memory

Latency
Time between the request and the actual data delivery
Extremely important esp. when moving small data chunks

Luděk Matyska · Processors · Spring 2023 41 / 69



Interleaved Memory

The whole memory split to smaller blocks
Consecutive addresses mapped to different blocks
Allows immediate access

2–8 way interleaved memories common
supercomputers can have higher level of interleaving

Example: Convex C3 with 256-way interleaving
Clock 16 ns
Repeat access to the bank: 300 ns (almost 20 time
slowdown)

Higher latency
Mitigated by use of pipeline
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Re-ordering of memory accesses

ANDES predecessor
Minimization of consecutive accesses to the same memory bank
Run-time check on Load and Store interdependencies
Example: Motorola 88110
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Processor MIPS R8000

Introduced in 1993
Clear example of the basic concepts
4 way superscalar, max 6 ops/cycle

Dual ALU, dual FPU, and two Load/Store units
FPU with IEEE-754 standard arithmetic but imprecise interrupt
32 registers (64 bits) for integer and 32 registers (64 bit) for
floating point operands
Conditional move instructions (IF command support)

Fully 64 bit architecture
128 bit data bus
40 bit address bus (up to 1 TB addressable memory)
2-way TLB, 384 entries
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MIPS R8000 (II)

Caches
16 KB I-cache (instructions)
16 KB D-cache (2-way, for arithmetic/integer data)
2 KB branch prediction cache
4 MB streaming cache (floating point instructions)
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MIPS R8000 – I-Cache

Instruction cache
direct mapped
1024 entries 128 bits each
accessed and tagged by virtual address

By passes TLB
tag RAM – 512 entries (for each row)

tag
ASID (Address space identifier)
ASID distinguishes same virtual but different physical
addresses
validity bit
two area bits
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MIPS R8000 – D-Cache

Data cache
direct mapped
two parallel accesses

2 load or one load and one store instructions
concurrently
accessed by virtual, tagged by physical address
Write-through protocol
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MIPS R8000 (IV)
Comparison of implemented caches

Parameter I-cache Branch D-Cache TLB
Sice 16 KB 2 KB 16 KB
Entry 128 bit 16 bit 64 bit
No of entries 1024 1024 2048 384
Port No one one two two
Mapped direct direct direct 3-way
Index Virtual Virtual Virtual Virtual
Tag Virtual N/A Physical N/A
Access one cycle one one one
Width 128 bit 16 bit 64 bit
Throughput 1,2 GB/s 159 MB/s 1,2 GB/s
Row 32 bytes N/A 32 bytes
Miss penalty 11 cycles 3 cycles
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MIPS R8000 (V) – Instruction execution speed
Fixed point Latency
Add, shift, logical 1
Load, store 1
Multiply 4 (6)
Divide 21 (denominator ≤ 15 bitů)

39 (denominator 16–31 bitů)
73 (denominator 32–64 bitů)

Floating point Latency Stall
Move, negate, abs value 1 1
Add, Multiply, MADD 4 1
Load, Store 1 1
Compare, cond. move 1 1
Divide 14 (20) 11 (17)
Square root 14 (23) 11 (20)
Reciprocal 8 (14) 5 (11)
Reciprocal sq. root 8 (17) 5 (14)
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Processor MIPS R10000

Introduced 1996
ANDES architecture, three queues
Superscalar, 4 concurrent instructions

2 ALU and 2 FPU (non-equivalent)
FPU with standard IEEE-754 arithmetic and precise interrupts
32 (64 physical) registers (64 bit) for integer operands
32 (64 physical) registers for floating point operands
register renaming

Fully 64 bit architecture
128 bit data bus, 40 bit address bus
TLB fully associative, 64 entries (dual)
Page size 4 KB–16 MB
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MIPS R10000 (II)

Caches
32 KB I-cache (2-set associative)
32 KB D-cache (2-way, 2-set associative)
branch prediction (4 levels)
1 MB L2 cache

Non-blocking Load and Store instructions

Luděk Matyska · Processors · Spring 2023 51 / 69



MIPS R10000 (III)

Computational units
2 ALU

In both
Add, Sub, and logical instructions

Specific
ALU1: branches and shift instructions
ALU2: multiplication and division (iteratively)

2 FPU (plus two other units outside the pipeline for division and
square root (iteratively))

FPU1: adder
FPU2: multiplier
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MIPS R10000 – Queues

Integer
16 entries
up to 4 instructions written concurrently

Float
16 entries
up to 4 instructions written concurrently
impossible to start concurrently the Divide and Square root
instructions
MADD instruction uses both FPUs
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MIPS R10000 -Queues (II)

Address
16 entries (FIFO)
instructions could be executing an arbitrary order
write and fetch must be sequential (guaranteed by the FIFO
buffer)
re-execution of an instruction in case of failure (cache miss,
conflict, dependency)
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MIPS R10000 (V) – Execution speed
Integer Latency Stall
Add, shift, logical, branch 1 1
Load, store 2 1
Multiply (32 bit) 5–6 6
Multiply (64 bit) 9–10 10
Divide (32 bit) 34–35 35
Divide (64 bit) 66–67 67
Int to Float (32 bit) 4 1
Float Latency Stall
Move, negate, abs value 1 1
Add, Conversion, Mult 2 1
Load, Store 3 1
MADD 4 1
Divide 12 (19) 14 (21)
Square root 18 (33) 20 (35)
Reciprocal sq. root 30 (52) 20 (35)
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Processor UltraSPARC-I

Introduced 1987 (Sparc V9)
4 way superscalar architecture

2 ALU, FPU (plus 2 instructions), GRU (Graphics)
32 FPU (64 bit) registers

64 bit architecture; could select between little and big endian
128 bit data bus, 41 bit physical address, 44 bit virtual address
64 entries in TLB, pages 8 kB, 64 kB, 512 kB or 4 MB

Visual Instruction Set – GRU
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UltraSPARC-I (II)

Caches
16 KB non-blocking D-cache
16 KB I-cache (with branch prediction)
0,5–4 MB L2 cache (throughput 3,2 GB/s)

Blocking load/store instructions
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UltraSPARC-I – Execution units

FPU
Division and square root independently (outside FPU pipeline)
12 (22) cycles for single (double) precision
non-blocking pipelined FPU instructions
precise interrupts

GRU
16 and 32 bit combined add and logical instructions
8 and 16 bit multiplication
scatter and gather
direct access to (graphical) memory bypassing D-cache
direct support of a “motions compensation”
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Intel and AMD

32 bit CISC architecture (IA32)
Legacy from 16 bit 8086 + 8087 a 80286
Representatives: 80386 (i386), i486, Pentium (i586), i686

2001: Itanium (IA64)
new design, not backward compatible with IA32
collaboration with HP, “clear” RISC architecture

2003–2004: AMD Opteron and Intel Xeon Nocona
conservative (backward compatible) IA32 extension
AMD64, EM64T/Intel64, x64, a joint title x86-64
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Intel Itanium

First generation (till 2001)
speculative execution, branch prediction, register renaming
coarse grained multithreading
128 64 bit int a 128 82 bit float registers
up to 6 instructions per a cycle
6 ALUs, 4 MADD units
special instruction for multimedia etc.
hardware support for virtualization
slow IA32 emulation, missing compilers, average performance

Second generation (2002–2010)
joint development with HP
targeting enterprise systems and not HPC
Tukwile (65nm) the last version
Intel QuickPath for interconnect (not a bus)
Enhanced memory subsystem, 4 cores

Itanium 9500 (2012)
32nm, 8 cores, up to 54 MB cache
Convergence towards Intel Xeon processors
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Contemporary x86-64 processors

Originally introduced by AMD (K8 microarchitecture)
Intel Core architecture

Nehalem, Sandy Bridge (32nm), Ivy Bridge (22nm), Haswell,
Broadwell, Skylake and other “lake” families up to Comet and Ice
lake
forthcoming Alder lake (12th generation, 10nm)

AMD
Opteron, Athlon 64, ..., Ryzen/Epyc

VIA Technologies
VIA Nano (2008)
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Intel Core 10th gen

Memory
L1 instruction/data cache: 32/48 KiB
L2 cache: 512 KiB
L3/smart cache: up to 20 MiB
52 bit address space (4 PB), 57 bit virtual address space (up to 128 PB)
352 TLB entries

CPU
up to 10 cores
clock (turbo) rate up to 4,2 (5,3) GHz
hardware acceleration for SHA
AVX-512 instructions
Intel Deep Learning Boost

GPU
64 execution units
more than 1 TFLOPS
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Xeon Phi
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IBM Power10 processor
Emphasis for HPC (and energy efficiency)
Memory

L1 instruction/data cache: 48/32 KiB
L2 cache: 2 MB
L1 & L2 are per core
L3 cache: 120 MB per chip
4096 TLB entries
memory RAM encryption with no latency penalty

CPU
15 cores, 8 threads per core (SMT8)
512 entry instruction table (ANDES)
matrix math assist (SIMD code)
clock rate up to 4 GHz

Up to 16 socket cluster with 240 cores (1920 threads) and 2 PB
memory
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POWER 10
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POWER 10
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Multiprocessor systems
Problems with further frequency increase

Heat dissipation
Parallelization

Performance increase via multiple cores
Performance increase via multiple CPUs (sockets)
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Multiprocessor systems

Scaling ratio (number of sockets) for symmetric memory
2-8 for AMD and Intel, 16-32 for IBM POWER family
Special solutions up to hundreds (SGI, now HPE)

Distributed memory
Centralized (symmetric) memory a bottleneck
NUMA (Non-Uniform Memory Architecture)

Clusters with huge number of multiprocessor nodes
Symmetric memory within a node
Distributed memory across nodes
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Multiprocessor systems

Cache coherency
I see what I wrote
I see what anyone write before me
Order of writes is globally identical

Cache row state
uncached, shared, modified, ...

Cache coherency protocols
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