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Query Optimization
◼ Generating and comparing query 

execution plans

Pick the best

Query

Execution Plans

Cost estimation

Generating

Filtering

Assigning costs
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Generating Execution Plans

◼ Consider using:

Rel. algebra transformation rules

 Implementations of rel. alg. operations

Use of existing indexes

Building indexes and sorting on the fly
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Plan Cost Estimation
◼ Depends on costs of each operation

 i.e., its implementation

◼ Assumptions for operation costs:
 Input is read from and disk

 Output is kept in memory

 Costs on CPU
◼ Processing on CPU is faster than reading from disk

◼ Can be neglected but often simplified

 Network communication costs
◼ Issue in distributed databases

 Ignoring contents of mem buffers/caches between 
queries

◼ Estimated costs of operation
 = number of read and write accesses to disk



Operation Cost Estimation
◼ Example: settings in PostgreSQL

https://www.postgresql.org/docs/15/runtime-config-query.html#RUNTIME-CONFIG-QUERY-CONSTANTS
https://www.postgresql.org/docs/15/static/runtime-config-resource.html

 seq_page_cost (1.0)

 random_page_cost (4.0)

 cpu_tuple_cost (0.01)

 cpu_index_tuple_cost (0.005)

 cpu_operator_cost (0.0025)

 shared_buffers (32MB) – ¼ RAM

effective_cache_size (4GB) – ½ RAM

work_mem (8MB)
◼ Memory available to an operation
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https://www.postgresql.org/docs/15/runtime-config-query.html#RUNTIME-CONFIG-QUERY-CONSTANTS
https://www.postgresql.org/docs/15/static/runtime-config-resource.html
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Operation Cost Estimation

◼ Parameters

B(R) – size of relation R in blocks

 f(R) – max. record count to store in a block

M – max. RAM buffers available (in blocks)

HT(i) – depth of index i (in levels)

LB(i) – sum of all leaf nodes of index i
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Operation Implementation
◼ Based on concept of iterator

Open – initialization
◼ preparations before returning any record of result

GetNext – return next record of result

Close – finalization
◼ release temp buffers, …

◼ Advantages

Result may not be returned at once
◼ Does not occupy main memory; may not be 

materialized on a disk

Pipelining can be used
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Accessing Relation: table scan
◼ Relation is not interlaced

Reading costs: B(R)

TwoPhase-MergeSort = 3B(R) reading/writing
◼ Final writing is ignored

◼ Relation is interlaced

Reading costs are up to T(R) blocks!

TwoPhase-MergeSort
◼ T(R) + 2B(R) reads and writes

R1 R2 R3 R4 R5 R6 R7 R8 …

R1 R2 S1 S2 R3 R4 S3 S4 …
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Accessing Relation: index scan
◼ Read relation using an index

Scanning index → reading records
◼ Read index blocks (<< B(R))

◼ Read records of relation

Applicable to any attribute

Max. costs: 
◼ (max. B(R) and T(R) reads) + (up to 𝑚𝐻𝑇+1 − 1)

 Where m is an index arity (LB = 𝑚𝐻𝑇)

◼ Advantages
Can limit to a subset of records (interval)

◼ Min. costs: 0 read blocks of relation + 1..HT blocks of 
index
 For a covering index

Max. number of nodes 

in an m-ary tree
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One-Pass Algorithms
◼ Implementation:

Read relation → Processing → Output buffers

Processing records one by one

◼ Operations

Projection, Selection, Duplicate elimination 
(DISTINCT)
◼ costs: B(R)

Aggregation functions (GROUP BY)
◼ costs: B(R)

Set operations, cross product
◼ costs: B(R) + B(S)
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Duplicate Elimination – distinct
◼ Procedure

Test whether the record is in output

 If not, output the record

◼ Test for existence in output

Store already seen records in memory
◼ Can use M-2 blocks

No data structure: n2 complexity (comparisons)

Use hashing

◼ Limitation: B(R) < M-1

◼ Can be implemented using iterators?



Distinct – example
◼ Relation company(company_key,company_name)
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# explain analyze SELECT DISTINCT company_name FROM provider.company;

HashAggregate (cost=438.68..554.67 rows=11600 width=20) (actual time=9.347..12.133 rows=11615 loops=1)

Group Key: company_name

->  Seq Scan on company  (cost=0.00..407.94 rows=12294 width=20)

(actual time=0.019..5.007 rows=12295 loops=1)

Planning time: 0.063 ms

Execution time: 12.799 ms

# explain analyze SELECT DISTINCT company_key FROM provider.company;

Unique  (cost=0.29..359.43 rows=12294 width=8) (actual time=0.041..8.857 rows=12295 loops=1)

->  Index Only Scan using company_pkey on company  (cost=0.29..328.69 rows=12294 width=8) 

(actual time=0.039..5.686 rows=12295 loops=1)

Heap Fetches: 4726

Planning time: 0.063 ms

Execution time: 9.645 ms

# explain analyze SELECT DISTINCT company_name FROM provider.company ORDER BY company_name;

Unique  (cost=1243.05..1304.52 rows=11600 width=20) (actual time=53.468..59.072 rows=11615 loops=1)

->  Sort  (cost=1243.05..1273.79 rows=12294 width=20) (actual time=53.467..55.482 rows=12295 loops=1)

Sort Key: company_name

Sort Method: quicksort  Memory: 1214kB

->  Seq Scan on company  (cost=0.00..407.94 rows=12294 width=20) 

(actual time=0.018..5.338 rows=12295 loops=1)
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Aggregations / Grouping
◼ Procedure

 Create groups for group-by attributes

 Store accumulated values of aggregation functions

◼ Internal structure

 Organize values of grouping attributes, e.g., hashing

 Accumulated value of aggregations

◼ MIN, MAX, COUNT, SUM – one value (number)

◼ AVG – two numbers (SUM and COUNT)

 Accumulated values are small: M-1 blocks are enough

◼ Iterators:
◼ All prepared in Open

◼ Advantage of pipelining is inapplicable

Output block is not reserved.
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Set Operations
◼ Requirement: min(B(R), B(S)) ≤ M-2

Smaller relation read in memory

Larger relation is read gradually

Set union (possibly also Set difference):
◼ Memory requirements: B(R)+B(S) ≤ M-2

◼ Assumption

R is larger relation, i.e., S is in memory

◼ Implementation

Create a temp search structure
◼ E.g., hashing
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Set union
Notice: Not multiset union

i.e., without ALL in SQL

◼ Read S; construct search structure

Eliminate duplicates

Output unique records immediately

◼ Read R and check existence of the record 
in S

 If present, skip it.

 If not seen, output it and add to structure

◼ Limitations

B(R)+B(S) ≤ M-2
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Set intersection
Notice: Not multiset intersection

i.e., without ALL in SQL

◼ Read S; construct search structure

Eliminate duplicates

◼ Read R and check existence of the record 
in S

 If present, output the record and delete it from 
structure.

 If not seen, skip it.

◼ Limitations

min(B(R), B(S)) ≤ M-2
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Set Difference
◼ R–S

 Read S; construct search structure
◼ Eliminate duplicates

 Read R and check existence of the record in S
◼ If not present, output it

 Also insert into internal structure

 B(S) + B(R) ≤ M-2 (worse case, but with pipelining)
◼ Or max(B(R),B(S)) ≤ M-2, when preprocessing R (no pipelining)

◼ S–R
 Read S; construct search structure

◼ Eliminate duplicates

 Read R and check existence of the record in S
◼ If present, delete it from internal structure

 Output all remaining recs. in S (no pipel.)

 B(S) ≤ M-1
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Multiset (Bag) Operations
◼ Bag union RBS

Easy exercise…

◼ Bag intersection RBS
Read S; construct search structure

◼ Eliminate duplicates by storing their count

Read R and check existence of the record in S

 If record is present, output it
◼ and decrement record count!

◼ If counter is zero, delete it from internal structure

 If record is not found, skip it

min(B(R), B(S)) ≤ M-2
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Multiset (Bag) Operations
◼ Bag difference S–BR

Same idea

 If record of R is present in S, decrement its counter

Output internal structure (recs. of S)
◼ with positive count                            

B(S) ≤ M-1

◼ Bag difference R–BS

By analogy…

 If record of R is not present in S → output

 If found,
◼ → if counter is zero, output it

◼ → decrement the counter and skip it

B(S) ≤ M-2
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Join Operation – one pass version

◼ Cross product
 Easy exercise…

◼ Natural join

Assume relations R(X,Y), S(Y,Z)

◼ X – unique attributes is R, Z – unique attrs. in S

◼ Y – common attributes in R and S

Read S; construct search structure on Y

For each record of R, find all matching recs. of S

◼ Output concatenation of all combinations (eliminate 

repeating attributes Y)

◼ Outer join ?
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One-Pass Algorithms
◼ Summary

Unary operation: op(R)
◼ B(R) ≤ M-1, 1 block for output; some need 1 for input

Binary operation: R op S
◼ B(S) ≤ M-2, 1 block for R, 1 block for output

 Some ops require: B(R)+B(S) ≤ M-2 or max(B(R),B(S))<M-1

Cost = B(R) + B(S)

◼ Based on size of memory buffers M

Known → ok

Not known → estimate it
◼ Wrong size → swapping, use two-pass 

algo instead of one-pass algorithm
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Join Algorithms

◼ Relations do not fit in memory

So called “one and a half”-pass algorithms

◼ Basic variant: Nested-loop join

for each s in S do

◼ for each r in R do

 if r and s match in Y then output concatenation of r and s.

◼ Example

T(R) = 10 000 T(S) = 5 000 M=2

Costs = 5 000(1+10 000) = 50 005 000 IOs

Reading whole Rreading a record of S
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Join Algorithms

◼ Relations accessed by blocks

◼ Block-based nested-loop join
◼ R – inner relation, S – outer relation

◼ Example:

B(R) = 1000 B(S) = 500 M=3

Costs = 500(1+1000) = 500 500 IOs
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Join Algorithms
◼ Exploit all buffer blocks (M blocks)

Cached Block-based Nested-loop Join

Read M-2 blocks of relation S at once
◼ Read relation R block by block

 Join records

Costs: B(S)/(M-2)  (M-2 + B(R)) IOs

◼ Example RS:

M=102

Costs: 5  (100 + 1000) = 5 500 IOs

Swapping relations
◼ Costs: 10  (100 + 500) = 6 000 IOs
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Join Algorithms – Summary

◼ Nested-loops join

Use always blocked variant

Read the smaller relation into memory (if M>>3)

◼ Storage of relation

 Important for final costs

◼ Interlaced → each record needs one I/O

◼ Non-interlaced → each record needs B(R)/T(R)  I/Os

only

◼ Applicable to any join condition

 theta joins
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Two-Pass Algorithms
◼ Procedure:

Preprocess input relation → store it
◼ Sorting (Multi-way MergeSort)

◼ Hashing

Processing

◼ Operations:

Joins

Duplicate elimination (DISTINCT)

Aggregations (GROUP BY)

Set operations
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memory

R

S ..
.

sorted runs

R

S

sorted relations

...

...

join 
result

pass to merge 

relations

Join Algorithms – MergeJoin

◼ R   S R(X,Y), S(Y,Z)

disk
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Join Algorithms – MergeJoin

◼ R   S R(X,Y), S(Y,Z)

◼ Algorithm:

Sort R and S

 i = 1; j = 1;

while (i ≤ T(R))  (j ≤ T(S)) do

◼ if R[i].Y = S[j].Y then doJoin()

◼ else if R[i].Y > S[j].Y then j = j+1

◼ else if R[i].Y < S[j].Y then i = i+1
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Join Algorithms – MergeJoin

◼ Function doJoin():

Proceed nested-loop join for records of same Y

while (R[i].Y = S[j].Y)  (i ≤ T(R)) do

◼ j2 = j

◼ while (R[i].Y = S[j2].Y)  (j2 ≤ T(S)) do

 Output joined R[i] and S[j2]

 j2 = j2 + 1

◼ i = i + 1

 j = j2
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Join Algorithms – MergeJoin

i  R[i].Y S[j].Y j

1 10 5 1

2 20 20 2

3 20 20 3

4 30 30 4

5 40 30 5

50 6

52 7
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Join Algorithms – MergeJoin

◼ Costs

MergeSort of R and S → 4(B(R) + B(S))

MergeJoin → B(R) + B(S)

◼ Example (M=102)

MergeJoin

◼ Sorting: 4(1000 + 500) = 6000 read/write IOs

◼ Joining: 1000 + 500 = 1500 read IOs

◼ Total: 7500 read/write IOs

Original cached block-based nested-loop join

◼ 5500 read IOs



PA152, Vlastislav Dohnal, FI MUNI, 2023 32

Join Algorithms – MergeJoin

◼ Another example

B(R) = 10 000 B(S) = 5 000

M = 102 blocks

Cached Block-based Nested-loop Join

◼ (5 000/100)  (100 + 10 000) = 505 000 read IOs

MergeJoin

◼ 5(10 000 + 5 000) = 75 000 read/write IOs

10x larger relations!!!
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Join Algorithms – MergeJoin

◼ MergeJoin

Preprocessing is expensive

◼ If relations are sorted by Y, can be omitted.

◼ Analysis of IO costs

MergeJoin

◼ linear complexity

Cached Block-based Nested-loop Join

◼ quadratic complexity

→ from a certain size of relations, 

MergeJoin is better



PA152, Vlastislav Dohnal, FI MUNI, 2023 34

Join Algorithms – MergeJoin
◼ Memory requirements

Limitation to max 𝐵 𝑅 , 𝐵 𝑆 < 𝑀2

◼ Optimal memory size

Using MergeSort on relation R
◼ Number of runs = Τ𝐵 𝑅 𝑀,  Run length = 𝑀

◼ Limitation: number of runs ≤ 𝑀 − 1

◼ Τ𝐵 𝑅 𝑀 < 𝑀 → 𝐵 𝑅 < 𝑀2 → 𝑀 > 𝐵 𝑅

◼ Example

B(R) = 1000  → M>31.62

B(S) = 500 → M>22.36
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Join Algorithms – MergeJoin→SortJoin

◼ Improvement: 

Not necessary to have the relations sorted 

completely

R

S

Can join 
directly?

sorted runs
(1st phase of MergeSort)
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Join Algorithms – SortJoin

◼ Improvement

Prepare sorted runs of R and S

Read 1st block of all runs (R and S)

Get min value in Y

◼ Find corresponding records in other runs

◼ Join them

◼ In case too many records with the same Y

Apply block-nested-loop join in the remaining 

memory
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Join Algorithms – SortJoin
◼ Costs

Sorted runs: 2(B(R) + B(S))

Joining: B(R) + B(S)

◼ Limitations

Run length = M, number of runs < M

→ B(R) + B(S) < M(M-1)

◼ Example (M=102)

Sorting: 2(1000 + 500) Joining: 1000 + 500

Total: 4 500 read/write IOs
◼→ better than cached block-based 

nested-loop join
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Join Algorithms – HashJoin

◼ R   S R(X,Y), S(Y,Z)

..
.

..
. M-1R

..
.

..
. M-1S

memory buckets

join



PA152, Vlastislav Dohnal, FI MUNI, 2023 39

Join Algorithms – HashJoin

◼ R   S R(X,Y), S(Y,Z)

Define a hash function for attributes Y

Create hashed index of R and S

◼ Address space is M-1 buckets

For each i  [0,M-2]

◼ Read bucket i of R and S

◼ Find matching records and join them
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Join Algorithms – HashJoin

◼ Joining buckets

Read whole bucket of S (≤ M-2)

◼ May create an internal structure to speed up

Read bucket of R block by block

B
u
ck

e
ts

 o
f 

R

..
.

Si

memory..
.B
u
ck

e
ts

 o
f 

S
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Join Algorithms – HashJoin
◼ Costs:

Create hashed index: 2(B(R)+B(S))

Bucket joining: B(R)+B(S)

◼ Limitations:

Size of each bucket of S ≤ M-2

◼ Estimate: 𝑚𝑖𝑛 𝐵 𝑅 , 𝐵 𝑆 < 𝑀 − 1 . (𝑀 − 2)

◼ Example:

Hashing: 2(1000+500)

Joining: 1000+500

Total: 4 500 read/write IOs
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Join Algorithms – HashJoin

◼ Minimum memory requirements

Hashing S; optimal bucket occupation

◼ Memory buffer: M blocks

◼ Bucket size = B(S) / (M-1)

 This must be smaller than M (due to joining)

→ Τ𝐵(𝑆) 𝑀 − 1 ≤ 𝑀 − 2

◼ ≈𝑀 − 1 > 𝐵 𝑆
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Join Algorithms – HashJoin

◼ Optimization

keep some buckets in memory

Hybrid HashJoin

◼ Bucketing of S – Optimal size

B(S)=500

 𝐵 𝑆  23

 i.e., each bucket is of 22 blocks

M=102

◼→ keep 3 buckets in memory (66 blocks)

◼→ 36 blocks of memory to spare
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Join Algorithm – Hybrid HashJoin

◼ Preprocessing S

Contents of memory buffer

Memory usage (M=102):
G0-2 3*22 blocks
Other buckets 23-3 blocks
Reading S 1 block    
output              1 block      
Total 88 blocks

14 blocks are available!

memory

G0

G2

in

..
.

22 blocks

23-3=20 buckets

S

..
.

..
.
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Join Algorithm – Hybrid HashJoin

◼ Structure of memory to hash R

1000/23 = 44 blocks per bucket

Records hashed to bucket 0-2

◼ Join immediately with S0-2 buckets (in memory) →

output

memory

G0

G2

in
..
.

44 blocks

23-3=20 buckets

R

..
.

..
.
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Join Algorithm – Hybrid HashJoin

◼ Joining buckets

Do for buckets with id 3-22

Read one whole bucket in memory; read the 

other bucket block by block

memory

Hi

output

..
.

22

23-3=20

result

..
.

44

23-3=20

Buckets of S Buckets of R
one bucket 

of S

one block of 
bucket of R
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Join Algorithm – Hybrid HashJoin

◼ Costs:

Bucketize S: 500 + 2022 = 940 read/write IOs

Bucketize R: 1000 + 2044 = 1880 read/write IOs

◼ Only 20 buckets to write!

Joining: 2044 + 2022 = 1320 read IOs

◼ Three buckets are already done (during bucketizing R)

 In total: 4140 read/write IOs
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Join Algorithms

◼ Hybrid HashJoin

How many buckets to keep in memory?

◼ Empirically: 1 bucket

◼ Hashing record pointers

Organize pointers to records instead of 

records themselves

◼ Store pairs [key value, rec. pointer] in buckets

Joining

◼ If match, we must read the records
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Join Algorithm – Hashing Pointers

◼ Example

100 key-pointer pairs fit in one block

Estimate results size: 100 recs

Costs:

◼ Bucketize S in memory (500 IOs)

 5000 records → 5000/100 blocks = 50 blocks in memory

◼ Joining – read R gradually and join

 If match, read full records of S → 100 read IOs

◼ Total: 500 + 1000 + 100 = 1600 read IOs
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Join Algorithms – IndexJoin

◼ R   S R(X,Y), S(Y,Z)

◼ Assume: 

 Index on attributes Y of R

◼ Procedure:

For each record s  S

Look up matches in index → records A

◼ For each record r  A

◼ Output concatenation of r and s
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Join Algorithms – IndexJoin

◼ Example

Assume

◼ Index on Y of R: HT=2, LB=200

◼ Scenario 1

 Index fits in memory

Costs:

◼ Pass of S: 500 read IOs (B(S)=500, T(S)=5000)

◼ Searching in index: for free

 If match, read record of R → 1 read IO
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Join Algorithms – IndexJoin

◼ Costs

Depends on the number of matches

Variants:

◼ A) Y in R is primary key; Y in S is foreign key

→ 1 record

Costs: 500 + 500011 = 5500 read IOs

◼ B) V(R,Y) = 5000 T(R) = 10 000

uniform distribution → 2 records

Costs: 500 + 500021 = 10500 read IOs

◼ C) DOM(R,Y)=1 000 000 T(R) = 10 000

→ 10k/1m = 1/100 of record

Costs: 500 + 5000(1/100)1 = 550 read IOs
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Join Algorithms – IndexJoin

◼ Scenario 2

 Index does not fit in memory

 Index on Y of R is of 201 blocks

◼ Keep root-node block and 99 leaf-node blocks 

in memory M=102 

Costs for searching

◼ 0(99/200) + 1(101/200) = 0.505 read IOs per 

search (query)



PA152, Vlastislav Dohnal, FI MUNI, 2023 54

Join Algorithms – IndexJoin

◼ Scenario 2

Costs

◼ B(S) + T(S)(searching index + reading records)

Variants:

◼ A) → 1 record

Costs: 500 + 5000(0.5+1) = 8000 read IOs

◼ B) → 2 records

Costs: 500 + 5000(0.5+2) = 13000 read IOs

◼ C) → 1/100 of record

Costs: 500 + 5000(0.5+1/100) 

= 3050 read IOs
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Join Algorithms – Summary

R  S

B(R) = 1000

B(S) = 500

Algorithm Costs

Cached Block-based Nested-loop Join 5500

Merge Join (w/o sorting) 1500

Merge Join (with sorting) 7500

Sort Join 4500

Index Join (R.Y index) 8000 → 550

Hash Join 4500

Hybrid 4140

Pointers 1600
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Join Algorithms – Summary
R  S   Assume B(S) < B(R),   Y are common attributes

Algorithm Costs Limits

Block-based Nested-loop B(S)  (1+B(R)) M=3

Cached version B(S)/(M-2)  (M-2 + B(R)) M3

Merge Join (w/o sorting) B(R) + B(S) M=3

Merge Join (with sorting) 5  (B(R) + B(S)) 𝑀 = 𝐵 𝑅

Sort Join 3  (B(R) + B(S)) 𝑀 = 𝐵 𝑅 + 𝐵 𝑆 + 1

Index Join (R.Y index) 
(max costs)

B(S) + T(S)  (HT + )

e.g.  = T(R)/V(R,Y)

min. M=4

Hash Join 3  (B(R) + B(S)) 𝑀 = 2 + 𝐵 𝑆
max. M-1 buckets

Hybrid 3 𝐵 𝑅 + 𝐵(𝑆) −
2 𝐵 𝑅 + 𝐵(𝑆)

𝐵 𝑅 𝑀 =
𝐵(𝑅)

𝐵 𝑅
+ 𝐵 𝑅 + 1

Pointers B(S)+B(R)+T(R)  

e.g.  = T(S)/V(S,Y)

M=B(hash index on S)+3

56
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Join Algorithms – Recommendation
◼ Cached Block-based Nested-loop Join

 Good for small relations (relative to memory size)

◼ HashJoin
 For equi-joins (equality on attributes only)

 Relations are not sorted or no indexes

◼ SortJoin
 Good for non-equi-joins

 E.g., R.Y > S.Y

◼ MergeJoin
 If relations are already sorted

◼ IndexJoin
 If index exists, it could be useful

 Depends on expected result size
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Two-Pass Algorithms

◼ Using sorting

Duplicate Elimination

Aggregations (GROUP BY)

Set operations
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Duplicate Elimination

◼ Procedure

Do 1st phase of MergeSort

◼→ sorted runs on disk

Read all runs block by block

◼ Find smallest record and output it

◼ Skip all duplicate records

◼ Properties

Costs: 3B(R)

Limitations: B(R) ≤ M*(M-1)

◼ Optimal M ≥ 𝐵 𝑅 + 1
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Aggregations

◼ Procedure (analogous to previous)

Sort runs of R (by group-by attributes)

Read all runs block by block

◼ Find smallest value → new group

 Compute all aggregates over all records of this group

 No more record in this group → output it

◼ Properties

Costs: 3B(R)

Limitations: B(R) ≤ M*(M-1)

◼ Optimal M ≥ 𝐵 𝑅 + 1
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Set union
◼ Notice: No two-pass algo for bag union

◼ Set union

Do 1st phase of MergeSort on R and S
◼→ sorted runs on disk

Read all runs (both R and S) gradually
◼ Find the first remaining record and output it

◼ Skip all duplicates of this record (in R and S)

◼ Properties

Costs: 3(B(R) + B(S))

Limitations: 𝐵 𝑅 + 𝐵 𝑆 ≤ 𝑀
◼ Need one block per all runs (of R and also S)
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Set/bag intersection and difference

◼ RS, R-S, RBS, R-BS

◼ Procedure

Do 1st phase of MergeSort on R and S

Read all runs (both R and S) gradually

◼ Find the first remaining record t

◼ Count t’s occurrences in R and S (separately)

 #R, #S

◼ Copy to output (respecting specific operation)
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Set/bag intersection and difference
◼ On copy to output:

RS: output t, 
◼ if #R > 0  #S > 0

RBS: output t min(#R,#S)-times

R-S: output t, 
◼ if #R > 0  #S = 0

R-BS: output t max(#R - #S,0)-times

◼ Properties

Costs: 3(B(R) + B(S))

Limitations: 𝐵 𝑅 + 𝐵 𝑆 ≤ 𝑀
◼ Need one block per all runs (of R and 

also S)
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Two-Pass Algorithms

◼ Using hashing

Duplicate Elimination

Aggregations (GROUP BY)

Set operations
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Duplicate Elimination

◼ Procedure

Bucketize R into M-1 buckets

◼→ store buckets on disk

For each bucket

◼ Read it in memory and remove duplicates; output 

remaining records

 bucket size is max. M-1 blocks

◼ Properties

Costs: 3B(R)

Limitations: B(R) ≤ (M-1)2
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Aggregations
◼ Procedure (analogous to previous)

Bucketize R into M-1 buckets by group-by attrs.

◼ → store buckets on disk

For each bucket

◼ Read block by block in memory and

◼ Create groups for new values and compute aggregates

 Limit on bucket size is not defined. But groups and partial 
aggregates must fit in max. M-1 blocks.

◼ Output results

◼ Properties

Costs: 3B(R)

Limitations: B(R) ≤ (M-1)2
lze téměř zrušitcan be relaxed
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Set union, intersection, difference

◼ Procedure

Bucketize R and S (the same hash function)

◼ into M-1 buckets

Process the pair of buckets Ri and Si

◼ Read one in memory (depends on operation)

 bucket size: max. M-2

◼ Read the other gradually

◼ Properties

Costs: 3(B(R) + B(S))

Limitations on M depends on the operation



Set intersection, difference
◼ Intersection (smaller relation is S)

Load the bucket of S in mem

Restrictions: min(B(R), B(S)) ≤ (M-2)*(M-1)

◼ Difference R-S:

To eliminate duplicates in R, read bucket of R 

into mem

Restrictions: B(R) ≤ (M-2)*(M-1)

◼ Difference S-R:

Load the bucket of S in mem

Restrictions: B(S) ≤ (M-2)*(M-1)
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Set Union
◼ Must eliminate duplicates in R and S

◼ for each i in hash addresses:
◼ read BktSi , build in-mem hash table & eliminate dups

 also gradually output the records

◼ read BktRi gradually:

 for each r in BktRi : 

▪ if r not in in-mem hash table 

▪ output r and add to in-mem hash table

◼ Restrictions: 𝐵 𝑅 + 𝐵 𝑆 < 𝑀

Need to load both the buckets (at worst) into M
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Summary
◼ Operations

distinct, group by, set operations, joins

◼ Algorithm type

one-pass, one-and-a-half pass, two-pass

◼ Implementation

Sorting

Hashing

Exploiting indexes

◼ Costs

blocks to read/write

memory footprint
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Lecture Takeaways
◼ Influence of algorithm implementation on 

costs

◼ Estimated costs influence the choice of 

implementation

◼ If more mem is needed (estimation was 

wrong)

 It is allocated and the operation is not 

terminated.

◼ Also, tiny code changes count!
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