
PA152: Efficient Use of DB

9. Query Tuning

Vlastislav Dohnal

PA152, Vlastislav Dohnal, FI MUNI, 2023 2

Credits

◼ Sources of materials for this lecture:

Courses CS245, CS345, CS345

◼ Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer

Widom

◼ Stanford University, California

Database Tuning (slides)

◼ Dennis Shasha, Philippe Bonnet

◼ Morgan Kaufmann, 1st edition, 440 pages, 2002

◼ ISBN-13: 978-1558607538

◼ http://www.databasetuning.org/

PA152, Vlastislav Dohnal, FI MUNI, 2023 3

Query Tuning
SELECT s.RESTAURANT_NAME, t.TABLE_SEATING, to_char(t.DATE_TIME,'Dy, Mon FMDD') AS THEDATE,
to_char(t.DATE_TIME,'HH:MI PM') AS THETIME,to_char(t.DISCOUNT,'99') || '%' AS AMOUNTVALUE,t.TABLE_ID,
s.SUPPLIER_ID, t.DATE_TIME, to_number(to_char(t.DATE_TIME,'SSSSS')) AS SORTTIME
FROM TABLES_AVAILABLE t, SUPPLIER_INFO s,

(SELECT s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME, max(t.DISCOUNT) AMOUNT, t.OFFER_TYPE
FROM TABLES_AVAILABLE t, SUPPLIER_INFO s
WHERE t.SUPPLIER_ID = s.SUPPLIER_ID

and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') != TO_CHAR(sysdate, 'MM/DD/YYYY')
or TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)
and t.NUM_OFFERS > 0 and t.DATE_TIME > SYSDATE and s.CITY = 'SF'
and t.TABLE_SEATING = '2’ and t.DATE_TIME between sysdate and (sysdate + 7)
and to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800
and t.OFFER_TYPE = 'Discount‘

GROUP BY s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME, t.OFFER_TYP) u
WHERE t.SUPPLIER_ID=s.SUPPLIER_ID and u.SUPPLIER_ID=s.SUPPLIER_ID and t.SUPPLIER_ID=u.SUPPLIER_ID

and t.TABLE_SEATING = u.TABLE_SEATING and t.DATE_TIME = u.DATE_TIME
and t.DISCOUNT = u.AMOUNT and t.OFFER_TYPE = u.OFFER_TYPE
and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') != TO_CHAR(sysdate, 'MM/DD/YYYY')

or TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)
and t.NUM_OFFERS > 2 and t.DATE_TIME > SYSDATE and s.CITY = 'SF'
and t.TABLE_SEATING = '2' and t.DATE_TIME between sysdate and (sysdate + 7)
and to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800 and t.OFFER_TYPE = 'Discount'

ORDER BY AMOUNTVALUE DESC, t.TABLE_SEATING ASC, upper(s.RESTAURANT_NAME) ASC,
SORTTIME ASC, t.DATE_TIME ASC

Execution is too slow …

1) How is the query evaluated?
2) How can we speed it up?

PA152, Vlastislav Dohnal, FI MUNI, 2023 4

Query Execution Plan
Output of EXPLAIN command in Oracle

Operator

Access method Evaluation cost

Execution Plan

--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=165 Card=1 Bytes=106)

1 0 SORT (ORDER BY) (Cost=165 Card=1 Bytes=106)

2 1 NESTED LOOPS (Cost=164 Card=1 Bytes=106)

3 2 NESTED LOOPS (Cost=155 Card=1 Bytes=83)

4 3 TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=28)

5 3 VIEW

6 5 SORT (GROUP BY) (Cost=83 Card=1 Bytes=34)

7 6 NESTED LOOPS (Cost=81 Card=1 Bytes=34)

8 7 TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=24)

9 7 TABLE ACCESS (FULL) OF 'SUPPLIER_INFO' (Cost=9 Card=20 Bytes=200)

10 2 TABLE ACCESS (FULL) OF 'SUPPLIER_INFO' (Cost=9 Card=20 Bytes=460)

PA152, Vlastislav Dohnal, FI MUNI, 2023 5

Monitoring Queries

◼ What is slow query?

Needs to many disk IOs

◼ high costs in execution plan (explain)

◼ E.g., query for one row (exact-match query) uses

table-scan.

 Inconvenient query plan

◼ Existing indexes are not used

◼ How to reveal?

DBMS can log “long-lasting” queries

…

PA152, Vlastislav Dohnal, FI MUNI, 2023 6

Query Tuning

◼ Local tuning = query rewrite

First approach to speed up a query

 Influences only the query

◼ Global tuning

 Index creation

Schema modification

Transaction splitting

…

Potentially harmful

PA152, Vlastislav Dohnal, FI MUNI, 2023 7

Query Rewriting

◼ Example:

Employee(ssnum, name, manager, dept,

salary, coworkers)

◼ Clustering index on ssnum

 i.e., relation is sorted by this attribute in the file

◼ Non-clustering indexes: (i) name; (ii) dept

Student(ssnum, name, degree_sought, year)

◼ Clustering index on ssnum

◼ Non-clustering index on name

Tech(dept, manager, location)

◼ Clustering index on dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 8

Query Rewriting

◼ Techniques

 Index usage

DISTINCTs elimination

(Correlated) subqueries

Use of temporaries

Use of having

Use of views

Materialized views

PA152, Vlastislav Dohnal, FI MUNI, 2023 9

Index Usage
◼ Many query optimizers will not use indexes in

the presence of :
Arithmetic expressions

WHERE salary/12 >= 4000;

WHERE inserted + 1 = current_date;

Functions
SELECT * FROM employee

WHERE SUBSTR(name, 1, 1) = ‘G’;

… WHERE to_char(inserted, 'YYYYMM') = '201704'

Numerical comparisons of fields with different
types

Multi-attribute indexes

Comparison with NULL

Index Usage
◼ = vs. like

 SELECT * FROM hotel WHERE city='city174’

 SELECT * FROM hotel WHERE city LIKE 'city174’

 SELECT * FROM hotel WHERE city like 'city174%'

PA152, Vlastislav Dohnal, FI MUNI, 2023 10

"Bitmap Heap Scan on hotel (cost=4.31..14.26 rows=5 width=59)“
" Filter: ((city)::text ~~ 'city174'::text)“
" -> Bitmap Index Scan on hotel_city (cost=0.00..4.31 rows=5 width=0)“
" Index Cond: ((city)::text = 'city174'::text)"

"Seq Scan on hotel (cost=0.00..17.25 rows=5 width=59)“
" Filter: ((city)::text ~~ 'city174%'::text)"

Index Usage (cont.)
Aggregate functions MAX(A), MIN(A)

◼ resp. ORDER BY A LIMIT 1

◼ using functions on A

◼ E.g.,
 conn_log (log_key, sim_imsi, time, car_key, pda_imei,

gsmnet_id, method, program_ver)

A. SELECT max(time AT TIME ZONE 'UTC') AS time
FROM conn_log
WHERE sim_imsi=‘23001234567890123’ AND

time>'2016-02-28 10:50:00.122 UTC' AND
method='U' AND program_ver IS NOT NULL;

B. SELECT time AT TIME ZONE 'UTC‘
FROM (SELECT max(time) AS time

FROM conn_log
WHERE sim_imsi=‘23001234567890123’ AND

time>'2016-02-28 10:50:00.122 UTC' AND
method='U' AND program_ver IS NOT NULL) AS x;

C. SELECT max(time) AT TIME ZONE 'UTC' AS time …
(cont. from A.)

PA152, Vlastislav Dohnal, FI MUNI, 2023 11

Plus a secondary index on

(sim_imsi,time)

Index Usage (cont.)

PA152, Vlastislav Dohnal, FI MUNI, 2023 12

QUERY PLAN (QUERY A.)

Aggregate (cost=19412.69..19412.70 rows=1 width=8) (actual time=36.415..36.415 rows=1 loops=1)

-> Append (cost=0.00..19385.45 rows=5448 width=8) (actual time=36.410..36.410 rows=0 loops=1)

-> Seq Scan on conn_log (cost=0.00..0.00 rows=1 width=8) (actual time=0.003..0.003 rows=0 loops=1)

Filter: ((program_ver IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone) AND (sim_imsi = '23001234567890123'::bpchar) AND

(method = 'U'::bpchar))

-> Index Scan using conn_log_imsi_time_y2016m02 on conn_log_y2016m02 (cost=0.56..8.58 rows=1 width=8) (actual time=28.464..28.464 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Bitmap Heap Scan on conn_log_y2016m03 (cost=194.11..14125.36 rows=3969 width=8) (actual time=2.586..2.586 rows=0 loops=1)

Recheck Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Bitmap Index Scan on conn_log_imsi_time_y2016m03 (cost=0.00..193.12 rows=4056 width=0) (actual time=2.584..2.584 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

-> Bitmap Heap Scan on conn_log_y2016m04 (cost=71.87..5243.35 rows=1476 width=8) (actual time=5.346..5.346 rows=0 loops=1)

Recheck Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Bitmap Index Scan on conn_log_imsi_time_y2016m04 (cost=0.00..71.50 rows=1507 width=0) (actual time=5.342..5.342 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

-> Index Scan using conn_log_imsi_time_y2016m05 on conn_log_y2016m05 (cost=0.14..8.16 rows=1 width=8) (actual time=0.009..0.009 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

Planning time: 4.159 ms

Execution time: 36.535 ms

Index Usage (cont.)

PA152, Vlastislav Dohnal, FI MUNI, 2023 13

QUERY PLAN (QUERY B.)

Subquery Scan on x (cost=5.98..6.01 rows=1 width=8) (actual time=0.162..0.163 rows=1 loops=1)

-> Result (cost=5.98..5.99 rows=1 width=0) (actual time=0.159..0.160 rows=1 loops=1)

InitPlan 1 (returns $0)

-> Limit (cost=1.87..5.98 rows=1 width=8) (actual time=0.158..0.158 rows=0 loops=1)

-> Merge Append (cost=1.87..22424.61 rows=5449 width=8) (actual time=0.156..0.156 rows=0 loops=1)

Sort Key: conn_log."time"

-> Index Scan Backward using conn_log_imsi_time on conn_log (cost=0.12..8.15 rows=1 width=8) (actual time=0.004..0.004 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m02 on conn_log_y2016m02 (cost=0.56..8.58 rows=1 width=8)

(actual time=0.069..0.069 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m03 on conn_log_y2016m03 (cost=0.56..16225.91 rows=3969 width=8)

(actual time=0.046..0.046 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m04 on conn_log_y2016m04 (cost=0.43..6033.60 rows=1477 width=8)

(actual time=0.035..0.035 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m05 on conn_log_y2016m05 (cost=0.14..8.17 rows=1 width=8)

(actual time=0.002..0.002 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

Planning time: 3.137 ms

Execution time: 0.317 ms

Index Usage (cont.)

PA152, Vlastislav Dohnal, FI MUNI, 2023 14

QUERY PLAN (QUERY C.)

Result (cost=5.98..5.99 rows=1 width=0) (actual time=0.186..0.186 rows=1 loops=1)

InitPlan 1 (returns $0)

-> Limit (cost=1.87..5.98 rows=1 width=8) (actual time=0.182..0.182 rows=0 loops=1)

-> Merge Append (cost=1.87..22424.63 rows=5450 width=8) (actual time=0.181..0.181 rows=0 loops=1)

Sort Key: conn_log."time"

-> Index Scan Backward using conn_log_imsi_time on conn_log (cost=0.12..8.15 rows=1 width=8) (actual time=0.005..0.005 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m02 on conn_log_y2016m02 (cost=0.56..8.58 rows=1 width=8)

(actual time=0.070..0.070 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m03 on conn_log_y2016m03 (cost=0.56..16225.91 rows=3969 width=8)

(actual time=0.064..0.064 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m04 on conn_log_y2016m04 (cost=0.43..6033.60 rows=1478 width=8)

(actual time=0.037..0.037 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m05 on conn_log_y2016m05 (cost=0.14..8.17 rows=1 width=8)

(actual time=0.003..0.003 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

Planning time: 3.094 ms

Execution time: 0.309 ms

PA152, Vlastislav Dohnal, FI MUNI, 2023 15

Eliminate unneeded DISTINCTs

◼ Query:

Find employees who work in the information

systems department. There should be no

duplicates.

SELECT DISTINCT ssnum

FROM employee

WHERE dept = ‘information systems’

◼ DISTINCT is unnecessary

ssnum is a prim. key in employee

Example of DISTINCTs
◼ Assume the relation hotel in student’s Pg

PA152, Vlastislav Dohnal, FI MUNI, 2023
16

explain select distinct id from hotel where id is not null;

"Unique (cost=0.00..33.00 rows=500 width=4)"

" -> Index Scan using hotel_pkey on hotel (cost=0.00..31.75 rows=500 width=4)"

" Filter: (id IS NOT NULL)“

explain select id from hotel where id is not null;

"Seq Scan on hotel (cost=0.00..10.00 rows=500 width=4)"

" Filter: (id IS NOT NULL)“

explain select distinct id from account where id < 1000;

"Unique (cost=0.00..62.13 rows=993 width=4)"

" -> Index Scan using account_pkey on account (cost=0.00..59.65 rows=993 width=4)"

" Index Cond: (id < 1000)“

explain select id from account where id < 1000;

"Index Scan using account_pkey on account (cost=0.00..59.65 rows=993 width=4)"

" Index Cond: (id < 1000)"

PA152, Vlastislav Dohnal, FI MUNI, 2023 17

Eliminate unneeded DISTINCTs

◼ Query:

Find social security numbers of employees in

the technical departments. There should be

no duplicates.

SELECT DISTINCT ssnum

FROM employee, tech

WHERE employee.dept = tech.dept

◼ Is DISTINCT needed?

Employee(ssnum, name, manager, dept, salary, coworkers)

Tech(dept, manager, location)

PA152, Vlastislav Dohnal, FI MUNI, 2023 18

Eliminate unneeded DISTINCTs

◼ Query:

SELECT DISTINCT ssnum

FROM employee, tech

WHERE employee.dept = tech.dept

◼ Is DISTINCT needed?

ssnum is a key in employee

dept is a key in tech

→ each employee record will join with at most

one record in tech.

→ DISTINCT is unnecessary

Employee(ssnum, name, manager, dept, salary, coworkers)

Tech(dept, manager, location)

PA152, Vlastislav Dohnal, FI MUNI, 2023 19

Eliminate unneeded DISTINCTs
◼ The relationship among DISTINCT, keys

and joins can be generalized:

Definition of “privileged“
◼ Call a table T privileged if the fields returned by the

select contain a key of T.

Definition of relationship “reaches“
◼ Let R be an unprivileged table.

◼ Suppose that R is joined on equality by its key field
to some other table S, then we say R reaches S.

Relationship “reaches“ is transitive:
◼ If R1 reaches R2 and R2 reaches R3,

then R1 reaches R3.

PA152, Vlastislav Dohnal, FI MUNI, 2023 20

Eliminate unneeded DISTINCTs

◼ Main Theorem:

There will be no duplicates among the records

returned by a selection, even in the absence

of DISTINCT

if one of the two following conditions hold:

Every table mentioned in the FROM clause is

privileged.

Every unprivileged table reaches at least one

privileged table.

PA152, Vlastislav Dohnal, FI MUNI, 2023 21

Unneeded DISTINCT (1)
◼ Query:

SELECT DISTINCT ssnum
FROM employee, tech
WHERE employee.manager = tech.manager

◼ Employee is privileged

◼ Is tech privileged?

No.

◼ Does tech reach employee?

No. Attribute manager is not a key in tech.

Employee(ssnum, name, manager, dept, salary, coworkers)

Tech(dept, manager, location)

PA152, Vlastislav Dohnal, FI MUNI, 2023 22

Unneeded DISTINCT (2)

◼ Query:

SELECT DISTINCT ssnum, tech.dept

FROM employee, tech

WHERE employee.manager = tech.manager

◼ Employee is privileged

◼ Is tech privileged?

Yes.

◼ Result does not have duplicates

Employee(ssnum, name, manager, dept, salary, coworkers)

Tech(dept, manager, location)

PA152, Vlastislav Dohnal, FI MUNI, 2023 23

Unneeded DISTINCT (3)

◼ Query:

SELECT DISTINCT student.ssnum

FROM student, employee, tech

WHERE student.name = employee.name

AND employee.dept = tech.dept;

◼ Student is privileged

◼ Employee is not privileged and does not

reach any other relation.

◼→ DISTINCT is needed.

Employee(ssnum, name, manager, dept, salary, coworkers)

Student(ssnum, name, degree_sought, year)

Tech(dept, manager, location)

Nested Queries
◼ SELECT containing another SELECT as its part

 SELECT employee_number, name

FROM employees AS X

WHERE salary > (

SELECT AVG(salary)

FROM employees

WHERE department = X.department);

 SELECT employee_number, name,

(SELECT AVG(salary) FROM employees

WHERE department = X.department) AS department_average

FROM employees AS X;

PA152, Vlastislav Dohnal, FI MUNI, 2023 24

Rewriting Nested Queries

◼ Reason:

Query optimizer may not correctly handle

some nested queries

Usually:

◼ Uncorrelated subqueries without aggregate

◼ Correlated subqueries

PA152, Vlastislav Dohnal, FI MUNI, 2023 25

PA152, Vlastislav Dohnal, FI MUNI, 2023 26

Types of Nested Queries
◼ Uncorrelated subqueries with aggregates

SELECT ssnum FROM employee
WHERE salary >

(SELECT avg(salary) FROM
employee)

◼ Uncorrelated subqueries without
aggregate
SELECT ssnum FROM employee
WHERE dept in (SELECT dept FROM
tech)

So-called “semi-join”

PA152, Vlastislav Dohnal, FI MUNI, 2023 27

Types of Nested Queries
◼ Correlated subqueries with aggregates

SELECT ssnum FROM employee e1

WHERE salary >=

(SELECT avg(e2.salary)

FROM employee e2, tech

WHERE e2.dept = e1.dept

AND e2.dept = tech.dept)

PA152, Vlastislav Dohnal, FI MUNI, 2023 28

Types of Nested Queries
◼ Correlated subqueries without aggregates

Unusual for derived tables

◼ i.e., can rewrite with join

Subqueries in where (typical)

◼ Semi-join queries may be evaluated efficiently

◼ Example of two semi-join queries:

 SELECT ssnum FROM employee

WHERE dept in

(SELECT dept FROM tech

WHERE tech.manager=employee.manager)

 SELECT ssnum FROM employee

WHERE EXISTS (SELECT 1 FROM tech WHERE

employee.manager = tech.manager)

PA152, Vlastislav Dohnal, FI MUNI, 2023 29

Rewriting Uncorrel. Subq. without Aggregates

1. Combine the arguments of the two FROM

clauses

2. Replace IN with =

3. Retain the SELECT clause

SELECT ssnum FROM employee
WHERE dept in (select dept from tech)

SELECT DISTINCT ssnum
FROM employee, tech
WHERE employee.dept = tech.dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 30

Rewriting Uncorrel. Subq. without Aggregates

◼ Potential problem with duplicates:

SELECT avg(salary) FROM employee
WHERE manager in (select manager from tech)

SELECT avg(salary) FROM employee, tech
WHERE employee.manager = tech.manager

◼ The rewritten query may include an
employee record several times

 if that employee’s manager manages several
departments.

◼ The solution is to create a temporary table

(using DISTINCT) to eliminate duplicates.

PA152, Vlastislav Dohnal, FI MUNI, 2023 31

Rewriting Correlated Subqueries

◼ Query:

Find the employees of tech departments who

earn at least the average salary in their

department.

SELECT ssnum
FROM employee e1

WHERE salary >= (SELECT avg(e2.salary)
FROM employee e2, tech
WHERE e2.dept = tech.dept

AND e2.dept = e1.dept);

PA152, Vlastislav Dohnal, FI MUNI, 2023 32

Rewriting Correlated Subqueries

CREATE TEMPORARY TABLE temp (…) ON COMMIT DROP;

INSERT INTO temp
SELECT avg(salary) as avsalary, tech.dept
FROM tech, employee
WHERE tech.dept = employee.dept
GROUP BY tech.dept;

SELECT ssnum
FROM employee, temp
WHERE salary >= avsalary

AND employee.dept = temp.dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 33

Rewriting Correlated Subqueries

SELECT ssnum
FROM employee as E,

(SELECT avg(salary) as avsalary, tech.dept
FROM tech, employee
WHERE tech.dept = employee.dept
GROUP BY tech.dept) as AVG

WHERE salary >= avsalary AND E.dept = AVG.dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 34

Rewriting Correlated Subqueries

◼ Query:

Find employees of technical departments

whose number of co-workers equals the

number of employees in their department.

SELECT ssnum
FROM employee e1
WHERE coworkers = (

SELECT COUNT(e2.ssnum)
FROM employee e2, tech
WHERE e2.dept = tech.dept

AND e2.dept = e1.dept);

PA152, Vlastislav Dohnal, FI MUNI, 2023 35

Rewriting Correlated Subqueries

INSERT INTO temp
SELECT COUNT(ssnum) as numworkers,

employee.dept
FROM tech, employee
WHERE tech.dept = employee.dept
GROUP BY tech.dept;

SELECT ssnum
FROM employee, temp
WHERE coworkers = numworkers

AND employee.dept = temp.dept;

Can you spot the infamous COUNT bug?

PA152, Vlastislav Dohnal, FI MUNI, 2023 36

The Infamous COUNT Bug
◼ Example:

Helene who is not in a technical department.

 In the original query, Helene’s number of
coworkers would be compared to COUNT(Ø)=0.
◼ In case Helene has no coworkers, she would survive

the selection.

 In the transformed query, Helene’s record would
not appear.
◼ The temporary table will contain counts for tech

departments only.

◼ This is a limitation of the correlated subquery
rewriting technique when COUNT is involved.

Rewriting Correlated Subqueries

◼ Anti-joins

SELECT * FROM Tech WHERE dept NOT IN

(SELECT dept FROM employee)

◼ Problem with NULLs in employee.dept

SELECT * FROM Tech WHERE NOT EXISTS

(SELECT 1 FROM employee

WHERE employee.dept=tech.dept)

◼ Issues

Not using join algorithm

Using too many index lookups in index join

PA152, Vlastislav Dohnal, FI MUNI, 2023 37

Rewriting Correlated Subqueries

◼ Test these in student’s Pg:

PA152, Vlastislav Dohnal, FI MUNI, 2023 38

explain verbose select * from hotel
where id not in (select hotel_id from room);

"Seq Scan on xdohnal.hotel (cost=0.00..2190904.75 rows=250 width=59)“
" Output: hotel.id, hotel.name, hotel.street, …“
" Filter: (NOT (SubPlan 1))“
" SubPlan 1“
" -> Materialize (cost=0.00..7974.90 rows=315460 width=4)“
" Output: room.hotel_id“
" -> Seq Scan on xdohnal.room (cost=0.00..5164.60 rows=315460 width=4)“
" Output: room.hotel_id"

explain verbose select * from hotel
where id not in (select hotel_id from room

where hotel_id is not null);

explain verbose select * from hotel
where not exists(select 1 from room

where room.hotel_id=hotel.id);

PA152, Vlastislav Dohnal, FI MUNI, 2023 39

Query Rewriting

◼ Techniques

 Index usage

DISTINCTs elimination

(Correlated) subqueries

Use of temporaries

Use of having

Use of views

Materialized views

PA152, Vlastislav Dohnal, FI MUNI, 2023 40

Abuse of Temporaries
◼ Query:

 Find all information about department employees with
their locations who earn at least > 40000.

 INSERT INTO temp
SELECT *
FROM employee
WHERE salary >= 40000

 SELECT ssnum, location
FROM temp
WHERE temp.dept = ‘information systems’

◼ This solution will not be optimal (should have been
done in the reverse order)

 Cannot use on dept in employee

 There is no index on temp table.

PA152, Vlastislav Dohnal, FI MUNI, 2023 41

Use of Having

◼ Reason for having:

Shortens queries that filter on aggregation

results

Cannot use aggregations in WHERE clause

Use HAVING clause then

◼ Example

SELECT avg(salary), dept
FROM employee
GROUP BY dept
HAVING avg(salary) > 10 000;

PA152, Vlastislav Dohnal, FI MUNI, 2023 42

Use of Having

◼Another example

SELECT avg(salary), dept
FROM employee
GROUP BY dept
HAVING count(ssnum) > 100;

PA152, Vlastislav Dohnal, FI MUNI, 2023 43

Use of Having

◼Don’t use HAVING
when WHERE is enough.

SELECT avg(salary) as avgsalary, dept
FROM employee
WHERE dept= ‘information systems’
GROUP BY dept;

SELECT avg(salary) as avgsalary, dept
FROM employee
GROUP BY dept
HAVING dept = ‘information systems’;

PA152, Vlastislav Dohnal, FI MUNI, 2023 44

Use of Views

◼Query optimizer replaces the view

with its definition

CREATE VIEW techlocation AS
SELECT ssnum, tech.dept, location
FROM employee, tech
WHERE employee.dept = tech.dept;

SELECT location
FROM techlocation
WHERE ssnum = 43253265;

PA152, Vlastislav Dohnal, FI MUNI, 2023 45

Use of Views

◼Resulting query:

SELECT location
FROM employee, tech
WHERE employee.dept = tech.dept

AND ssnum = 43253265;

PA152, Vlastislav Dohnal, FI MUNI, 2023 46

Use of Views

◼ Example for PostgreSQL:

CREATE VIEW hotels_in_city AS

SELECT city, COUNT(*) AS count

FROM hotel

GROUP BY city;

◼ Using view

SELECT * FROM hotels_in_city

WHERE count > 8

SELECT * FROM hotels_in_city

WHERE city='city174'

PA152, Vlastislav Dohnal, FI MUNI, 2023 47

Use of Views

◼ Output of EXPLAIN

EXPLAIN SELECT * FROM hotels_in_city;

EXPLAIN SELECT * FROM hotels_in_city

WHERE city='city174’;

Use of functions:

◼ Compare:
EXPLAIN SELECT * FROM

(SELECT lower(city) as city, COUNT(*) AS cnt
FROM hotel GROUP BY city HAVING COUNT(*) > 3) x

WHERE city='city174';

EXPLAIN SELECT lower(city), cnt FROM
(SELECT city, COUNT(*) AS cnt FROM hotel
GROUP BY city HAVING COUNT(*) > 3) x

WHERE city='city174';

PA152, Vlastislav Dohnal, FI MUNI, 2023 48

Query Rewriting: Performance Impact

-10

0

10

20

30

40

50

60

70

80

T
h

ro
u

g
h

p
u

t
ra

ti
o

 (
%

)
SQLServer 2000

Oracle 8i

DB2 V7.1

100k Employees, 100k Students, 10 tech. depts

>10 000

PA152, Vlastislav Dohnal, FI MUNI, 2023 49

Aggregate Maintenance

◼ Example:

Orders of a store chain

◼ Order(ordernum, itemnum, quantity, purchaser,

vendor)

◼ Item(itemnum, description, price)

◼ Clustered indexes on itemnum of Order and Item

Queries issues every five minutes :

◼ The total dollar amount of orders from a particular

vendor.

◼ The total dollar amount of orders by a particular

store outlet (purchaser).

PA152, Vlastislav Dohnal, FI MUNI, 2023 50

Aggregate Maintenance

◼ Queries:
◼ SELECT vendor, sum(quantity*price)

FROM order, item

WHERE order.itemnum = item.itemnum

GROUP BY vendor;

◼ SELECT purchaser, sum(quantity*price)

FROM order, item

WHERE order.itemnum = item.itemnum

GROUP BY purchaser;

Query costs?

◼→ expensive

PA152, Vlastislav Dohnal, FI MUNI, 2023 51

Aggregate Maintenance

◼ Ways to speed up?

Use of views?

◼→ no impact

Use of temporaries?

◼→ helps

PA152, Vlastislav Dohnal, FI MUNI, 2023 52

Aggregate Maintenance

◼ Add temporaries

OrdersByVendor(vendor, amount)

OrdersByPurchaser(purchaser, amount)

◼ These redundant tables must be updated

When to update?

◼ After each update to order, or item?

 triggers can be used to implement this explicitly

◼ Recreate from scratch periodically

Costs of update

◼ Update overhead must be less than original costs.

PA152, Vlastislav Dohnal, FI MUNI, 2023 53

Materialized Views

◼ View data content stored in a table

Automatic updates by DBMS

◼ Typical…

Transparent expansion performed by the

optimizer based on cost
◼ It is the optimizer and not the programmer that

performs query rewriting

PA152, Vlastislav Dohnal, FI MUNI, 2023 54

Materialized Views

◼ In Oracle

CREATE MATERIALIZED VIEW OrdersByVendor
BUILD IMMEDIATE REFRESH COMPLETE
ENABLE QUERY REWRITE
AS
SELECT vendor, sum(quantity*price) AS amount
FROM order, item
WHERE order.itemnum = item.itemnum
GROUP BY vendor;

PA152, Vlastislav Dohnal, FI MUNI, 2023 55

Materialized Views

◼ Example

QUERY REWRITE

Query:

◼ SELECT vendor, sum(quantity*price) AS amount
FROM order, item
WHERE order.itemnum = item.itemnum

AND vendor=‘Apple’;

◼ OrdersByVendor view will be substituted:

 SELECT vendor, amount FROM OrdersByVendor
WHERE vendor=‘Apple’;

PA152, Vlastislav Dohnal, FI MUNI, 2023 56

Materialized Views

◼ Example

SQLServer, using triggers for maintenance

1m orders – 5 purchasers and 20 vendors

10k items

- 62.2

21900

31900

-5000

0

5000

10000

15000

20000

25000

30000

35000

insert vendor total purchaser total

gain with aggregate maintenance (%)

PA152, Vlastislav Dohnal, FI MUNI, 2023 61

Database Triggers

◼ A trigger is a stored procedure

Collection of SQL statements that executes as

a result of an event.

◼ Events:

DML – insert, update, delete

DDL – definition of tables, …

Time-related events (not common)

PA152, Vlastislav Dohnal, FI MUNI, 2023 62

Database Triggers

◼ Independent of an application/API

Executed as part of the transaction containing

the enabling event by DBMS.

◼ Not using triggers requires implementation

of constraints in app

◼ Induce overhead

May insert to other tables, …

Firing can be conditional

◼ E.g., after price update, number of ordered items

◼ Not on updates to item description, …

PA152, Vlastislav Dohnal, FI MUNI, 2023 63

Global (Schema) Changes

◼ Materialized views

 If refreshed automatically…

◼ Creating indexes

◼ Schema change

See the next slides

◼ Relation partitioning

See the next slides

◼ …

PA152, Vlastislav Dohnal, FI MUNI, 2023 64

Using Indexes
◼ Small table

 Indexes created

But not used

◼ Example

courses(id, title, credits)

SELECT COUNT(*) FROM courses;
◼ Result: 5

SELECT * FROM courses
WHERE id=‘MA102’;
◼ Table-scan is used

PA152, Vlastislav Dohnal, FI MUNI, 2023 65

Using Indexes

◼ Relation read sequentially (table scan / seq scan)

All records are checked

→ slow

◼ Creating index (index scan)

Speeds up SELECTs

Slows down INSERTs, UPDATEs, DELETEs

◼ Indexes must be updated

PA152, Vlastislav Dohnal, FI MUNI, 2023 66

Influence of Indexes on Costs

◼ False friends

More indexes, faster evaluation!

◼ In theory, valid only for SELECT queries

◼ Each index increases update costs

Necessary to update both relation and index

Exception:

◼ INSERT INTO table SELECT …

◼ DELETE FROM table WHERE …

PA152, Vlastislav Dohnal, FI MUNI, 2023 67

Influence of Indexes: Example
◼ Relation

 StarsIn(id, movieTitle, movieYear, starName)

◼ Qmovies

 SELECT movieTitle, movieYear FROM StarsIn

WHERE starName=‘name’;

◼ Qstars

 SELECT starName FROM StarsIn

WHERE movieTitle=‘title’ AND movieYear=year;

◼ Insert

 INSERT INTO StarsIn (movieTitle, movieYear,starName)

VALUES (‘title’, year, ‘name’);

PA152, Vlastislav Dohnal, FI MUNI, 2023 68

Influence of Indexes: Example
◼ Assumptions

B(StarsIn) = 10 blocks

Each actor stars in 3 movies on average

Each movie has 3 stars on average

Relation is not sorted
◼ If index is present, 3 reads of disk (3 records).

Searching in index
◼ 1 block read

 Index update
◼ 1 block read and 1 block write

 Insert to relation
◼ 1 block read and 1 block write

 i.e., not locating any free block

PA152, Vlastislav Dohnal, FI MUNI, 2023 69

Influence of Indexes: Example
◼ Costs in blocks for individual operations

 Probability of individual operations

◼ Qmovies=p1, Qstars=p2, Insert=1 - p1 - p2

Ope-

ration

No

indexes

Index
starName

Index
movieTitle, movieYear

Both

indexes

Qmovies 10 4 10 4

Qstars 10 10 4 4

Insert 2 4 4 6

Avg.

costs

2 + 8p1 + 8p2 4 + 6p2 4 + 6p1 6 - 2p1 - 2p2

◼ Scenario 1: p1 = p2 = 0.1 → no indexes

◼ Scenario 2: p1 = p2 = 0.4 → both indexes

PA152, Vlastislav Dohnal, FI MUNI, 2023 70

Optimizing Indexes

1. Define a batch of operations

 i.e., composition of load

 Analyze log files to find out query types,

updates and their frequencies

2. Suggest different indexes

 Optimizer estimates costs to evaluate the

batch

 Choose a configuration with least costs

 Create corresponding indexes

PA152, Vlastislav Dohnal, FI MUNI, 2023 71

Optimizing Indexes
◼ Point 2 in detail:

 A set of possible indexes

 Initially without any index

 Repeat
◼ Estimate costs of batch for each possible index

◼ Create the index offering the greatest decrease of costs
 Use it in next iterations

◼ Repeat until an index has been created

◼ The process can be done automatically
 MS AutoAdmin (http://research.microsoft.com/en-us/projects/autoadmin/default.aspx)

◼ MS Index Tuning Wizard (S. Chaudhuri, V. Narasayya: An efficient, Cost-Driven Index Selection Tool for Microsoft

SQL Server. Proceedings of VLDB Conference, 1997) & the best 10-year paper in 2007!

 Oracle 10g (http://www.oracle-base.com/articles/10g/AutomaticSQLTuning10g.php)

http://research.microsoft.com/en-us/projects/autoadmin/default.aspx
http://www.oracle-base.com/articles/10g/AutomaticSQLTuning10g.php

PA152, Vlastislav Dohnal, FI MUNI, 2023 72

Referential Integrity

◼ Creating foreign key may not induce an

index on the key’s attributes

◼ Example in PostgreSQL (db.fi.muni.cz)

Hotel – primary key id

Room – primary key id, foreign key hotel_id

◼ V(Room, hotel_id) = 6

◼ Queries (check EXPLAIN plans)

SELECT * FROM hotel WHERE id=2;
SELECT * FROM room WHERE hotel_id=2 AND number=1;

PA152, Vlastislav Dohnal, FI MUNI, 2023 73

Referential Integrity

◼ Query

◼ No indexes (output of EXPLAIN SELECT…)

◼ Create an index on hotel_id

Seq Scan on room (cost=0.00..8750.89 rows=105 width=22)
Filter: ((hotel_id = 2) AND (number = 1))

CREATE INDEX room_hotel_id_fkey ON room (hotel_id);

Bitmap Heap Scan on room (cost=974.87..5782.99 rows=105 width=22)
Recheck Cond: (hotel_id = 2)
Filter: (number = 1)
-> Bitmap Index Scan on room_hotel_id_fkey (cost=0.00..974.84 rows=52608 width=0)

Index Cond: (hotel_id = 2)

SELECT * FROM room WHERE hotel_id=2 AND number=1;

PA152, Vlastislav Dohnal, FI MUNI, 2023 74

Referential Integrity

◼ Foreign keys may slow down deletions

drastically

◼ Example

DELETE FROM hotel WHERE id=500;

◼ Foreign key in room references table hotel

◼ During deletion room must be checked for

existence of records hotel_id=500

◼ Recommendation

Create indexes on foreign keys

Combining Indexes
◼ Query

◼ Index only on hotel_id

◼ Index only on number

PA152, Vlastislav Dohnal, FI MUNI, 2023 75

SELECT * FROM room WHERE hotel_id=2 AND number=1;

"Bitmap Heap Scan on room (cost=960.80..5756.77 rows=103 width=22)"
" Recheck Cond: (hotel_id = 2)"
" Filter: (number = 1)"
" -> Bitmap Index Scan on room_hotel_id_fkey (cost=0.00..960.77 rows=51798 width=0)"
" Index Cond: (hotel_id = 2)"

"Bitmap Heap Scan on room (cost=13.02..1688.30 rows=103 width=22)"
" Recheck Cond: (number = 1)"
" Filter: (hotel_id = 2)"
" -> Bitmap Index Scan on room_number_idx (cost=0.00..12.99 rows=628 width=0)"
" Index Cond: (number = 1)"

Combining Indexes
◼ Query

◼ Index on hotel_id, number

◼ Two indexes on hotel_id and number

PA152, Vlastislav Dohnal, FI MUNI, 2023 76

SELECT * FROM room WHERE hotel_id=2 AND number=1;

"Bitmap Heap Scan on room (cost=5.34..366.14 rows=103 width=22)"
" Recheck Cond: ((hotel_id = 2) AND (number = 1))"
" -> Bitmap Index Scan on room_hotel_id_number_fkey (cost=0.00..5.31 rows=103 width=0)"
" Index Cond: ((hotel_id = 2) AND (number = 1))"

"Bitmap Heap Scan on room (cost=974.07..1334.86 rows=103 width=22)"
" Recheck Cond: ((number = 1) AND (hotel_id = 2))"
" -> BitmapAnd (cost=974.07..974.07 rows=103 width=0)"
" -> Bitmap Index Scan on room_number_idx (cost=0.00..12.99 rows=628 width=0)"
" Index Cond: (number = 1)"
" -> Bitmap Index Scan on room_hotel_id_fkey (cost=0.00..960.77 rows=51798 width=0)"
" Index Cond: (hotel_id = 2)"

Reversed-key Index
◼ Specialty by Oracle

◼ Increases index updates throughput

Number of insertions / updates per second

◼ Idea

Key values are reversed in index

→ sequence-generated values are scattered

◼ E.g., 12345 and 12346 → 54321 and 64321

→ diminishes collisions in concurrent index

updates

◼ CREATE INDEX idx ON tab(attr) REVERSE;
PA152, Vlastislav Dohnal, FI MUNI, 2023 77

PA152, Vlastislav Dohnal, FI MUNI, 2023 78

Global (Schema) Changes

◼ Creating indexes

◼ Schema change

See next slides

◼ Relation partitioning

See next slides

Lecture Takeaways
◼ Pure predicates vs functional indexes

Time with time zone issues

◼ Avoid unnecessary statements

◼ Do not overuse temp tables

◼ Mind impacts of new indexes

PA152, Vlastislav Dohnal, FI MUNI, 2023 81

	Snímek 1: PA152: Efficient Use of DB 9. Query Tuning
	Snímek 2: Credits
	Snímek 3: Query Tuning
	Snímek 4: Query Execution Plan
	Snímek 5: Monitoring Queries
	Snímek 6: Query Tuning
	Snímek 7: Query Rewriting
	Snímek 8: Query Rewriting
	Snímek 9: Index Usage
	Snímek 10: Index Usage
	Snímek 11: Index Usage (cont.)
	Snímek 12: Index Usage (cont.)
	Snímek 13: Index Usage (cont.)
	Snímek 14: Index Usage (cont.)
	Snímek 15: Eliminate unneeded DISTINCTs
	Snímek 16: Example of DISTINCTs
	Snímek 17: Eliminate unneeded DISTINCTs
	Snímek 18: Eliminate unneeded DISTINCTs
	Snímek 19: Eliminate unneeded DISTINCTs
	Snímek 20: Eliminate unneeded DISTINCTs
	Snímek 21: Unneeded DISTINCT (1)
	Snímek 22: Unneeded DISTINCT (2)
	Snímek 23: Unneeded DISTINCT (3)
	Snímek 24: Nested Queries
	Snímek 25: Rewriting Nested Queries
	Snímek 26: Types of Nested Queries
	Snímek 27: Types of Nested Queries
	Snímek 28: Types of Nested Queries
	Snímek 29: Rewriting Uncorrel. Subq. without Aggregates
	Snímek 30: Rewriting Uncorrel. Subq. without Aggregates
	Snímek 31: Rewriting Correlated Subqueries
	Snímek 32: Rewriting Correlated Subqueries
	Snímek 33: Rewriting Correlated Subqueries
	Snímek 34: Rewriting Correlated Subqueries
	Snímek 35: Rewriting Correlated Subqueries
	Snímek 36: The Infamous COUNT Bug
	Snímek 37: Rewriting Correlated Subqueries
	Snímek 38: Rewriting Correlated Subqueries
	Snímek 39: Query Rewriting
	Snímek 40: Abuse of Temporaries
	Snímek 41: Use of Having
	Snímek 42: Use of Having
	Snímek 43: Use of Having
	Snímek 44: Use of Views
	Snímek 45: Use of Views
	Snímek 46: Use of Views
	Snímek 47: Use of Views
	Snímek 48: Query Rewriting: Performance Impact
	Snímek 49: Aggregate Maintenance
	Snímek 50: Aggregate Maintenance
	Snímek 51: Aggregate Maintenance
	Snímek 52: Aggregate Maintenance
	Snímek 53: Materialized Views
	Snímek 54: Materialized Views
	Snímek 55: Materialized Views
	Snímek 56: Materialized Views
	Snímek 61: Database Triggers
	Snímek 62: Database Triggers
	Snímek 63: Global (Schema) Changes
	Snímek 64: Using Indexes
	Snímek 65: Using Indexes
	Snímek 66: Influence of Indexes on Costs
	Snímek 67: Influence of Indexes: Example
	Snímek 68: Influence of Indexes: Example
	Snímek 69: Influence of Indexes: Example
	Snímek 70: Optimizing Indexes
	Snímek 71: Optimizing Indexes
	Snímek 72: Referential Integrity
	Snímek 73: Referential Integrity
	Snímek 74: Referential Integrity
	Snímek 75: Combining Indexes
	Snímek 76: Combining Indexes
	Snímek 77: Reversed-key Index
	Snímek 78: Global (Schema) Changes
	Snímek 81: Lecture Takeaways

