Partner MU-Brno WP5 – complex queries

Pavel Zezula Faculty of Informatics Masaryk University, Brno

Complex Queries

- Several different attributes (features) of every object
 similarity measure for every attribute is different
- Complex queries
 - multiple simple similarity queries on attributes
 - ranks combined by an aggregation function
- Find the best matches of *circular* shape objects with *red* color
 - the best match for circular shape or red color needs not be the best match combined!!!

Complex Queries – Definition

- Assume that object $o \in D$ has *m* attributes (o_1, o_2, \dots, o_m)
 - every attribute is comparable by a distance function d_i
 - the value of an aggregation function t

$$t(d_1(q_1, o_1), d_2(q_2, o_2), \dots, d_m(q_m, o_m))$$

represents the "score" of object o with respect to query object q

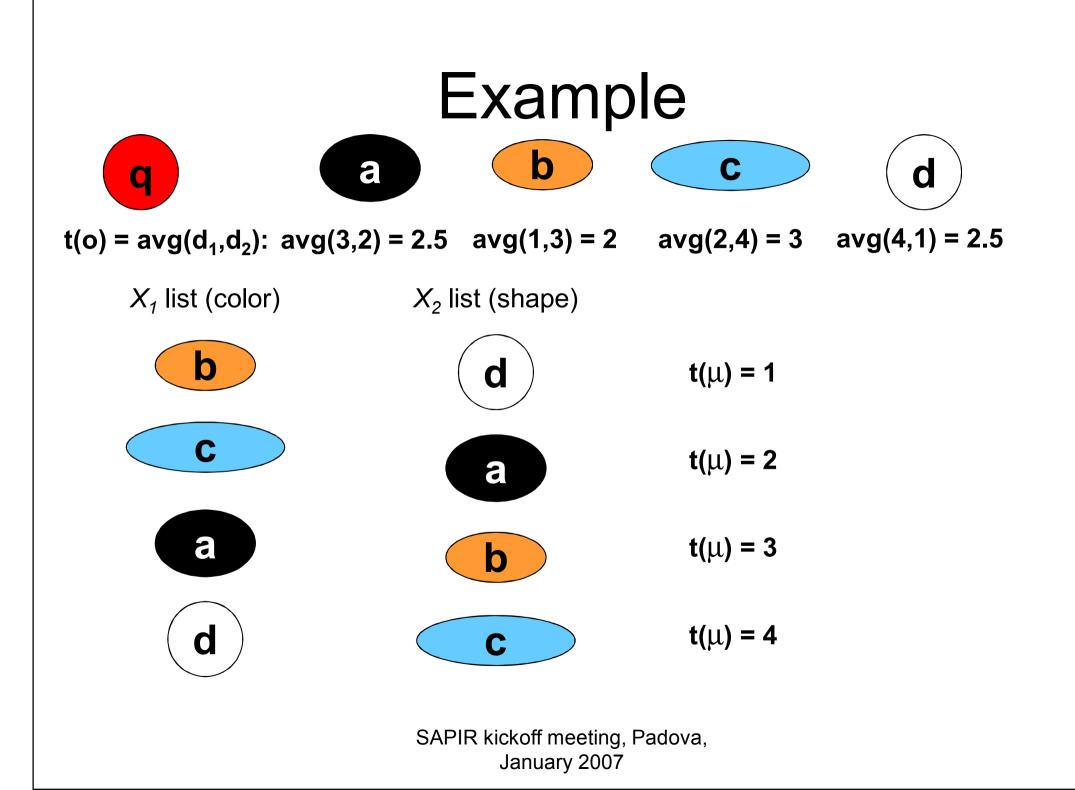
- function t must be monotonous
- normalized similarity grades can be used instead of distances

$$x_i \in [0;1], i = 1, \dots, m$$

 represents how similar is the object o to query q in respective attribute

> SAPIR kickoff meeting, Padova, January 2007

The \mathcal{A}_0 Algorithm


- Retrieve k top objects with respect to $q = (q_1, q_2, ..., q_m)$
- For each attribute *i*
 - objects delivered in decreasing similarity to q_i
 - incrementally build sets X_i with best matches till

$$\forall i \mid \cap_i X_i \models k$$

- For all $o \in \bigcup_i X_i$
 - compute function *t*(*o*) needs more dist. comp.
 - sort results according to values of *t(o)*
 - return *k* first objects

Threshold Algorithm TA

- Retrieve k top objects with respect to $q = (q_1, q_2, ..., q_m)$
- Incrementally retrieve objects in every attribute i
 - objects in decreasing similarity stored in lists X_i
- Let μ_i be the maximal grade (distance) seen in list X_i
- The **threshold value** is defined as $t(\mu_1, \mu_2, ..., \mu_m)$
- For every object o retrieved in any list X_i
 - compute the score t(o)
 - if the score belongs to the best k scores seen so far
 - remember o and t(o) only first k objects are stored
- Stop if at least *k* objects with scores up to the threshold are found

TA Properties

- Sorted access to objects for every attribute
 - index structure for every attribute
 - e.g. an index for color histograms and another one for shapes
 - incremental nearest neighbor search is needed
- Random access to objects
 - ability to compute score of object o in other attributes
 - e.g. for a particular object o = (color, shape), find its color similarity $d(q_1, o_1)$ and shape similarity $d(q_2, o_2)$
- Special variants of threshold algorithm
 - restricting random accesses
 - restricting sorted accesses

SAPIR kickoff meeting, Padova, January 2007

Challenge for SAPIR

- Multilayer architecture of MESSI
- Expensive sorted access incremental nearest neighbor is needed
- Efficient random access
- Minimization of the network communication costs is needed
- Inter- and intra-query parallelism tradeoff

Partner MU-Brno WP7 – social networks

Pavel Zezula Faculty of Informatics Masaryk University, Brno