PA152: Efficient Use of DB

8. Query Optimization
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Query Optimization

m Generating and comparing guery

execution plans

Generating / /

Filtering

Assigning costs
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Generating Execution Plans
m Consider using:
Rel. algebra transformation rules
Implementations of rel. alg. operations

Use of existing indexes
Building indexes and sorting on the fly
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Plan Cost Estimation

m Depends on costs of each operation
l.e., Iits Implementation

m Assumptions for operation costs:
Input is read from and disk
Output is kept in memory

Costs on CPU

m Processing on CPU is faster than reading from disk
m Can be neglected but often simplified

Network communication costs
m ISsue In distributed databases

Ignoring contents of mem buffers/caches between
gueries

m Estimated costs of operation
= humber of read and write accesses to disk
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Operation Cost Estimation
m Example: settings in PostgreSQL

https://www.postgresal.org/docs/15/runtime-config-guery.htmli#RUNTIME-CONFIG-QUERY-CONSTANTS

https://www.postgresal.org/docs/15/static/runtime-config-resource.html

seq_page cost (1.0)
random_page cost (4.0)

C
C
C

ou_tuple_ cost (0.01)
ou_Index_tuple cost (0.005)

DU_operator_cost (0.0025)

shared_buffers (32MB) — 2 RAM
effective_cache_size (4GB) — 72 RAM
work_mem (8MB)

= Memory available to an operation
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Operation Cost Estimation

m Parameters
B(R) — size of relation R in blocks
f(R) — max. record count to store in a block
M — max. RAM buffers available (in blocks)

HT(i) — depth of index I (in levels)
LB(i) — sum of all leaf nodes of index |
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Operation Implementation

m Based on concept of iterator
Open — Initialization
m preparations before returning any record of result
GetNext — return next record of result
Close — finalization
m release temp buffers, ...

m Advantages

Result may not be returned at once

m Does not occupy main memory; may not be
materialized on a disk

Pipelining can be used
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Accessing Relation: table scan
m Relation is not interlaced

R1 R2 R3 R4 | | R5R6 R7 R8

Reading costs: B(R)

TwoPhase-MergeSort = 3B(R) reading/writing
= Final writing Is ignored

m Relation Is Iinterlaced
R1R2 S1S2||R3 R4 S3 54

Reading costs are up to T(R) blocks!

TwoPhase-MergeSort
m T(R) + 2B(R) reads and writes
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Accessing Relation: index scan

m Read relation using an index

Scanning index — reading records
m Read index blocks (<< B(R))

m Read records of relation
Applicable to any attribute

Max. costs:
= (max. B(R) and T(R) reads) + (up to mfT*1 — 1)
Where m is an index arity (LB = m'T)

m Advantages

Can limit to a subset of records (interval)

m Min. costs: O read blocks of relation + 1..HT blocks of
iIndex

For a covering index

PA152, Vlastislav Dohnal, FI MUNI, 2023 9



" B
One-Pass Algorithms

m Implementation:

Read relation — Processing — Output buffers
Processing records one by one

m Operations

Projection, Selection, Duplicate elimination
(DISTINCT)

m costs: B(R)

Aggregation functions (GROUP BY)
m costs: B(R)

Set operations, cross product
m costs: B(R) + B(S)
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Duplicate Elimination — distinct

m Procedure
Test whether the record is in output
If not, output the record

m Test for existence in output

Store already seen records in memory
m Can use M-2 blocks

No data structure: n> complexity (comparisons)
Use hashing

m Limitation: B(R) < M-1
m Can be implemented using iterators?
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Distinct — example

m Relation company(company key,company name)

# explain analyze SELECT DISTINCT company_name FROM provider.company;
HashAggregate (cost=438.68..554.67 rows=11600 width=20) (actual time=9.347..12.133 rows=11615 loops=1)
Group Key: company_name
-> Seg Scan on company (cost=0.00..407.94 rows=12294 width=20)
(actual time=0.019..5.007 rows=12295 loops=1)

Planning time: 0.063 ms
Execution time: 12.799 ms

# explain analyze SELECT DISTINCT company_key FROM provider.company;
Unique (cost=0.29..359.43 rows=12294 width=8) (actual time=0.041..8.857 rows=12295 loops=1)
-> |Index Only Scan using company_pkey on company (cost=0.29..328.69 rows=12294 width=8)
(actual time=0.039..5.686 rows=12295 loops=1)
Heap Fetches: 4726
Planning time: 0.063 ms
Execution time: 9.645 ms

# explain analyze SELECT DISTINCT company_name FROM provider.company ORDER BY company_nhame;
Unique (cost=1243.05..1304.52 rows=11600 width=20) (actual time=53.468..59.072 rows=11615 loops=1)
-> Sort (cost=1243.05..1273.79 rows=12294 width=20) (actual time=53.467..55.482 rows=12295 loops=1)
Sort Key: company_name
Sort Method: quicksort Memory: 1214kB
-> Seq Scan on company (cost=0.00..407.94 rows=12294 width=20)

(actual time=0.018..5.338 rows=12295 loops=1) 12
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Aggregations / Grouping

m Procedure

Create groups for group-by attributes
Store accumulated values of aggregation functions

m Internal structure

Organize values of grouping attributes, e.g., hashing

Accumulated value of aggregations
= MIN, MAX, COUNT, SUM - one value (number)
m AVG — two numbers (SUM and COUNT)

Accumulated values are small: M-1 blocks are enough

TN
m [terators:

m All prepared in Open

s Advantage of pipelining is inapplicable
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Set Operations

m Requirement: min(B(R), B(S)) < M-2
Smaller relation read in memory
Larger relation is read gradually
Set union (possibly also Set difference):

= Memory requirements: B(R)+B(S) < M-2

m Assumption
R Is larger relation, I.e., S Is In memory

m I[mplementation

Create a temp search structure
m E.g., hashing
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Set union

Notice: Not multiset union
l.e., without ALL in SQL

m Read S; construct search structure
Eliminate duplicates
Output unigue records immediately

m Read R and check existence of the record
NS
If present, skip It.
If not seen, output it and add to structure
m Limitations
B(R)+B(S) < M-2

15
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Set Intersection

Notice: Not multiset Intersection
l.e., without ALL in SQL

m Read S:; construct search structure
Eliminate duplicates

m Read R and check existence of the record
InS
If present, output the record and delete it from
structure.

If not seen, skip It.
m Limitations
min(B(R), B(S)) < M-2

16
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Set Difference

m R-S
Read S: construct search structure
m Eliminate duplicates

Read R and check existence of therecordin S

m If not present, output it
Also insert into internal structure

B(S) + B(R) < M-2 (worse case, but with pipelining)
s Or max(B(R),B(S)) = M-2, when preprocessing R (no pipelining)
m SR
Read S; construct search structure
m Eliminate duplicates

Read R and check existence of the record in S
m If present, delete it from internal structure

Output all remaining recs. in S (no pipel.)
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Multiset (Bag) Operations

m Bag union RUgS
Easy exercise...

m Bag intersection RNgS
Read S; construct search structure
m Eliminate duplicates by storing their count
Read R and check existence of the record In S

If record Is present, output it
m and decrement record count!
m |f counter is zero, delete it from internal structure

If record Is not found, skip it
min(B(R), B(S)) < M-2
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Multiset (Bag) Operations

m Bag difference S—R
Same idea
If record of R Is present in S, decrement its counter

Output internal structure (recs. of S)
= With positive count

B(S) < M-1
m Bag difference R—S
By analogy...
If record of R Is not present in S — output

If found,
= — if counter is zero, output it
s — decrement the counter and skip it
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Join Operation — one pass version
m Cross product

Easy exercise...
m Natural join

Assume relations R(X,Y), S(Y,Z)

= X — unigue attributes iIs R, Z — unique attrs. in S
m Y — common attributes in R and S

Read S: construct search structure on Y

For each record of R, find all matching recs. of S

m Output concatenation of all combinations (eliminate
repeating attributes Y)

m QOuter join ?

PA152, Vlastislav Dohnal, FI MUNI, 2023 20



"
One-Pass Algorithms

B Summary
Unary operation: op(R)
m B(R) < M-1, 1 block for output; some need 1 for input
Binary operation: R op S
m B(S) < M-2, 1 block for R, 1 block for output
Some ops require: B(R)+B(S) < M-2 or max(B(R),B(S))<M-1
Cost = B(R) + B(S)
m Based on size of memory buffers M
Known — ok

Not known — estimate it

= WWrong size — swapping, use two-pass
algo instead of one-pass algorithm
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Join Algorithms

m Relations do not fit in memory
So called “one and a half”-pass algorithms

m Basic variant: Nested-loop join

foreachsin S do

mforeachrin Rdo
If rand s match in Y then output concatenation of r and s.

m Example
T(R)=10000 T(S)=5000 M=2
Costs =5 000-(1+10 000) = 50 005 000 I10s

reading a record of S Reading whole R
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Join Algorithms

m Relations accessed by blocks
m Block-based nested-loop join

= R — inner relation, S — outer relation
m Example:
B(R) = 1000 B(S) =500 M=3
Costs = 500:(1+1000) = 500 500 I0s
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Join Algorithms

m Exploit all buffer blocks (M blocks)
Cached Block-based Nested-loop Join

Read M-2 blocks of relation S at once

m Read relation R block by block
Join records

Costs: B(S)/(M-2) - (M-2 + B(R)) [IOs
m Example Re<S:

M=102

Costs: 5 - (100 + 1000) =5 500 IOs

Swapping relations
s Costs: 10 - (100 + 500) = 6 000 10s
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Join Algorithms — Summary

m Nested-loops join
Use always blocked variant
Read the smaller relation into memory (if M>>3)

m Storage of relation

Important for final costs
m Interlaced — each record needs one I/O

= Non-interlaced — each record needs B(R)/T(R) 1/Os
only

m Applicable to any join condition
theta joins
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Two-Pass Algorithms

m Procedure:

Preprocess input relation — store it

= Sorting (Multi-way MergeSort)
= Hashing

Processing
m Operations:
Joins

Duplicate elimination (DISTINCT)

Aggregations (GROUP BY)
Set operations

26
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Join Algorithms — MergeJoin
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Join Algorithms — MergeJoin
m R<S  R(X,Y), S(Y,2)
m Algorithm:

SortRand S

1=1;)=1;

while (i< T(R)) A (j < T(S)) do

mif R[I].Y = S[j].Y then doJoin()

melse if R[Il.Y > S[j].Y then | =+1
melseif R[IL.Y < S[j].Y theni=i+1

PA152, Vlastislav Dohnal, FI MUNI, 2023
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Join Algorithms — MergeJoin

m Function doJoin():
Proceed nested-loop join for records of same Y

while (R[i.Y = S[j].Y) A (i £ T(R)) do
] j2 = j
s while (R[i].Y = S[j2].Y) A (j2 £ T(S)) do
Output joined RJi] and SJj2]
2=12+1
mi=1+1

J =2
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Join Algorithms — MergeJoin

i R[i].Y S[j].Y
1 10 5 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5
50 6

7

52
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Join Algorithms — MergeJoin

m Costs
MergeSort of R and S — 4-(B(R) + B(S))
Mergedoin —» B(R) + B(S)

m Example (M=102)
MergeJoin

= Sorting: 4-(1000 + 500) = 6000 read/write 10s
= Joining: 1000 + 500 = 1500 read 10s
m Total: 7500 read/write 10s

Original cached block-based nested-loop join
= 5500 read 10s
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Join Algorithms — MergeJoin

m Another example /

B(R) = 10 000 B(S) =5 000
M = 102 blocks

Cached Block-based Nested-loop Join
= (5 000/100) - (100 + 10 000) = 505 000 read I0s

MergeJdoin
= 5:(10 000 + 5 000) = 75 000 read/write 10s
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Join Algorithms — MergeJoin

m MergeJoin
Preprocessing is expensive
m If relations are sorted by Y, can be omitted.

m Analysis of 10 costs
MergeJoin
m linear complexity

Cached Block-based Nested-loop Join
= quadratic complexity

— from a certain size of relations,
MergeJoin is better
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Join Algorithms — MergeJoin

m Memory requirements
Limitation to max(B(R), B(S)) < M?

m Optimal memory size

Using MergeSort on relation R
= Number of runs = B(R)/M, Run length = M
s Limitation: number ofruns <M — 1

= B(R)/M <M B(R) < M? — M >./B(R)
m Example

B(R) = 1000 — M>31.62
B(S) = 500 —» M>22.36

PA152, Vlastislav Dohnal, FI MUNI, 2023 34



"
Join Algorithms — MergeJoin-> SortJoin

= Improvement:

Not necessary to have the relations sorted
completely

| — S

sorted runs
(1st phase of MergeSort)
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Join Algorithms — SortJoin

m Improvement

Prepare sorted runs of R and S
Read 1%t block of all runs (R and S)
Get min value in Y

» Find corresponding records in other runs
= Join them

m [N case too many records with the same Y

Apply block-nested-loop join in the remaining
memory
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Join Algorithms — SortJoin

m Costs
Sorted runs: 2-(B(R) + B(S))
Joining: B(R) + B(S)
m Limitations
Run length = M, number of runs <M
— B(R) + B(S) < M-(M-1)
m Example (M=102)
Sorting: 2-(1000 + 500)  Joining: 1000 + 500

Total: 4 500 read/write 10s

m — better than cached block-based
nested-loop join
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Join Algorithms — HashJoin
B R<S  R(X,Y), S(Y,2)

Py
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........
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R | —» : — M-1
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........
feniala
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........
kY \
. .
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S
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Join Algorithms — HashJoin

B R<S R(X,Y), S(Y,2)
Define a hash function for attributes Y

Create hashed index of R and S
m Address space is M-1 buckets

For each | € [0,M-2]
m Read bucketiof Rand S
= Find matching records and join them
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Join Algorithms — HashJoin

m Joining buckets

Read whole bucket of S (< M-2)
= May create an internal structure to speed up

Read bucket of R block by block

%/

7
S

Buckets of R

Buckets of S

memory
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Join Algorithms — HashJoin

m Costs:

Create hashed index: 2-(B(R)+B(S))

Bucket joining: B(R)+B(S)
m Limitations:

Size of each bucket of S < M-2

» Estimate: min(B(R),B(S)) < (M —1).(M — 2)

m Example:

Hashing: 2-(1000+500)

Joining: 1000+500

Total: 4 500 read/write 10s
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Join Algorithms — HashJoin

m Minimum memory requirements

Hashing S; optimal bucket occupation

= Memory buffer: M blocks
m Bucket size = B(S) / (M-1)
This must be smaller than M (due to joining)
[B(S)/(M —1)] <M -2

axM—1> [\/B(S)}
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Join Algorithms — HashJoin

m Optimization
keep some buckets in memory
Hybrid HashJoin

m Bucketing of S — Optimal size
B(S)=500

B(S) =~ 23

l.e., each bucket is of 22 blocks
M=102

m — keep 3 buckets in memory (66 blocks)
m — 36 blocks of memory to spare
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Join Algorithm — Hybrid HashJoin

m Preprocessing S Memory usage (M=102):

GO0-2 3*22 blocks
Contents of memory buffer Other buckets  23-3 blocks

Reading S 1 block

output 1 block
S in Go Total 88 blocks
Z . llable!

.| : 29 blocks 14 blocks are available!
GZ «—
w T
% 23-3=20 buckets
/: T
%

memory
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Join Algorithm — Hybrid HashJoin
m Structure of memory to hash R

1000/23 = 44 blocks per bucket

Records hashed to bucket 0-2
= Join immediately with S, buckets (in memory) —

output
IN
R h GO
N % - 44 blocks
G2 —
7/ T
%5 P - 23-3=20 buckets
% —~ .
memory
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Join Algorithm — Hybrid HashJoin
m Joining buckets

Do for buckets with 1d 3-22

Read one whole bucket in memory; read the
other bucket block by block

one bucket Buck f
output  of S uc its of 5 Buckets of R
result | = i \ R
<4 4 Hi 22 44
k —>

%\ i i

one block of _ 23-3=20 _ 23-3=20
bucket of R . l . l
memory
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Join Algorithm — Hybrid HashJoin

m Costs:
Bucketize S: 500 + 20-22 = 940 read/write 10s

Bucketize R: 1000 + 20-44 = 1880 read/write 10s
= Only 20 buckets to write!

Joining: 20-44 + 20-22 = 1320 read 10s
m Three buckets are already done (during bucketizing R)

In total: 4140 read/write 10s
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Join Algorithms

m Hybrid HashJoin

How many buckets to keep in memory?
= Empirically: 1 bucket

m Hashing record pointers

Organize pointers to records instead of
records themselves

m Store pairs [key value, rec. pointer] in buckets
Joining
s [f match, we must read the records
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Join Algorithm — Hashing Pointers

m Example
100 key-pointer pairs fit in one block
Estimate results size: 100 recs

Costs:

m Bucketize S in memory (500 |Os)
5000 records — 5000/100 blocks = 50 blocks in memory

m Joining — read R gradually and join
If match, read full records of S — 100 read I10s

m Total: 500 + 1000 + 100 = 1600 read IOs
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Join Algorithms — IndexJoin
B R<S  R(X)Y), S(Y,2)
m ASsume:
Index on attributes Y of R
m Procedure:

For eachrecords € S

Look up matches in index — records A
m For each recordr € A

= Output concatenation of r and s
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Join Algorithms — IndexJoin

m Example
Assume
mIndexonY of R: HT=2, LB=200
m Scenario 1

Index fits In memory

Costs:

m Pass of S: 500 read 10s ©(s)=500, T(S)=5000)

m Searching in index: for free
If match, read record of R - 1 read |10
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Join Algorithms — IndexJoin

m Costs
Depends on the number of matches

Variants:
m A) YInRis primary key; Y in S Is foreign key
— 1 record
Costs: 500 + 5000-1-1 = 5500 read I10s
= B) V(R,Y) = 5000 T(R) =10 000
uniform distribution — 2 records
Costs: 500 + 5000-2-1 = 10500 read I10s

= C) DOM(R,Y)=1 000 000 T(R) =10 000
— 10k/1Im = 1/100 of record
Costs: 500 + 5000:(1/100)-1 = 550 read IOs
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Join Algorithms — IndexJoin

m Scenario 2

Index does not fit in memory

Index on Y of R is of 201 blocks

m Keep root-node block and 99 leaf-node blocks
INn memory M=102

Costs for searching

= 0-(99/200) + 1-(101/200) = 0.505 read 10s per
search (query)
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Join Algorithms — IndexJoin

m Scenario 2

Costs
m B(S) + T(S)-(searching index + reading records)

Variants:

m A) > 1record
Costs: 500 + 5000:(0.5+1) = 8000 read 10s

m B) > 2 records
Costs: 500 + 5000:(0.5+2) = 13000 read IOs

= C) —» 1/100 of record
Costs: 500 + 5000:(0.5+1/100)
= 3050 read 10s
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Join Algorithms — Summary

R0« S
B(R) = 1000
B(S) =500

Cached Block-based Nested-loop Join 5500

Merge Join (w/o sorting)
Merge Join (with sorting)
Sort Join
Index Join (R.Y index)
Hash Join

Hybrid

Pointers
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Join Algorithms — Summary

R S

Block-based Nested-loop B(S) - (1+B(R))

Cached version
Merge Join (w/o sorting)
Merge Join (with sorting)

Sort Join

Index Join (R.Y index)

(max costs)

Hash Join

Hybrid

Pointers

B(S)/(M-2) - (M-2 + B(R))
B(R) + B(S)

5 - (B(R) + B(S))

3 - (B(R) + B(S))

B(S) + T(S) - (HT + 0)
e.g. 6 = T(R)/V(R,Y)

3 - (B(R) + B(S))

2(B(R) + B(S))

5@

3(B(R) + B(S)) —

B(S)+B(R)+T(R) - 0
e.g. 6 = T(S)IV(S,Y)

Assume B(S) < B(R), Y are common attributes

M=3
M>3
M=3
M = /B(R)

M =.B(R)++B(S) +1
min. M=4

M =2+ B(S)
max. M-1 buckets

M =

G

M=B(hash index on S)+3
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Join Algorithms — Recommendation

m Cached Block-based Nested-loop Join
Good for small relations (relative to memory size)
m HashJoin

For equi-joins (equality on attributes only)
Relations are not sorted or no indexes

m SortJoin
Good for non-equi-joins
E.g., RY>SY
m MergeJoin
If relations are already sorted

m [ndexJoin

If index exists, it could be useful
Depends on expected result size
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Two-Pass Algorithms

m Using sorting
Duplicate Elimination
Aggregations (GROUP BY)
Set operations
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Duplicate Elimination

m Procedure

Do 15t phase of MergeSort
m — sorted runs on disk

Read all runs block by block
» Find smallest record and output it
= Skip all duplicate records

m Properties
Costs: 3B(R)
Limitations: B(R) < M*(M-1)
m OptimalM > \/B(R) +1
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" B
Aggregations

m Procedure (analogous to previous)

Sort runs of R (by group-by attributes)

Read all runs block by block

» Find smallest value — new group

Compute all aggregates over all records of this group
No more record in this group — output it

m Properties
Costs: 3B(R)
Limitations: B(R) < M*(M-1)
m OptimalM > \/B(R) +1
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"
Set union

m Notice: No two-pass algo for bag union
m Set union

Do 15t phase of MergeSorton R and S
= — sorted runs on disk

Read all runs (both R and S) gradually
» Find the first remaining record and output it
m Skip all duplicates of this record (in R and S)

m Properties
Costs: 3(B(R) + B(S))

Limitations: y/B(R) + B(S) < M
= Need one block per all runs (of R and also S)
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" B
Set/bag intersection and difference
B RNS, R-S, RMgS, R3S
m Procedure

Do 18t phase of MergeSort on R and S
Read all runs (both R and S) gradually
» Find the first remaining record t

m Count t’s occurrences in R and S (separately)
#R’ #S

= Copy to output (respecting specific operation)
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" S
Set/bag intersection and difference

m On copy to output:
RNS: output t,
mif #,>0A#5>0
RMgS: output t min(#x,#¢)-times
R-S: output t,
mif#,>0A#;=0
R-gS: output t max(#y - #5,0)-times
m Properties
Costs: 3(B(R) + B(S))
Limitations: y/B(R) + B(S) < M

= Need one block per all runs (of R and
also S)
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"
Two-Pass Algorithms

m Using hashing
Duplicate Elimination
Aggregations (GROUP BY)
Set operations
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" S
Duplicate Elimination

m Procedure

Bucketize R into M-1 buckets
m — Store buckets on disk

For each bucket

m Read it iIn memory and remove duplicates; output
remaining records
bucket size is max. M-1 blocks

m Properties
Costs: 3B(R)
Limitations: B(R) < (M-1)?
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"
Aggregations

m Procedure (analogous to previous)

Bucketize R into M-1 buckets by group-by attrs.
m — Store buckets on disk
For each bucket

= Read block by block in memory and

= Create groups for new values and compute aggregates

Limit on bucket size is not defined. But groups and patrtial
aggregates must fit in max. M-1 blocks.

= Output results

m Properties
Costs: 3B(R)
Limitations: B(R) = (M-1)2—_
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Set union, Intersection, difference

m Procedure

Bucketize R and S (the same hash function)
m Into M-1 buckets

Process the pair of buckets R, and S,

= Read one in memory (depends on operation)
bucket size: max. M-2

= Read the other gradually
m Properties
Costs: 3(B(R) + B(S))
Limitations on M depends on the operation
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" A
Set Intersection, difference

m Intersection (smaller relation is S)

Load the bucket of S iIn mem

Restrictions: min(B(R), B(S)) < (M-2)*(M-1)
m Difference R-S:

To eliminate duplicates in R, read bucket of R
INto mem

Restrictions: B(R) < (M-2)*(M-1)
m Difference S-R:

Load the bucket of S In mem
Restrictions: B(S) < (M-2)*(M-1)
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" A
Set Union

m Must eliminate duplicates in R and S

m for each |1 In hash addresses:

m read Bkt , build in-mem hash table & eliminate dups
also gradually output the records

m read BktR. gradually:
for each r in BktR,:
= if r not in in-mem hash table
= output r and add to in-mem hash table

m Restrictions: y/B(R) + B(S) <M
Need to load both the buckets (at worst) into M
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" J
Summary

m Operations
distinct, group by, set operations, joins
m Algorithm type
one-pass, one-and-a-half pass, two-pass
m Implementation
Sorting
Hashing
Exploiting indexes
m Costs

blocks to read/write
memory footprint
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"
Lecture Takeaways
m Influence of algorithm implementation on
costs

m Estimated costs influence the choice of
Implementation

m [f more mem is needed (estimation was
wrong)

It is allocated and the operation is not
terminated.

m Also, tiny code changes count!
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