PA152: Efficient Use of DB

9. Query Tuning

Vlastislav Dohnal

"
Credits

m Sources of materials for this lecture:
Courses CS245, CS5345, CS345

m Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer
Widom

s Stanford University, California

Database Tuning (slides)
m Dennis Shasha, Philippe Bonnet
= Morgan Kaufmann, 15t edition, 440 pages, 2002
m ISBN-13: 978-1558607538
m http://www.databasetuning.org/

PA152, Vlastislav Dohnal, FI MUNI, 2023 2

"
Query Tuning

SELECT s.RESTAURANT_NAME, t. TABLE_SEATING, to_char(t.DATE_TIME,'Dy, Mon FMDD') AS THEDATE,
to_char(t.DATE_TIME,'HH:MI PM') AS THETIME,to_char(t.DISCOUNT,'99") || '%"' AS AMOUNTVALUE,t.TABLE_ID,
s.SUPPLIER_ID, t.DATE_TIME, to_number(to_char(t.DATE_TIME,'SSSSS')) AS SORTTIME
FROM TABLES_AVAILABLE t, SUPPLIER_INFO s,
(SELECT s.SUPPLIER_ID, t.TABLE_SEATING, t. I I
FROM TABLES_AVAILABLE t, SUPPLIER_INFO ExeCUtIOI’l IS tOO SIOW "t
WHERE t.SUPPLIER_ID = s.SUPPLIER_ID
and (TO_CHAR(t.DATE_TIME, 'MM/DD/YY]]_) How is the query eva|uated?
or TO_NUMBER(TO_CHAR(sysdate, 'SSSS .
and t.NUM_OFFERS > 0 and t.DATE_TIM 2) HOW can we speed it up?
and t. TABLE_SEATING = '2’ and t.DATE_TI™E DetweerT sysudte ana (SySudie + 77
and to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800
and t.OFFER_TYPE = 'Discount'
GROUP BY s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME, t.OFFER_TYP) u
WHERE t.SUPPLIER_ID=s.SUPPLIER_ID and u.SUPPLIER_ID=s.SUPPLIER_ID and t.SUPPLIER_ID=u.SUPPLIER_ILC
and t. TABLE_SEATING = u.TABLE_SEATING and t.DATE_TIME = u.DATE_TIME
and t.DISCOUNT = u.AMOUNT and t.OFFER_TYPE = u.OFFER_TYPE
and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY") = TO_CHAR(sysdate, 'MM/DD/YYYY")
or TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)
and t.NUM_OFFERS > 2 and t.DATE_TIME > SYSDATE and s.CITY = 'SF'
and t. TABLE_SEATING = '2' and t.DATE_TIME between sysdate and (sysdate + 7)
and to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800 and t.OFFER_TYPE = 'Discount’
ORDER BY AMOUNTVALUE DESC, t.TABLE_SEATING ASC, upper(s.RESTAURANT_NAME) ASC,
SORTTIME ASC, t.DATE_TIME ASC

PA152, Vlastislav Dohnal, FI MUNI, 2023 3

"
Query Execution Plan

Execution Plan

Output of EXPLAIN command in Oracle

SELECT STATEMENT Optimizer=CHOOSE (Cost=165 Card=1 Bytes=106)

SORT (ORDER BY)

(Cost=165 Card=1 Bytes=106)

NESTED LOOPS (Cost=164 Card=1 Bytes=106) Operator

NESTED LOOPS

(Cost=155 Card=1 Bytes=83)

TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=28)

SORT (GROUP BY) (Cost=83 Card=1 Bytes=34)
NESTED LOOPS (Cost=81 Card=1 Bytes=34)

TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=24)

0
1
2
3
3 VIEW
5
6
7
7

10 2 TABLEACCESS

Access method

TABLE ACCESS (FULL) OF 'SUPPLIER_INFO'_

(FULL) OF 'SUPPLIER_INFO' (Cost=9 Card=20 Bytes=460)

PA152, Vlastislav Dohnal, FI MUNI, 2023 4

"
Monitoring Queries

m What is slow query?

Needs to many disk IOs
= high costs in execution plan (explain)

m E.9., query for one row (exact-match query) uses
table-scan.

Inconvenient query plan
m EXisting indexes are not used

m How to reveal?
DBMS can log “long-lasting” queries

PA152, Vlastislav Dohnal, FI MUNI, 2023 5

"
Query Tuning

m Local tuning = query rewrite

First approach to speed up a query
Influences only the query

m Global tuning
Index creation

Schema modification
Transaction splitting

Potentially harmful

PA152, Vlastislav Dohnal, FI MUNI, 2023

"
Query Rewriting
m Example:

Employee(ssnum, name, manager, dept,
salary, coworkers)

m Clustering index on ssnum
l.e., relation is sorted by this attribute in the file

= Non-clustering indexes: (i) name; (ii) dept
Student(ssnum, name, degree_sought, year)

» Clustering index on ssnum
= Non-clustering index on name

Tech(dept, manager, location)
m Clustering index on dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 7

"

Query Rewriting

m Technigues
Index usage
DISTINCTs elimination
(Correlated) subqueries
Use of temporaries
Use of having

Use of views
Materialized views

PA152, Vlastislav Dohnal, FI MUNI, 2023

"
Index Usage

m Many query optimizers will not use indexes in
the presence of .
Arithmetic expressions

WHERE salary/12 >= 4000;
WHERE inserted + 1 = current_date;

Functions

SELECT * FROM employee
WHERE SUBSTR(name, 1, 1) = ‘G;

... WHERE to_char(inserted, 'YYYYMM') ='201704'

Numerical comparisons of fields with different

types
Multi-attribute indexes

Comparison with NULL

PA152, Vlastislav Dohnal, FI MUNI, 2023 9

" J
Index Usage

m =vs. like
SELECT * FROM hotel WHERE city="city174’

SELECT * FROM hotel WHERE city LIKE 'city174°

"Bitmap Heap Scan on hotel (cost=4.31..14.26 rows=5 width=59)
Filter: ((city)::text ~~ 'cityl74'::text)“
-> Bitmap Index Scan on hotel city (cost=0.00..4.31 rows=5 width=0)*
Index Cond: ((city)::text = 'cityl74'::text)"

SELECT * FROM hotel WHERE city like ‘cityl74%'

"Seq Scan on hotel (cost=0.00..17.25 rows=5 width=59)“
Filter: ((city)::text ~~ 'cityl74%'::text)"

PA152, Vlastislav Dohnal, FI MUNI, 2023 10

Index Usage (cont.)

Aggregate functions MAX(A), MIN(A)
m resp. ORDER BY ALIMIT 1
m using functions on A
m E.9., '

conn_log (log_key, sim_imsi, time, car_key, pda_imeli,
gsmnet_id, method, program_ver)
SELECT max(time AT TIME ZONE 'UTC") AS time
FROM conn_log
WHERE sim_imsi=23001234567890123" AND
time>'2016-02-28 10:50:00.122 UTC' AND
method="'U" AND program_ver IS NOT NULL,

SELECT time AT TIME ZONE 'UTC*
FROM (SELECT max(time) AS time
FROM conn_log
WHERE sim_imsi=23001234567890123" AND
time>'2016-02-28 10:50:00.122 UTC' AND
method="U' AND program_ver IS NOT NULL) AS x;

SELECT max(time) AT TIME ZONE 'UTC' AS time ...
(cont. from A.)

PA152, Vlastislav Dohnal, FI MUNI, 2023 11

" J
Index Usage (cont.)

QUERY PLAN (QUERY A))

Aggregate (cost=19412.69..19412.70 rows=1 width=8) (actual time=36.415..36.415 rows=1 loops=1)
-> Append (cost=0.00..19385.45 rows=5448 width=8) (actual time=36.410..36.410 rows=0 loops=1)

-> Seqg Scan on conn_log (cost=0.00..0.00 rows=1 width=8) (actual time=0.003..0.003 rows=0 loops=1)

Filter: ((program_ver IS NOT NULL) AND ("time" >'2016-02-28 11:50:00.122+01"::timestamp with time zone) AND (sim_imsi = '23001234567890123"::bpchar) AND
(method = 'U"::bpchar))

-> |Index Scan using conn_log_imsi_time_y2016m02 on conn_log_y2016m02 (cost=0.56..8.58 rows=1 width=8) (actual time=28.464..28.464 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchar))

-> Bitmap Heap Scan on conn_log_y2016m03 (cost=194.11..14125.36 rows=3969 width=8) (actual time=2.586..2.586 rows=0 loops=1)
Recheck Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchar))
-> Bitmap Index Scan on conn_log_imsi_time_y2016m03 (cost=0.00..193.12 rows=4056 width=0) (actual time=2.584..2.584 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))

-> Bitmap Heap Scan on conn_log_y2016m04 (cost=71.87..5243.35 rows=1476 width=8) (actual time=5.346..5.346 rows=0 loops=1)
Recheck Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchar))
-> Bitmap Index Scan on conn_log_imsi_time_y2016m04 (cost=0.00..71.50 rows=1507 width=0) (actual time=5.342..5.342 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))

-> Index Scan using conn_log_imsi_time_y2016m05 on conn_log_y2016m05 (cost=0.14..8.16 rows=1 width=8) (actual time=0.009..0.009 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchar))

Planning time: 4.159 ms
Execution time: 36.535 ms

PA152, Vlastislav Dohnal, FI MUNI, 2023 12

" J
Index Usage (cont.)

QUERY PLAN (QUERY B.)

Subquery Scan on x (cost=5.98..6.01 rows=1 width=8) (actual time=0.162..0.163 rows=1 loops=1)
-> Result (cost=5.98..5.99 rows=1 width=0) (actual time=0.159..0.160 rows=1 loops=1)
InitPlan 1 (returns $0)
-> Limit (cost=1.87..5.98 rows=1 width=8) (actual time=0.158..0.158 rows=0 loops=1)
-> Merge Append (cost=1.87..22424.61 rows=5449 width=8) (actual time=0.156..0.156 rows=0 loops=1)
Sort Key: conn_log."time"
-> Index Scan Backward using conn_log_imsi_time on conn_log (cost=0.12..8.15 rows=1 width=8) (actual time=0.004..0.004 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchary))
-> Index Scan Backward using conn_log_imsi_time_y2016m02 on conn_log_y2016m02 (cost=0.56..8.58 rows=1 width=8)
(actual time=0.069..0.069 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchary))
-> Index Scan Backward using conn_log_imsi_time_y2016m03 on conn_log_y2016m03 (cost=0.56..16225.91 rows=3969 width=8)
(actual time=0.046..0.046 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123":bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchary))
-> Index Scan Backward using conn_log_imsi_time_y2016m04 on conn_log_y2016m04 (cost=0.43..6033.60 rows=1477 width=8)
(actual time=0.035..0.035 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchary))
-> Index Scan Backward using conn_log_imsi_time_y2016m05 on conn_log_y2016m05 (cost=0.14..8.17 rows=1 width=8)
(actual time=0.002..0.002 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchary))
Planning time: 3.137 ms
Execution time: 0.317 ms

PA152, Vlastislav Dohnal, FI MUNI, 2023 13

" J
Index Usage (cont.)

QUERY PLAN (QUERY C.)

Result (cost=5.98..5.99 rows=1 width=0) (actual time=0.186..0.186 rows=1 loops=1)
InitPlan 1 (returns $0)
-> Limit (cost=1.87..5.98 rows=1 width=8) (actual time=0.182..0.182 rows=0 loops=1)
-> Merge Append (cost=1.87..22424.63 rows=5450 width=8) (actual time=0.181..0.181 rows=0 loops=1)
Sort Key: conn_log."time"
-> Index Scan Backward using conn_log_imsi_time on conn_log (cost=0.12..8.15 rows=1 width=8) (actual time=0.005..0.005 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchar))
-> Index Scan Backward using conn_log_imsi_time_y2016m02 on conn_log_y2016m02 (cost=0.56..8.58 rows=1 width=8)
(actual time=0.070..0.070 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchar))
-> Index Scan Backward using conn_log_imsi_time_y2016m03 on conn_log_y2016m03 (cost=0.56..16225.91 rows=3969 width=8)
(actual time=0.064..0.064 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchar))
-> Index Scan Backward using conn_log_imsi_time_y2016m04 on conn_log_y2016m04 (cost=0.43..6033.60 rows=1478 width=8)
(actual time=0.037..0.037 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchar))
-> Index Scan Backward using conn_log_imsi_time_y2016m05 on conn_log_y2016m05 (cost=0.14..8.17 rows=1 width=8)
(actual time=0.003..0.003 rows=0 loops=1)
Index Cond: ((sim_imsi = '23001234567890123"::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01"::timestamp with time zone))
Filter: ((program_ver IS NOT NULL) AND (method = 'U"::bpchar))
Planning time: 3.094 ms
Execution time: 0.309 ms

PA152, Vlastislav Dohnal, FI MUNI, 2023 14

" I
Eliminate unneeded DISTINCTs
m Query:

Find employees who work in the information
systems department. There should be no
duplicates.

SELECT DISTINCT ssnum
FROM employee
WHERE dept = ‘information systems’

m DISTINCT Is unnecessary
ssnum is a prim. key in employee

PA152, Vlastislav Dohnal, FI MUNI, 2023 15

" J
Example of DISTINCTs

m Assume the relation hotel in student’'s Pg

explain select distinct id from hotel where id is not null;

"Unique (cost=0.00..33.00 rows=500 width=4)"

" -> |Index Scan using hotel pkey on hotel (cost=0.00..31.75 rows=500 width=4)"
" Filter: (id IS NOT NULL)"

explain select id from hotel where id is not null;
"Seqg Scan on hotel (cost=0.00..10.00 rows=500 width=4)"
" Filter: (id IS NOT NULL)"

explain select distinct id from account where id < 1000;
"Unique (cost=0.00..62.13 rows=993 width=4)"

" -> |Index Scan using account_pkey on account (cost=0.00..59.65 rows=993 width=4)"
" Index Cond: (id < 1000)*

explain select id from account where id < 1000;
"Index Scan using account_pkey on account (cost=0.00..59.65 rows=993 width=4)"
" Index Cond: (id < 1000)"

PA152, Vlastislav Dohnal, FI MUNI, 2023 16

" B
Eliminate unneeded DISTINCTs

_ Employee(ssnum, name, manager, dept, salary, coworkers)
m Query: Tech(dept, manager, location)

Find social security numbers of employees in
the technical departments. There should be
no duplicates.

SELECT DISTINCT ssnum
FROM employee, tech
WHERE employee.dept = tech.dept

m Is DISTINCT needed?

PA152, Vlastislav Dohnal, FI MUNI, 2023 17

" B
Eliminate unneeded DISTINCTs

Employee(ssnum, name, manager, dept, salary, coworkers)
H Query: Tech(dept, manager, location)

SELECT DISTINCT ssnum
FROM employee, tech
WHERE employee.dept = tech.dept

m [S DISTINCT needed?
ssnum is a key in employee
dept is a key in tech

— each employee record will join with at most
one record Iin tech.

— DISTINCT Is unnecessary

PA152, Vlastislav Dohnal, FI MUNI, 2023 18

" B
Eliminate unneeded DISTINCTs

m The relationship among DISTINCT, keys
and joins can be generalized:
Definition of “privileged”

m Call a table T privileged if the fields returned by the
select contain a key of T.

Definition of relationship “reaches”
m Let R be an unprivileged table.

m Suppose that R is joined on equality by its key field
to some other table S, then we say R reaches S.

Relationship “reaches” is transitive:

m If R, reaches R, and R, reaches R;,
then R, reaches R,.

PA152, Vlastislav Dohnal, FI MUNI, 2023 19

" B
Eliminate unneeded DISTINCTs

m Main Theorem:

There will be no duplicates among the records
returned by a selection, even in the absence
of DISTINCT

If one of the two following conditions hold:

Every table mentioned in the FROM clause is
privileged.

Every unprivileged table reaches at least one
privileged table.

PA152, Vlastislav Dohnal, FI MUNI, 2023 20

" S
Unneeded DISTINCT (1)

_ Employee(ssnum, name, manager, dept, salary, coworkers)
m Query: Tech(dept, manager, location)

SELECT DISTINCT ssnum
FROM employee, tech
WHERE employee.manager = tech.manager

m Employee Is privileged
m |s tech privileged?
No.

m Does tech reach employee?
No. Attribute manager is not a key in tech.

PA152, Vlastislav Dohnal, FI MUNI, 2023 21

" S
Unneeded DISTINCT (2)

Employee(ssnum, name, manager, dept, salary, coworkers)
H Query: Tech(dept, manager, location)

SELECT DISTINCT ssnum, tech.dept
FROM employee, tech
WHERE employee.manager = tech.manager

m Employee Is privileged
m |s tech privileged?
Yes.
m Result does not have duplicates

PA152, Vlastislav Dohnal, FI MUNI, 2023 22

" S
Unneeded DISTINCT (3)

_ Employee(ssnum, name, manager, dept, salary, coworkers)
] Query- Student(ssnum, name, degree_sought, year)
Tech(dept, manager, location)

SELECT DISTINCT student.ssnum

FROM student, employee, tech

WHERE student.name = employee.name
AND employee.dept = tech.dept;

m Student Is privileged

m Employee Is not privileged and does not
reach any other relation.

m — DISTINCT Is needed.

PA152, Vlastislav Dohnal, FI MUNI, 2023 23

" J
Nested Queries
m SELECT containing another SELECT as its part

SELECT employee _number, name
FROM employees AS X
WHERE salary > (

SELECT AVG(salary)

FROM employees

WHERE department = X.department);

SELECT employee _number, name,

(SELECT AVG(salary) FROM employees

WHERE department = X.department) AS department_average
FROM employees AS X;

PA152, Vlastislav Dohnal, FI MUNI, 2023 24

" S
Rewriting Nested Queries

m Reason:

Query optimizer may not correctly handle
some nested queries

Usually:
» Uncorrelated subgueries without aggregate
m Correlated subqueries

PA152, Vlastislav Dohnal, FI MUNI, 2023 25

" S
Types of Nested Queries

m Uncorrelated subqueries with aggregates
SELECT ssnum FROM employee
WHERE salary >

(SELECT avg(salary) FROM
employee)

m Uncorrelated subqueries without
aggregate
SELECT ssnum FROM employee

WHERE dept in (SELECT dept FROM
tech)

So-called “semi-join”

PA152, Vlastislav Dohnal, FI MUNI, 2023 26

" S
Types of Nested Queries

m Correlated subgueries with aggregates

SELECT ssnum FROM employee el
WHERE salary >=
(SELECT avg(e2.salary)

FROM employee e2, tech
WHERE e2.dept = el.dept
AND e2.dept = tech.dept)

PA152, Vlastislav Dohnal, FI MUNI, 2023 27

" S
Types of Nested Queries

m Correlated subgueries without aggregates

Unusual for derived tables
m I.e., can rewrite with join

Subqueries in where (typical)
= Semi-join queries may be evaluated efficiently

s Example of two semi-join gqueries:

SELECT ssnum FROM employee
WHERE dept in
(SELECT dept FROM tech
WHERE tech.manager=employee.manager)

SELECT ssnum FROM employee
WHERE EXISTS (SELECT 1 FROM tech WHERE
employee.manager = tech.manager)

PA152, Vlastislav Dohnal, FI MUNI, 2023 28

"
Rewriting Uncorrel. Subg. without Aggregates

1. Combine the arguments of the two FROM
clauses

2. Replace IN with =

3. Retain the SELECT clause

SELECT ssnum FROM employee
WHERE dept in (select dept from tech)

SELECT DISTINCT ssnum
FROM employee, tech
WHERE employee.dept = tech.dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 29

"
Rewriting Uncorrel. Subg. without Aggregates

m Potential problem with duplicates:

SELECT avg(salary) FROM employee
WHERE manager in (select manager from tech)

SELECT avg(salary) FROM employee, tech
WHERE employee.manager = tech.manager

m The rewritten query may include an
employee record several times

If that employee’s manager manages several
departments.

m The solution Is to create a temporary table
(using DISTINCT) to eliminate duplicates.

PA152, Vlastislav Dohnal, FI MUNI, 2023 30

"
Rewriting Correlated Subqgueries
m Query:

Find the employees of tech departments who
earn at least the average salary in their
department.

SELECT ssnum
FROM employee el
WHERE salary >= (SELECT avg(e2.salary)
FROM employee e2, tech
WHERE e2.dept = tech.dept
AND e2.dept = el.dept);

PA152, Vlastislav Dohnal, FI MUNI, 2023 31

" S
Rewriting Correlated Subqgueries

CREATE TEMPORARY TABLE temp (...) ON COMMIT DROP;

INSERT INTO temp
SELECT avg(salary) as avsalary, tech.dept
FROM tech, employee
WHERE tech.dept = employee.dept
GROUP BY tech.dept;

SELECT ssnum
FROM employee, temp
WHERE salary >= avsalary
AND employee.dept = temp.dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 32

" S
Rewriting Correlated Subqgueries

SELECT ssnum
FROM employee as E,
(SELECT avg(salary) as avsalary, tech.dept
FROM tech, employee
WHERE tech.dept = employee.dept
GROUP BY tech.dept) as AVG
WHERE salary >= avsalary AND E.dept = AVG.dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 33

"
Rewriting Correlated Subqgueries
m Query:

Find employees of technical departments
whose number of co-workers equals the
number of employees in their department.

SELECT ssnum
FROM employee el
WHERE coworkers = (
SELECT COUNT(e2.ssnum)
FROM employee e2, tech
WHERE e2.dept = tech.dept
AND e2.dept = el.dept);

PA152, Vlastislav Dohnal, FI MUNI, 2023 34

" S
Rewriting Correlated Subqgueries

INSERT INTO temp
SELECT COUNT(ssnum) as nhumworkers,
employee.dept
FROM tech, employee
WHERE tech.dept = employee.dept
GROUP BY tech.dept;

SELECT ssnum
FROM employee, temp
WHERE coworkers = numworkers
AND employee.dept = temp.dept;

Can you spot the infamous COUNT bug?

PA152, Vlastislav Dohnal, FI MUNI, 2023 35

"
The Infamous COUNT Bug

m Example:

Helene who Is not in a technical department.

In the original query, Helene’s number of
coworkers would be compared to COUNT(J)=0.

m In case Helene has no coworkers, she would survive
the selection.

In the transformed query, Helene’s record would
not appear.

= The temporary table will contain counts for tech
departments only.

m This Is a limitation of the correlated subquery
rewriting techniqgue when COUNT Is involved.

PA152, Vlastislav Dohnal, FI MUNI, 2023 36

"
Rewriting Correlated Subqgueries
m Anti-joins
SELECT * FROM Tech WHERE dept NOT IN
(SELECT dept FROM employee)

= Problem with NULLs in employee.dept

SELECT * FROM Tech WHERE NOT EXISTS
(SELECT 1 FROM employee
WHERE employee.dept=tech.dept)

m |Ssues
Not using join algorithm
Using too many index lookups in index join

PA152, Vlastislav Dohnal, FI MUNI, 2023 37

"
Rewriting Correlated Subqgueries
m [est these in student’s Pg:

explain verbose select * from hotel

where id not in (select hotel id from room);
"Seq Scan on xdohnal.hotel (cost=0.00..2190904.75 rows=250 width=59)
" OQutput: hotel.id, hotel.name, hotel.street, ..
" Filter: (NOT (SubPlan 1))“
" SubPlan 1
" -> Materialize (cost=0.00..7974.90 rows=315460 width=4)“
Output: room.hotel id“
-> Seq Scan on xdohnal.room (cost=0.00..5164.60 rows=315460 width=4)“
Output: room.hotel id"

explain verbose select * from hotel
where id not in (select hotel _id from room
where hotel id is not null);

explain verbose select * from hotel
where not exists(select 1 from room

where room.hotel id=hotel.id);

PA152, Vlastislav Dohnal, FI MUNI, 2023 38

"

Query Rewriting

m Technigues
Index usage
DISTINCTs elimination
(Correlated) subqueries
Use of temporaries
Use of having

Use of views
Materialized views

PA152, Vlastislav Dohnal, FI MUNI, 2023

39

"
Abuse of Temporaries
m Query:

Find all information about department employees with
their locations who earn at least > 40000.

INSERT INTO temp
SELECT *
FROM employee
WHERE salary >= 40000

SELECT ssnum, location
FROM temp
WHERE temp.dept = ‘information systems’

m This solution will not be optimal (should have been
done in the reverse order)

Cannot use on dept in employee
There is no index on temp table.

PA152, Vlastislav Dohnal, FI MUNI, 2023 40

" S
Use of Having

m Reason for having:

Shortens queries that filter on aggregation
results

Cannot use aggregations in WHERE clause
Use HAVING clause then

m Example

SELECT avg(salary), dept
FROM employee

GROUP BY dept

HAVING avg(salary) > 10 000;

PA152, Vlastislav Dohnal, FI MUNI, 2023 41

"
Use of Having
m Another example

SELECT avg(salary), dept
FROM employee

GROUP BY dept

HAVING count(ssnum) > 100;

PA152, Vlastislav Dohnal, FI MUNI, 2023

42

" S
Use of Having

m Don’t use HAVING
when WHERE is enough.

SELECT avg(salary) as avgsalary, dept
FROM employee
GROUP BY dept

HAVING dept = ‘information systems’;

L> SELECT avg(salary) as avgsalary, dept

FROM employee
WHERE dept= ‘information systems’

~GROUP-BY-dept—

PA152, Vlastislav Dohnal, FI MUNI, 2023 43

" I
Use of Views

CREATE VIEW techlocation AS
SELECT ssnum, tech.dept, location
FROM employee, tech
WHERE employee.dept = tech.dept;

SELECT location
FROM techlocation
WHERE sshnum = 43253265;

m Query optimizer replaces the view
with its definition

PA152, Vlastislav Dohnal, FI MUNI, 2023 44

" S
Use of Views
m Resulting query:

SELECT location

FROM employee, tech

WHERE employee.dept = tech.dept
AND ssnum = 43253265;

PA152, Vlastislav Dohnal, FI MUNI, 2023

45

" I
Use of Views

m Example for PostgreSQL:

CREATE VIEW hotels_In_city AS
SELECT city, COUNT(*) AS count
FROM hotel

GROUP BY city;

m Using view
SELECT * FROM hotels_In_city
WHERE count > 8

SELECT * FROM hotels_In_city
WHERE city='"city174'

PA152, Vlastislav Dohnal, FI MUNI, 2023 46

" I
Use of Views

m Output of EXPLAIN
EXPLAIN SELECT * FROM hotels_In_city;

EXPLAIN SELECT * FROM hotels_in_city
WHERE city="city174’;

Use of functions:

s Compare:

EXPLAIN SELECT * FROM
(SELECT lower(city) as city, COUNT(*) AS cnt
FROM hotel GROUP BY city HAVING COUNT(*) > 3) x
WHERE city='cityl74';

EXPLAIN SELECT lower(city), cnt FROM
(SELECT city, COUNT(*) AS cnt FROM hotel
GROUP BY city HAVING COUNT(*) > 3) X
WHERE city="cityl74';
PA152, Vlastislav Dohnal, FI MUNI, 2023 47

" A
Query Rewriting: Performance Impact

>10 000

80

70 1 msQLServer 2000
60 | @mOracle 8i
59 | BDB2V7.1

40

30

20

Throughput ratio (%)

10

O i

-10

100k Employees, 100k Students, 10 tech. depts

PA152, Vlastislav Dohnal, FI MUNI, 2023 48

"
Aggregate Maintenance

m Example:

Orders of a store chain

m Order(ordernum, itemnum, quantity, purchaser,
vendor)

m [tem(itemnum, description, price)
m Clustered indexes on itemnum of Order and Item

Queries issues every five minutes :

» The total dollar amount of orders from a particular
vendor.

= The total dollar amount of orders by a particular
store outlet (purchaser).

PA152, Vlastislav Dohnal, FI MUNI, 2023 49

"
Aggregate Maintenance

m Queries:

s SELECT vendor, sum(quantity*price)
FROM order, item
WHERE order.itemnum = item.itemnum
GROUP BY vendor;

s SELECT purchaser, sum(guantity*price)
FROM order, item
WHERE order.itemnum = item.itemnum
GROUP BY purchaser;

Query costs?
= —> expensive

PA152, Vlastislav Dohnal, FI MUNI, 2023 50

"
Aggregate Maintenance

m \Ways to speed up?

Use of views?
= — NO Impact

Use of temporaries?
= — helps

PA152, Vlastislav Dohnal, FI MUNI, 2023

51

"
Aggregate Maintenance

m Add temporaries

OrdersByVendor(vendor, amount)
OrdersByPurchaser(purchaser, amount)

m These redundant tables must be updated

When to update?

m After each update to order, or item?
triggers can be used to implement this explicitly

m Recreate from scratch periodically
Costs of update
m Update overhead must be less than original costs.

PA152, Vlastislav Dohnal, FI MUNI, 2023 52

"
Materialized Views

m View data content stored in a table
Automatic updates by DBMS
= Typical...

Transparent expansion performed by the
optimizer based on cost

m |t is the optimizer and not the programmer that
performs query rewriting

PA152, Vlastislav Dohnal, FI MUNI, 2023 53

" B
Materialized Views

m In Oracle

CREATE MATERIALIZED VIEW OrdersByVendor
BUILD IMMEDIATE REFRESH COMPLETE
ENABLE QUERY REWRITE

AS

SELECT vendor, sum(quantity*price) AS amount
FROM order, item

WHERE order.itemnum = item.itemnum

GROUP BY vendor;

PA152, Vlastislav Dohnal, FI MUNI, 2023 54

"
Materialized Views

m Example
QUERY REWRITE

Query:
s SELECT vendor, sum(quantity*price) AS amount
FROM order, item
WHERE order.itemnum = item.itemnum
AND vendor="Apple’;

m OrdersByVendor view will be substituted:

SELECT vendor, amount FROM OrdersByVendor
WHERE vendor="Apple’;

PA152, Vlastislav Dohnal, FI MUNI, 2023 55

" B
Materialized Views

m Example

SQLServer, using triggers for maintenance
1m orders — 5 purchasers and 20 vendors

10k items

35000
30000
25000
20000
15000
10000
5000
0
-5000

gain with aggregate maintenance (%)

31900

21900

-62.2

insert

il

PA152, Vlastislav Dohnal, FI MUNI, 2023 56

" B
Database Triggers

m A trigger Is a stored procedure

Collection of SQL statements that executes as
a result of an event.

m Events:

DML - insert, update, delete
DDL — definition of tables, ...
Time-related events (not common)

PA152, Vlastislav Dohnal, FI MUNI, 2023 61

" S
Database Triggers

m Independent of an application/API

Executed as part of the transaction containing
the enabling event by DBMS.

m Not using triggers requires implementation
of constraints in app

m Induce overhead
May insert to other tables, ...

Firing can be conditional
m E.g., after price update, number of ordered items
= Not on updates to item description, ...

PA152, Vlastislav Dohnal, FI MUNI, 2023 62

" A
Global (Schema) Changes
m Materialized views
If refreshed automatically...
m Creating indexes

m Schema change
See the next slides

m Relation partitioning
See the next slides

PA152, Vlastislav Dohnal, FI MUNI, 2023

63

" S
Using Indexes

m Small table
Indexes created
But not used

m Example

courses(id, title, credits)

SELECT COUNT(*) FROM courses;
m Result: 5

SELECT * FROM courses
WHERE 1d="MA102";

m Table-scan is used

PA152, Vlastislav Dohnal, FI MUNI, 2023 64

"
Using Indexes

m Relation read sequentially (table scan / seq scan)
All records are checked
— Slow

m Creating index (index scan)

Speeds up SELECTs

Slows down INSERTs, UPDATEs, DELETEsS
» Indexes must be updated

PA152, Vlastislav Dohnal, FI MUNI, 2023 65

BN
Influence of Indexes on Costs

m False friends
More indexes, faster evaluation!
= In theory, valid only for SELECT queries
m Each index increases update costs
Necessary to update both relation and index

Exception:
= INSERT INTO table SELECT ...
s DELETE FROM table WHERE ...

PA152, Vlastislav Dohnal, FI MUNI, 2023 66

"
Influence of Indexes: Example

m Relation
StarsiIn(id, movieTitle, movieYear, starName)

= Qmovies
SELECT movieTitle, movieYear FROM Starsin
WHERE starName=‘name’:

- Qstars
SELECT starName FROM Starsin
WHERE movieTitle="title’ AND movieYear=year,

m |nsert

INSERT INTO Starsin (movieTitle, movieYear,starName)
VALUES (‘title’, year, ‘name’);

PA152, Vlastislav Dohnal, FI MUNI, 2023 67

"
Influence of Indexes: Example

m Assumptions
B(Starsin) = 10 blocks
Each actor stars in 3 movies on average
Each movie has 3 stars on average

Relation is not sorted
m If index is present, 3 reads of disk (3 records).

Searching in index
m 1 block read

Index update
m 1 block read and 1 block write

Insert to relation

m 1 block read and 1 block write
l.e., not locating any free block

PA152, Vlastislav Dohnal, FI MUNI, 2023 68

"
Influence of Indexes: Example

m Costs in blocks for individual operations

Probabillity of individual operations
u Qmovies:pb Qstars:pz’ Insert=1-p, - p,

Ope- No Index Index Both
ration indexes starName | movieTitle, movieYear indexes
Qrovies 10 4 10 4
Qstars 10 10 4 4
Insert 2 4 4 6
Avg.| 2+8p, +8p, | 4+6p, 4+6p, 6 - 2p, - 2p,
COSts

m Scenario 1: p; =p, =0.1 — no indexes
m Scenario 2: p, = p, = 0.4 — both indexes

PA152, Vlastislav Dohnal, FI MUNI, 2023 69

" J
Optimizing Indexes
1. Define a batch of operations

l.e., composition of load

Analyze log files to find out query types,
updates and their frequencies

2. Suggest different indexes

Optimizer estimates costs to evaluate the
batch

Choose a configuration with least costs
Create corresponding indexes

PA152, Vlastislav Dohnal, FI MUNI, 2023 70

Optimizing Indexes
m Point 2 In detall:

A set of possible indexes
Initially without any index
Repeat

m Estimate costs of batch for each possible index

m Create the index offering the greatest decrease of costs
Use it in next iterations

» Repeat until an index has been created

m The process can be done automatically

MS AUtOAdm|n (http://research.microsoft.com/en—us/proiects/autoadmin/default.aspx)

] M S I ndeX TU n I ng leard (S. Chaudhuri, V. Narasayya: An efficient, Cost-Driven Ir]dex Selection Tool for Microsoft
SQL Server. Proceedings of VLDB Conference, 1997) & the beSt 10'year paper In 2007'

O raC I e 10g (http://www.oracle—base.com/artiCleslloq/AutomaticSQLTuninq 10q.php)

PA152, Vlastislav Dohnal, FI MUNI, 2023 71

http://research.microsoft.com/en-us/projects/autoadmin/default.aspx
http://www.oracle-base.com/articles/10g/AutomaticSQLTuning10g.php

"
Referential Integrity

m Creating foreign key may not induce an
index on the key’s attributes
m Example in PostgreSQL (db.fi.muni.cz)
Hotel — primary key id
Room — primary key id, foreign key hotel_id
= V(Room, hotel id) =6

m Queries (check EXPLAIN plans)

SELECT * FROM hotel WHERE id=2;
SELECT * FROM room WHERE hotel_id=2 AND number=1;

PA152, Vlastislav Dohnal, FI MUNI, 2023 72

"
Referential Integrity
m Query

SELECT * FROM room WHERE hotel_id=2 AND number=1;

m No indexes (output of EXPLAIN SELECT...)

Seq Scan on room (cost=0.00..8750.89 rows=105 width=22)
Filter: ((hotel_id = 2) AND (number = 1))

m Create an index on hotel id

CREATE INDEX room_hotel_id_fkey ON room (hotel_id);

Bitmap Heap Scan on room (cost=974.87..5782.99 rows=105 width=22)
Recheck Cond: (hotel_id = 2)
Filter: (number = 1)
-> Bitmap Index Scan on room_hotel_id_fkey (cost=0.00..974.84 rows=52608 width=0)
Index Cond: (hotel_id = 2)

PA152, Vlastislav Dohnal, FI MUNI, 2023 73

"
Referential Integrity

m Foreign keys may slow down deletions
drastically

m Example

DELETE FROM hotel WHERE 1d=500;

m Foreign key in room references table hotel

m During deletion room must be checked for
existence of records hotel 1d=500

m Recommendation
Create indexes on foreign keys

PA152, Vlastislav Dohnal, FI MUNI, 2023 74

" J
Combining Indexes

] Query SELECT * FROM room WHERE hotel_id=2 AND number=1;

m Index only on hotel _id

"Bitmap Heap Scan on room (cost=960.80..5756.77 rows=103 width=22)"
" Recheck Cond: (hotel_id = 2)"
" Filter: (number = 1)"

" -> Bitmap Index Scan on room_hotel_id_fkey (cost=0.00..960.77 rows=51798 width=0)"
" Index Cond: (hotel_id = 2)"

m Index only on number

"Bitmap Heap Scan on room (cost=13.02..1688.30 rows=103 width=22)"

" Recheck Cond: (number = 1)"

" Filter: (hotel_id = 2)"

" -> Bitmap Index Scan on room_number_idx (cost=0.00..12.99 rows=628 width=0)"
Index Cond: (number = 1)"

PA152, Vlastislav Dohnal, FI MUNI, 2023 75

" J
Combining Indexes

] Query SELECT * FROM room WHERE hotel_id=2 AND number=1;

m Index on hotel_id, number

"Bitmap Heap Scan on room (cost=5.34..366.14 rows=103 width=22)"

" Recheck Cond: ((hotel_id = 2) AND (number = 1))"

" -> Bitmap Index Scan on room_hotel_id_number_fkey (cost=0.00..5.31 rows=103 width=0)"
" Index Cond: ((hotel_id = 2) AND (number = 1))"

m Two indexes on hotel id and number

"Bitmap Heap Scan on room (cost=974.07..1334.86 rows=103 width=22)"

" Recheck Cond: ((number = 1) AND (hotel_id = 2))"

" -> BitmapAnd (cost=974.07..974.07 rows=103 width=0)"

-> Bitmap Index Scan on room_number_idx (cost=0.00..12.99 rows=628 width=0)"
Index Cond: (number = 1)"

" -> Bitmap Index Scan on room_hotel_id_fkey (cost=0.00..960.77 rows=51798 width=0)"

" Index Cond: (hotel_id = 2)"

PA152, Vlastislav Dohnal, FI MUNI, 2023 76

" J
Reversed-key Index

m Specialty by Oracle

m Increases index updates throughput
Number of insertions / updates per second

m |dea
Key values are reversed in index

— seguence-generated values are scattered
m E.g., 12345 and 12346 — 54321 and 64321

— diminishes collisions Iin concurrent index
updates

m CREATE INDEX idx ON tab(attr) REVERSE;

PA152, Vlastislav Dohnal, FI MUNI, 2023 77

" S
Global (Schema) Changes

m Creating indexes

m Schema change
See next slides

m Relation partitioning
See next slides

PA152, Vlastislav Dohnal, FI MUNI, 2023

78

" J
Lecture Takeaways

m Pure predicates vs functional indexes
Time with time zone issues

m Avoid unnecessary statements
m Do not overuse temp tables
m Mind impacts of new indexes

PA152, Vlastislav Dohnal, FI MUNI, 2023 81

	Snímek 1: PA152: Efficient Use of DB 9. Query Tuning
	Snímek 2: Credits
	Snímek 3: Query Tuning
	Snímek 4: Query Execution Plan
	Snímek 5: Monitoring Queries
	Snímek 6: Query Tuning
	Snímek 7: Query Rewriting
	Snímek 8: Query Rewriting
	Snímek 9: Index Usage
	Snímek 10: Index Usage
	Snímek 11: Index Usage (cont.)
	Snímek 12: Index Usage (cont.)
	Snímek 13: Index Usage (cont.)
	Snímek 14: Index Usage (cont.)
	Snímek 15: Eliminate unneeded DISTINCTs
	Snímek 16: Example of DISTINCTs
	Snímek 17: Eliminate unneeded DISTINCTs
	Snímek 18: Eliminate unneeded DISTINCTs
	Snímek 19: Eliminate unneeded DISTINCTs
	Snímek 20: Eliminate unneeded DISTINCTs
	Snímek 21: Unneeded DISTINCT (1)
	Snímek 22: Unneeded DISTINCT (2)
	Snímek 23: Unneeded DISTINCT (3)
	Snímek 24: Nested Queries
	Snímek 25: Rewriting Nested Queries
	Snímek 26: Types of Nested Queries
	Snímek 27: Types of Nested Queries
	Snímek 28: Types of Nested Queries
	Snímek 29: Rewriting Uncorrel. Subq. without Aggregates
	Snímek 30: Rewriting Uncorrel. Subq. without Aggregates
	Snímek 31: Rewriting Correlated Subqueries
	Snímek 32: Rewriting Correlated Subqueries
	Snímek 33: Rewriting Correlated Subqueries
	Snímek 34: Rewriting Correlated Subqueries
	Snímek 35: Rewriting Correlated Subqueries
	Snímek 36: The Infamous COUNT Bug
	Snímek 37: Rewriting Correlated Subqueries
	Snímek 38: Rewriting Correlated Subqueries
	Snímek 39: Query Rewriting
	Snímek 40: Abuse of Temporaries
	Snímek 41: Use of Having
	Snímek 42: Use of Having
	Snímek 43: Use of Having
	Snímek 44: Use of Views
	Snímek 45: Use of Views
	Snímek 46: Use of Views
	Snímek 47: Use of Views
	Snímek 48: Query Rewriting: Performance Impact
	Snímek 49: Aggregate Maintenance
	Snímek 50: Aggregate Maintenance
	Snímek 51: Aggregate Maintenance
	Snímek 52: Aggregate Maintenance
	Snímek 53: Materialized Views
	Snímek 54: Materialized Views
	Snímek 55: Materialized Views
	Snímek 56: Materialized Views
	Snímek 61: Database Triggers
	Snímek 62: Database Triggers
	Snímek 63: Global (Schema) Changes
	Snímek 64: Using Indexes
	Snímek 65: Using Indexes
	Snímek 66: Influence of Indexes on Costs
	Snímek 67: Influence of Indexes: Example
	Snímek 68: Influence of Indexes: Example
	Snímek 69: Influence of Indexes: Example
	Snímek 70: Optimizing Indexes
	Snímek 71: Optimizing Indexes
	Snímek 72: Referential Integrity
	Snímek 73: Referential Integrity
	Snímek 74: Referential Integrity
	Snímek 75: Combining Indexes
	Snímek 76: Combining Indexes
	Snímek 77: Reversed-key Index
	Snímek 78: Global (Schema) Changes
	Snímek 81: Lecture Takeaways

