PA152: Efficient Use of DB
 8. Summary of Algorithm Costs and Limits

Vlastislav Dohnal

Costs of One-Pass Algorithms

Algorithm	Costs //0	Relation Size	Memory Blocks	Pipelining
Distinct	$B(R)$	$B(R) \leq M-2$	1-input, 1-output, M-2 search table	yes
Group by	$B(R)$	$B(R) \leq M-1$	1-input, 0-output, M-1 aggregates	no
Set union	$B(R)+B(S)$	$B(R)+B(S) \leq M-2$	1-input, 1-output, M-2 search table	yes
Set intersection	$B(R)+B(S)$	$\min (\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S})) \leq \mathrm{M}-2$	1-input, 1-output, M-2 search table	yes, after reading S
Set diff (R-S)	$B(R)+B(S)$	$B(R)+B(S) \leq M-2$	1-input, 1-output, M-2 search table	yes, after reading S
Set diff (S-R)	$B(R)+B(S)$	$B(S) \leq M-1$	1-input, 0-output, $\mathrm{M}-1$ search table	no
Bag union	$B(R)+B(S)$	unlimited	1-input, 1-output	yes
Bag intersection	$B(R)+B(S)$	$\mathrm{B}(\mathrm{S}) \leq \mathrm{M}-2$	1-input, 1-output, M-2 search table	yes, after reading S
Bag diff (R-S)	$B(R)+B(S)$	$B(S) \leq M-2$	1-input, 1-output, M-2 search table	yes, after reading S
Bag diff (S-R)	$B(R)+B(S)$	$B(S) \leq M-1$	1-input, 0-output, M-1 search table	no
Cross join	$B(R)+B(S)$	$B(S) \leq M-2$	1-input, 1-output, M-2 cache for S	yes, after reading S
(any) Join	$B(R)+B(S)$	$B(S) \leq M-2$	1-input, 1-output, M-2 search table	yes, after reading S

[^0]
Costs of Join Algorithms ss.ams memamemann
 ** Y are common attributes.
 *** 1.5-pass algorithms

Algorithm	Costs //0	Relation Size	Memory Blocks	Pipelining
Block-based Nested-loop ***	$B(S) \cdot(1+B(R))$	unlimited	2-input, 1-output	yes
Cached BB NL ***	$\begin{aligned} & B(S) /(M-2) \\ & (M-2+B(R)) \end{aligned}$	unlimited	1-input, 1-output, M-2 cache of S	yes
Merge Join (w/o sorting)	$B(R)+B(S)$	unlimited	2-input, 1-output (+x when too many matches)	yes
Merge Join (incl. sorting)	$5 \cdot(B(R)+B(S))$	$B(R) \leq M \cdot(M-1)+1$	sorting: M-input for a run, 0-output merging: ($\mathrm{M}-1$)-runs, 1 -output joining: 2-input, 1 -output (+x when too many matches)	yes, after sorting R\&S
Sort Join	$3 \cdot(B(R)+B(S))$	$\begin{aligned} & M=\left\lceil\frac{B(R)}{M}\right\rceil+\left\lceil\frac{B(S)}{M}\right\rceil+1 \\ & \text { approx. } \mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{~S}) \leq \mathrm{M} \cdot(\mathrm{M}-1) \end{aligned}$	sorting: M-input for a run, 0 -output joining: (M-1)-runs, 1-output (+x when too many matches)	yes, after sorting R\&S
Index Join (R.Y index) (max costs)	$\begin{aligned} & \mathrm{B}(\mathrm{~S})+\mathrm{T}(\mathrm{~S}) \\ & (\mathrm{HT}+\theta) \\ & \mathrm{e} . \mathrm{g} ., \theta= \\ & \mathrm{T}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{Y}) \end{aligned}$	unlimited	2-input, 1-output (+x for index cache)	yes 3

Costs of Join Algorithms

Algorithm	Costs 1/0	Relation Size	Memory Blocks	Pipelining
Hash Join	$3 \cdot(B(R)+B(S))$	$\mathrm{B}(\mathrm{S}) \leq(\mathrm{M}-2) \cdot(\mathrm{M}-1)$	hashing: 1-input, M-1-buckets joining: 1-bucket of R, 1-output, M-2-a bucket of S	yes, after hashing R\&S
Hybrid HJ	$3(B(R)+B(S))-\frac{2(B(R)+B(S))}{\mid \sqrt{B(R)}\rceil}$	$\begin{aligned} & B(S) \ll M^{2} \\ & M=\frac{B(R)}{\|\sqrt{B(R)}\|}+(\|\sqrt{B(R)}\|)+1 \end{aligned}$	$\begin{array}{ll} \text { hashing: } & 1 \text {-input, } \\ & x=[\sqrt{B(S)}]^{\text {st }} \text { bucket of } S, \\ & M-1 \text {-x-buckets } \\ \text { joining: } & 1 \text {-bucket of } R, \\ & x \text {-bucket of } S, \\ & 1 \text {-output } \end{array}$	yes, after hashing S
Pointer HJ	$\begin{aligned} & B(S)+B(R)+T(R) \cdot \theta \\ & e . g ., \theta=T(S) / V(S, Y) \end{aligned}$	"unlimited", hash index on S.Y + pointers must fit in M	indexing: 1-input, M-3-hash index on S joining: 1-block of R, 1-block of S, 1-output, M-3-hash index on S	yes, after indexing S

* S is always the smaller relation.
${ }^{* *} \mathrm{Y}$ are common attributes.
*** keeping just 1 bucket of S in memory

Costs of Two-Pass Algorithms

Algorithm	Costs 1/0	Relation Size	Memory Blocks	Pipelining
Joins - see slides above				
Distinct (sorting)	3•B(R)	$B(R) \leq M \cdot(M-1)+1$	sorting: M-input for a run, 0-output distinct: ($\mathrm{M}-1$)-runs, 1-output	yes, after initial sorting
Distinct (hashing)	3•B(R)	$B(R) \leq(M-1) \cdot(M-1)$	hashing: 1-input, M -1-buckets distinct: M -1-bucket, 1-output	yes, after hashing
Group by (sorting)	3•B(R)	$B(R) \leq M \cdot(M-2)$	sorting: M-input for a run, 0-output group by: (M-2)-runs, 1-output, 1-aggregates	yes, after initial sorting
Group by (hashing)	3.B(R)		hashing: 1-input, M -1-buckets group by: M-2-bucket, 1-output, 1-aggregates	yes, after hashing

[^1]
Costs of Two-Pass Algorithms

Algorithm	Costs I/O	Relation Size	Memory Blocks	Pipelining
Set union (sorting)	$3 \cdot(\mathrm{~B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$)	$\begin{aligned} & M=\left[\frac{B(R)}{M}\right]+\left[\frac{B(S)}{M}\right]+1 \\ & \text { approx. } \mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{~S}) \leq \mathrm{M} \cdot(\mathrm{M}-1) \end{aligned}$	sorting: M-input for a run, 0-output union: M -1-all runs, 1 -output	yes, after initial sorting
Set union (hashing)	$3 \cdot(\mathrm{~B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$)	$B(S) \leq(M-2) \cdot(M-1)$	hashing: 1-input, M-1-buckets union: 1-buckets of R, 1 -output, M-2-bucket of S	yes, after hashing
Set/Bag \cap, (sorting)	$3 \cdot(\mathrm{~B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$)	$\begin{aligned} & M=\left[\frac{B(R)}{M}\right]+\left[\frac{B(S)}{M}\right]+1 \\ & \text { approx. } \mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{~S}) \leq \mathrm{M} \cdot(\mathrm{M}-1) \end{aligned}$	sorting: M-input for a run, 0 -output oper: M-1-all runs, 1-output, (+1 for counts)	yes, after initial sorting
Set/Bag \cap,S-R (hashing)	$3 \cdot(\mathrm{~B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$)	$B(S) \leq(M-2) \cdot(M-1)$	hashing: 1-input, M-1-buckets oper: 1-buckets of R, 1-output, M-2-bucket of S	yes, after hashing R
Set/Bag R-S (hashing)	$3 \cdot(\mathrm{~B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$)	$B(R) \leq(M-2) \cdot(M-1)$	hashing: 1-input, M -1-buckets diff: 1-buckets of S, 1-output, M-2-bucket of R	yes, after hashing

[^2]
[^0]: * S is always the smaller relation.

[^1]: * S is always the smaller relation

[^2]: * S is always the smaller relation

