
PA152: Efficient Use of DB

9. Query Tuning

Vlastislav Dohnal

PA152, Vlastislav Dohnal, FI MUNI, 2023 2

Credits

◼ Sources of materials for this lecture:

Courses CS245, CS345, CS345

◼ Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer

Widom

◼ Stanford University, California

Database Tuning (slides)

◼ Dennis Shasha, Philippe Bonnet

◼ Morgan Kaufmann, 1st edition, 440 pages, 2002

◼ ISBN-13: 978-1558607538

◼ http://www.databasetuning.org/

PA152, Vlastislav Dohnal, FI MUNI, 2023 3

Query Tuning
SELECT s.RESTAURANT_NAME, t.TABLE_SEATING, to_char(t.DATE_TIME,'Dy, Mon FMDD') AS THEDATE,
to_char(t.DATE_TIME,'HH:MI PM') AS THETIME,to_char(t.DISCOUNT,'99') || '%' AS AMOUNTVALUE,t.TABLE_ID,
s.SUPPLIER_ID, t.DATE_TIME, to_number(to_char(t.DATE_TIME,'SSSSS')) AS SORTTIME
FROM TABLES_AVAILABLE t, SUPPLIER_INFO s,

(SELECT s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME, max(t.DISCOUNT) AMOUNT, t.OFFER_TYPE
FROM TABLES_AVAILABLE t, SUPPLIER_INFO s
WHERE t.SUPPLIER_ID = s.SUPPLIER_ID

and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') != TO_CHAR(sysdate, 'MM/DD/YYYY')
or TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)
and t.NUM_OFFERS > 0 and t.DATE_TIME > SYSDATE and s.CITY = 'SF'
and t.TABLE_SEATING = '2’ and t.DATE_TIME between sysdate and (sysdate + 7)
and to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800
and t.OFFER_TYPE = 'Discount‘

GROUP BY s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME, t.OFFER_TYP) u
WHERE t.SUPPLIER_ID=s.SUPPLIER_ID and u.SUPPLIER_ID=s.SUPPLIER_ID and t.SUPPLIER_ID=u.SUPPLIER_ID

and t.TABLE_SEATING = u.TABLE_SEATING and t.DATE_TIME = u.DATE_TIME
and t.DISCOUNT = u.AMOUNT and t.OFFER_TYPE = u.OFFER_TYPE
and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') != TO_CHAR(sysdate, 'MM/DD/YYYY')

or TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)
and t.NUM_OFFERS > 2 and t.DATE_TIME > SYSDATE and s.CITY = 'SF'
and t.TABLE_SEATING = '2' and t.DATE_TIME between sysdate and (sysdate + 7)
and to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800 and t.OFFER_TYPE = 'Discount'

ORDER BY AMOUNTVALUE DESC, t.TABLE_SEATING ASC, upper(s.RESTAURANT_NAME) ASC,
SORTTIME ASC, t.DATE_TIME ASC

Execution is too slow …

1) How is the query evaluated?
2) How can we speed it up?

PA152, Vlastislav Dohnal, FI MUNI, 2023 4

Query Execution Plan
Output of EXPLAIN command in Oracle

Operator

Access method Evaluation cost

Execution Plan

--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=165 Card=1 Bytes=106)

1 0 SORT (ORDER BY) (Cost=165 Card=1 Bytes=106)

2 1 NESTED LOOPS (Cost=164 Card=1 Bytes=106)

3 2 NESTED LOOPS (Cost=155 Card=1 Bytes=83)

4 3 TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=28)

5 3 VIEW

6 5 SORT (GROUP BY) (Cost=83 Card=1 Bytes=34)

7 6 NESTED LOOPS (Cost=81 Card=1 Bytes=34)

8 7 TABLE ACCESS (FULL) OF 'TABLES_AVAILABLE' (Cost=72 Card=1 Bytes=24)

9 7 TABLE ACCESS (FULL) OF 'SUPPLIER_INFO' (Cost=9 Card=20 Bytes=200)

10 2 TABLE ACCESS (FULL) OF 'SUPPLIER_INFO' (Cost=9 Card=20 Bytes=460)

PA152, Vlastislav Dohnal, FI MUNI, 2023 5

Monitoring Queries

◼ What is slow query?

Needs to many disk IOs

◼ high costs in execution plan (explain)

◼ E.g., query for one row (exact-match query) uses

table-scan.

 Inconvenient query plan

◼ Existing indexes are not used

◼ How to reveal?

DBMS can log “long-lasting” queries

…

PA152, Vlastislav Dohnal, FI MUNI, 2023 6

Query Tuning

◼ Local tuning = query rewrite

First approach to speed up a query

 Influences only the query

◼ Global tuning

 Index creation

Schema modification

Transaction splitting

…

Potentially harmful

PA152, Vlastislav Dohnal, FI MUNI, 2023 7

Query Rewriting

◼ Example:

Employee(ssnum, name, manager, dept,

salary, coworkers)

◼ Clustering index on ssnum

 i.e., relation is sorted by this attribute in the file

◼ Non-clustering indexes: (i) name; (ii) dept

Student(ssnum, name, degree_sought, year)

◼ Clustering index on ssnum

◼ Non-clustering index on name

Tech(dept, manager, location)

◼ Clustering index on dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 8

Query Rewriting

◼ Techniques

 Index usage

DISTINCTs elimination

(Correlated) subqueries

Use of temporaries

Use of having

Use of views

Materialized views

PA152, Vlastislav Dohnal, FI MUNI, 2023 9

Index Usage
◼ Many query optimizers will not use indexes in

the presence of :
Arithmetic expressions

WHERE salary/12 >= 4000;

WHERE inserted + 1 = current_date;

Functions
SELECT * FROM employee

WHERE SUBSTR(name, 1, 1) = ‘G’;

… WHERE to_char(inserted, 'YYYYMM') = '201704'

Numerical comparisons of fields with different
types

Multi-attribute indexes

Comparison with NULL

Index Usage
◼ = vs. like

 SELECT * FROM hotel WHERE city='city174’

 SELECT * FROM hotel WHERE city LIKE 'city174’

 SELECT * FROM hotel WHERE city like 'city174%'

PA152, Vlastislav Dohnal, FI MUNI, 2023 10

"Bitmap Heap Scan on hotel (cost=4.31..14.26 rows=5 width=59)“
" Filter: ((city)::text ~~ 'city174'::text)“
" -> Bitmap Index Scan on hotel_city (cost=0.00..4.31 rows=5 width=0)“
" Index Cond: ((city)::text = 'city174'::text)"

"Seq Scan on hotel (cost=0.00..17.25 rows=5 width=59)“
" Filter: ((city)::text ~~ 'city174%'::text)"

Index Usage (cont.)
Aggregate functions MAX(A), MIN(A)

◼ resp. ORDER BY A LIMIT 1

◼ using functions on A

◼ E.g.,
 conn_log (log_key, sim_imsi, time, car_key, pda_imei,

gsmnet_id, method, program_ver)

A. SELECT max(time AT TIME ZONE 'UTC') AS time
FROM conn_log
WHERE sim_imsi=‘23001234567890123’ AND

time>'2016-02-28 10:50:00.122 UTC' AND
method='U' AND program_ver IS NOT NULL;

B. SELECT time AT TIME ZONE 'UTC‘
FROM (SELECT max(time) AS time

FROM conn_log
WHERE sim_imsi=‘23001234567890123’ AND

time>'2016-02-28 10:50:00.122 UTC' AND
method='U' AND program_ver IS NOT NULL) AS x;

C. SELECT max(time) AT TIME ZONE 'UTC' AS time …
(cont. from A.)

PA152, Vlastislav Dohnal, FI MUNI, 2023 11

Plus a secondary index on

(sim_imsi,time)

Index Usage (cont.)

PA152, Vlastislav Dohnal, FI MUNI, 2023 12

QUERY PLAN (QUERY A.)

Aggregate (cost=19412.69..19412.70 rows=1 width=8) (actual time=36.415..36.415 rows=1 loops=1)

-> Append (cost=0.00..19385.45 rows=5448 width=8) (actual time=36.410..36.410 rows=0 loops=1)

-> Seq Scan on conn_log (cost=0.00..0.00 rows=1 width=8) (actual time=0.003..0.003 rows=0 loops=1)

Filter: ((program_ver IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone) AND (sim_imsi = '23001234567890123'::bpchar) AND

(method = 'U'::bpchar))

-> Index Scan using conn_log_imsi_time_y2016m02 on conn_log_y2016m02 (cost=0.56..8.58 rows=1 width=8) (actual time=28.464..28.464 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Bitmap Heap Scan on conn_log_y2016m03 (cost=194.11..14125.36 rows=3969 width=8) (actual time=2.586..2.586 rows=0 loops=1)

Recheck Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Bitmap Index Scan on conn_log_imsi_time_y2016m03 (cost=0.00..193.12 rows=4056 width=0) (actual time=2.584..2.584 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

-> Bitmap Heap Scan on conn_log_y2016m04 (cost=71.87..5243.35 rows=1476 width=8) (actual time=5.346..5.346 rows=0 loops=1)

Recheck Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Bitmap Index Scan on conn_log_imsi_time_y2016m04 (cost=0.00..71.50 rows=1507 width=0) (actual time=5.342..5.342 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

-> Index Scan using conn_log_imsi_time_y2016m05 on conn_log_y2016m05 (cost=0.14..8.16 rows=1 width=8) (actual time=0.009..0.009 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

Planning time: 4.159 ms

Execution time: 36.535 ms

Index Usage (cont.)

PA152, Vlastislav Dohnal, FI MUNI, 2023 13

QUERY PLAN (QUERY B.)

Subquery Scan on x (cost=5.98..6.01 rows=1 width=8) (actual time=0.162..0.163 rows=1 loops=1)

-> Result (cost=5.98..5.99 rows=1 width=0) (actual time=0.159..0.160 rows=1 loops=1)

InitPlan 1 (returns $0)

-> Limit (cost=1.87..5.98 rows=1 width=8) (actual time=0.158..0.158 rows=0 loops=1)

-> Merge Append (cost=1.87..22424.61 rows=5449 width=8) (actual time=0.156..0.156 rows=0 loops=1)

Sort Key: conn_log."time"

-> Index Scan Backward using conn_log_imsi_time on conn_log (cost=0.12..8.15 rows=1 width=8) (actual time=0.004..0.004 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m02 on conn_log_y2016m02 (cost=0.56..8.58 rows=1 width=8)

(actual time=0.069..0.069 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m03 on conn_log_y2016m03 (cost=0.56..16225.91 rows=3969 width=8)

(actual time=0.046..0.046 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m04 on conn_log_y2016m04 (cost=0.43..6033.60 rows=1477 width=8)

(actual time=0.035..0.035 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m05 on conn_log_y2016m05 (cost=0.14..8.17 rows=1 width=8)

(actual time=0.002..0.002 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

Planning time: 3.137 ms

Execution time: 0.317 ms

Index Usage (cont.)

PA152, Vlastislav Dohnal, FI MUNI, 2023 14

QUERY PLAN (QUERY C.)

Result (cost=5.98..5.99 rows=1 width=0) (actual time=0.186..0.186 rows=1 loops=1)

InitPlan 1 (returns $0)

-> Limit (cost=1.87..5.98 rows=1 width=8) (actual time=0.182..0.182 rows=0 loops=1)

-> Merge Append (cost=1.87..22424.63 rows=5450 width=8) (actual time=0.181..0.181 rows=0 loops=1)

Sort Key: conn_log."time"

-> Index Scan Backward using conn_log_imsi_time on conn_log (cost=0.12..8.15 rows=1 width=8) (actual time=0.005..0.005 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m02 on conn_log_y2016m02 (cost=0.56..8.58 rows=1 width=8)

(actual time=0.070..0.070 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m03 on conn_log_y2016m03 (cost=0.56..16225.91 rows=3969 width=8)

(actual time=0.064..0.064 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m04 on conn_log_y2016m04 (cost=0.43..6033.60 rows=1478 width=8)

(actual time=0.037..0.037 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

-> Index Scan Backward using conn_log_imsi_time_y2016m05 on conn_log_y2016m05 (cost=0.14..8.17 rows=1 width=8)

(actual time=0.003..0.003 rows=0 loops=1)

Index Cond: ((sim_imsi = '23001234567890123'::bpchar) AND ("time" IS NOT NULL) AND ("time" > '2016-02-28 11:50:00.122+01'::timestamp with time zone))

Filter: ((program_ver IS NOT NULL) AND (method = 'U'::bpchar))

Planning time: 3.094 ms

Execution time: 0.309 ms

PA152, Vlastislav Dohnal, FI MUNI, 2023 15

Eliminate unneeded DISTINCTs

◼ Query:

Find employees who work in the information

systems department. There should be no

duplicates.

SELECT DISTINCT ssnum

FROM employee

WHERE dept = ‘information systems’

◼ DISTINCT is unnecessary

ssnum is a prim. key in employee

Example of DISTINCTs
◼ Assume the relation hotel in student’s Pg

PA152, Vlastislav Dohnal, FI MUNI, 2023
16

explain select distinct id from hotel where id is not null;

"Unique (cost=0.00..33.00 rows=500 width=4)"

" -> Index Scan using hotel_pkey on hotel (cost=0.00..31.75 rows=500 width=4)"

" Filter: (id IS NOT NULL)“

explain select id from hotel where id is not null;

"Seq Scan on hotel (cost=0.00..10.00 rows=500 width=4)"

" Filter: (id IS NOT NULL)“

explain select distinct id from account where id < 1000;

"Unique (cost=0.00..62.13 rows=993 width=4)"

" -> Index Scan using account_pkey on account (cost=0.00..59.65 rows=993 width=4)"

" Index Cond: (id < 1000)“

explain select id from account where id < 1000;

"Index Scan using account_pkey on account (cost=0.00..59.65 rows=993 width=4)"

" Index Cond: (id < 1000)"

PA152, Vlastislav Dohnal, FI MUNI, 2023 17

Eliminate unneeded DISTINCTs

◼ Query:

Find social security numbers of employees in

the technical departments. There should be

no duplicates.

SELECT DISTINCT ssnum

FROM employee, tech

WHERE employee.dept = tech.dept

◼ Is DISTINCT needed?

Employee(ssnum, name, manager, dept, salary, coworkers)

Tech(dept, manager, location)

PA152, Vlastislav Dohnal, FI MUNI, 2023 18

Eliminate unneeded DISTINCTs

◼ Query:

SELECT DISTINCT ssnum

FROM employee, tech

WHERE employee.dept = tech.dept

◼ Is DISTINCT needed?

ssnum is a key in employee

dept is a key in tech

→ each employee record will join with at most

one record in tech.

→ DISTINCT is unnecessary

Employee(ssnum, name, manager, dept, salary, coworkers)

Tech(dept, manager, location)

PA152, Vlastislav Dohnal, FI MUNI, 2023 19

Eliminate unneeded DISTINCTs
◼ The relationship among DISTINCT, keys

and joins can be generalized:

Definition of “privileged“
◼ Call a table T privileged if the fields returned by the

select contain a key of T.

Definition of relationship “reaches“
◼ Let R be an unprivileged table.

◼ Suppose that R is joined on equality by its key field
to some other table S, then we say R reaches S.

Relationship “reaches“ is transitive:
◼ If R1 reaches R2 and R2 reaches R3,

then R1 reaches R3.

PA152, Vlastislav Dohnal, FI MUNI, 2023 20

Eliminate unneeded DISTINCTs

◼ Main Theorem:

There will be no duplicates among the records

returned by a selection, even in the absence

of DISTINCT

if one of the two following conditions hold:

Every table mentioned in the FROM clause is

privileged.

Every unprivileged table reaches at least one

privileged table.

PA152, Vlastislav Dohnal, FI MUNI, 2023 21

Unneeded DISTINCT (1)
◼ Query:

SELECT DISTINCT ssnum
FROM employee, tech
WHERE employee.manager = tech.manager

◼ Employee is privileged

◼ Is tech privileged?

No.

◼ Does tech reach employee?

No. Attribute manager is not a key in tech.

Employee(ssnum, name, manager, dept, salary, coworkers)

Tech(dept, manager, location)

PA152, Vlastislav Dohnal, FI MUNI, 2023 22

Unneeded DISTINCT (2)

◼ Query:

SELECT DISTINCT ssnum, tech.dept

FROM employee, tech

WHERE employee.manager = tech.manager

◼ Employee is privileged

◼ Is tech privileged?

Yes.

◼ Result does not have duplicates

Employee(ssnum, name, manager, dept, salary, coworkers)

Tech(dept, manager, location)

PA152, Vlastislav Dohnal, FI MUNI, 2023 23

Unneeded DISTINCT (3)

◼ Query:

SELECT DISTINCT student.ssnum

FROM student, employee, tech

WHERE student.name = employee.name

AND employee.dept = tech.dept;

◼ Student is privileged

◼ Employee is not privileged and does not

reach any other relation.

◼→ DISTINCT is needed.

Employee(ssnum, name, manager, dept, salary, coworkers)

Student(ssnum, name, degree_sought, year)

Tech(dept, manager, location)

Nested Queries
◼ SELECT containing another SELECT as its part

 SELECT employee_number, name

FROM employees AS X

WHERE salary > (

SELECT AVG(salary)

FROM employees

WHERE department = X.department);

 SELECT employee_number, name,

(SELECT AVG(salary) FROM employees

WHERE department = X.department) AS department_average

FROM employees AS X;

PA152, Vlastislav Dohnal, FI MUNI, 2023 24

Rewriting Nested Queries

◼ Reason:

Query optimizer may not correctly handle

some nested queries

Usually:

◼ Uncorrelated subqueries without aggregate

◼ Correlated subqueries

PA152, Vlastislav Dohnal, FI MUNI, 2023 25

PA152, Vlastislav Dohnal, FI MUNI, 2023 26

Types of Nested Queries
◼ Uncorrelated subqueries with aggregates

SELECT ssnum FROM employee
WHERE salary >

(SELECT avg(salary) FROM
employee)

◼ Uncorrelated subqueries without
aggregate
SELECT ssnum FROM employee
WHERE dept in (SELECT dept FROM
tech)

So-called “semi-join”

PA152, Vlastislav Dohnal, FI MUNI, 2023 27

Types of Nested Queries
◼ Correlated subqueries with aggregates

SELECT ssnum FROM employee e1

WHERE salary >=

(SELECT avg(e2.salary)

FROM employee e2, tech

WHERE e2.dept = e1.dept

AND e2.dept = tech.dept)

PA152, Vlastislav Dohnal, FI MUNI, 2023 28

Types of Nested Queries
◼ Correlated subqueries without aggregates

Unusual for derived tables

◼ i.e., can rewrite with join

Subqueries in where (typical)

◼ Semi-join queries may be evaluated efficiently

◼ Example of two semi-join queries:

 SELECT ssnum FROM employee

WHERE dept in

(SELECT dept FROM tech

WHERE tech.manager=employee.manager)

 SELECT ssnum FROM employee

WHERE EXISTS (SELECT 1 FROM tech WHERE

employee.manager = tech.manager)

PA152, Vlastislav Dohnal, FI MUNI, 2023 29

Rewriting Uncorrel. Subq. without Aggregates

1. Combine the arguments of the two FROM

clauses

2. Replace IN with =

3. Retain the SELECT clause

SELECT ssnum FROM employee
WHERE dept in (select dept from tech)

SELECT DISTINCT ssnum
FROM employee, tech
WHERE employee.dept = tech.dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 30

Rewriting Uncorrel. Subq. without Aggregates

◼ Potential problem with duplicates:

SELECT avg(salary) FROM employee
WHERE manager in (select manager from tech)

SELECT avg(salary) FROM employee, tech
WHERE employee.manager = tech.manager

◼ The rewritten query may include an
employee record several times

 if that employee’s manager manages several
departments.

◼ The solution is to create a temporary table

(using DISTINCT) to eliminate duplicates.

PA152, Vlastislav Dohnal, FI MUNI, 2023 31

Rewriting Correlated Subqueries

◼ Query:

Find the employees of tech departments who

earn at least the average salary in their

department.

SELECT ssnum
FROM employee e1

WHERE salary >= (SELECT avg(e2.salary)
FROM employee e2, tech
WHERE e2.dept = tech.dept

AND e2.dept = e1.dept);

PA152, Vlastislav Dohnal, FI MUNI, 2023 32

Rewriting Correlated Subqueries

CREATE TEMPORARY TABLE temp (…) ON COMMIT DROP;

INSERT INTO temp
SELECT avg(salary) as avsalary, tech.dept
FROM tech, employee
WHERE tech.dept = employee.dept
GROUP BY tech.dept;

SELECT ssnum
FROM employee, temp
WHERE salary >= avsalary

AND employee.dept = temp.dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 33

Rewriting Correlated Subqueries

SELECT ssnum
FROM employee as E,

(SELECT avg(salary) as avsalary, tech.dept
FROM tech, employee
WHERE tech.dept = employee.dept
GROUP BY tech.dept) as AVG

WHERE salary >= avsalary AND E.dept = AVG.dept

PA152, Vlastislav Dohnal, FI MUNI, 2023 34

Rewriting Correlated Subqueries

◼ Query:

Find employees of technical departments

whose number of co-workers equals the

number of employees in their department.

SELECT ssnum
FROM employee e1
WHERE coworkers = (

SELECT COUNT(e2.ssnum)
FROM employee e2, tech
WHERE e2.dept = tech.dept

AND e2.dept = e1.dept);

PA152, Vlastislav Dohnal, FI MUNI, 2023 35

Rewriting Correlated Subqueries

INSERT INTO temp
SELECT COUNT(ssnum) as numworkers,

employee.dept
FROM tech, employee
WHERE tech.dept = employee.dept
GROUP BY tech.dept;

SELECT ssnum
FROM employee, temp
WHERE coworkers = numworkers

AND employee.dept = temp.dept;

Can you spot the infamous COUNT bug?

PA152, Vlastislav Dohnal, FI MUNI, 2023 36

The Infamous COUNT Bug
◼ Example:

Helene who is not in a technical department.

 In the original query, Helene’s number of
coworkers would be compared to COUNT(Ø)=0.
◼ In case Helene has no coworkers, she would survive

the selection.

 In the transformed query, Helene’s record would
not appear.
◼ The temporary table will contain counts for tech

departments only.

◼ This is a limitation of the correlated subquery
rewriting technique when COUNT is involved.

Rewriting Correlated Subqueries

◼ Anti-joins

SELECT * FROM Tech WHERE dept NOT IN

(SELECT dept FROM employee)

◼ Problem with NULLs in employee.dept

SELECT * FROM Tech WHERE NOT EXISTS

(SELECT 1 FROM employee

WHERE employee.dept=tech.dept)

◼ Issues

Not using join algorithm

Using too many index lookups in index join

PA152, Vlastislav Dohnal, FI MUNI, 2023 37

Rewriting Correlated Subqueries

◼ Test these in student’s Pg:

PA152, Vlastislav Dohnal, FI MUNI, 2023 38

explain verbose select * from hotel
where id not in (select hotel_id from room);

"Seq Scan on xdohnal.hotel (cost=0.00..2190904.75 rows=250 width=59)“
" Output: hotel.id, hotel.name, hotel.street, …“
" Filter: (NOT (SubPlan 1))“
" SubPlan 1“
" -> Materialize (cost=0.00..7974.90 rows=315460 width=4)“
" Output: room.hotel_id“
" -> Seq Scan on xdohnal.room (cost=0.00..5164.60 rows=315460 width=4)“
" Output: room.hotel_id"

explain verbose select * from hotel
where id not in (select hotel_id from room

where hotel_id is not null);

explain verbose select * from hotel
where not exists(select 1 from room

where room.hotel_id=hotel.id);

PA152, Vlastislav Dohnal, FI MUNI, 2023 39

Query Rewriting

◼ Techniques

 Index usage

DISTINCTs elimination

(Correlated) subqueries

Use of temporaries

Use of having

Use of views

Materialized views

PA152, Vlastislav Dohnal, FI MUNI, 2023 40

Abuse of Temporaries
◼ Query:

 Find all information about department employees with
their locations who earn at least > 40000.

 INSERT INTO temp
SELECT *
FROM employee
WHERE salary >= 40000

 SELECT ssnum, location
FROM temp
WHERE temp.dept = ‘information systems’

◼ This solution will not be optimal (should have been
done in the reverse order)

 Cannot use on dept in employee

 There is no index on temp table.

PA152, Vlastislav Dohnal, FI MUNI, 2023 41

Use of Having

◼ Reason for having:

Shortens queries that filter on aggregation

results

Cannot use aggregations in WHERE clause

Use HAVING clause then

◼ Example

SELECT avg(salary), dept
FROM employee
GROUP BY dept
HAVING avg(salary) > 10 000;

PA152, Vlastislav Dohnal, FI MUNI, 2023 42

Use of Having

◼Another example

SELECT avg(salary), dept
FROM employee
GROUP BY dept
HAVING count(ssnum) > 100;

PA152, Vlastislav Dohnal, FI MUNI, 2023 43

Use of Having

◼Don’t use HAVING
when WHERE is enough.

SELECT avg(salary) as avgsalary, dept
FROM employee
WHERE dept= ‘information systems’
GROUP BY dept;

SELECT avg(salary) as avgsalary, dept
FROM employee
GROUP BY dept
HAVING dept = ‘information systems’;

PA152, Vlastislav Dohnal, FI MUNI, 2023 44

Use of Views

◼Query optimizer replaces the view

with its definition

CREATE VIEW techlocation AS
SELECT ssnum, tech.dept, location
FROM employee, tech
WHERE employee.dept = tech.dept;

SELECT location
FROM techlocation
WHERE ssnum = 43253265;

PA152, Vlastislav Dohnal, FI MUNI, 2023 45

Use of Views

◼Resulting query:

SELECT location
FROM employee, tech
WHERE employee.dept = tech.dept

AND ssnum = 43253265;

PA152, Vlastislav Dohnal, FI MUNI, 2023 46

Use of Views

◼ Example for PostgreSQL:

CREATE VIEW hotels_in_city AS

SELECT city, COUNT(*) AS count

FROM hotel

GROUP BY city;

◼ Using view

SELECT * FROM hotels_in_city

WHERE count > 8

SELECT * FROM hotels_in_city

WHERE city='city174'

PA152, Vlastislav Dohnal, FI MUNI, 2023 47

Use of Views

◼ Output of EXPLAIN

EXPLAIN SELECT * FROM hotels_in_city;

EXPLAIN SELECT * FROM hotels_in_city

WHERE city='city174’;

Use of functions:

◼ Compare:
EXPLAIN SELECT * FROM

(SELECT lower(city) as city, COUNT(*) AS cnt
FROM hotel GROUP BY city HAVING COUNT(*) > 3) x

WHERE city='city174';

EXPLAIN SELECT lower(city), cnt FROM
(SELECT city, COUNT(*) AS cnt FROM hotel
GROUP BY city HAVING COUNT(*) > 3) x

WHERE city='city174';

PA152, Vlastislav Dohnal, FI MUNI, 2023 48

Query Rewriting: Performance Impact

-10

0

10

20

30

40

50

60

70

80

T
h

ro
u

g
h

p
u

t
ra

ti
o

 (
%

)
SQLServer 2000

Oracle 8i

DB2 V7.1

100k Employees, 100k Students, 10 tech. depts

>10 000

PA152, Vlastislav Dohnal, FI MUNI, 2023 49

Aggregate Maintenance

◼ Example:

Orders of a store chain

◼ Order(ordernum, itemnum, quantity, purchaser,

vendor)

◼ Item(itemnum, description, price)

◼ Clustered indexes on itemnum of Order and Item

Queries issues every five minutes :

◼ The total dollar amount of orders from a particular

vendor.

◼ The total dollar amount of orders by a particular

store outlet (purchaser).

PA152, Vlastislav Dohnal, FI MUNI, 2023 50

Aggregate Maintenance

◼ Queries:
◼ SELECT vendor, sum(quantity*price)

FROM order, item

WHERE order.itemnum = item.itemnum

GROUP BY vendor;

◼ SELECT purchaser, sum(quantity*price)

FROM order, item

WHERE order.itemnum = item.itemnum

GROUP BY purchaser;

Query costs?

◼→ expensive

PA152, Vlastislav Dohnal, FI MUNI, 2023 51

Aggregate Maintenance

◼ Ways to speed up?

Use of views?

◼→ no impact

Use of temporaries?

◼→ helps

PA152, Vlastislav Dohnal, FI MUNI, 2023 52

Aggregate Maintenance

◼ Add temporaries

OrdersByVendor(vendor, amount)

OrdersByPurchaser(purchaser, amount)

◼ These redundant tables must be updated

When to update?

◼ After each update to order, or item?

 triggers can be used to implement this explicitly

◼ Recreate from scratch periodically

Costs of update

◼ Update overhead must be less than original costs.

PA152, Vlastislav Dohnal, FI MUNI, 2023 53

Materialized Views

◼ View data content stored in a table

Automatic updates by DBMS

◼ Typical…

Transparent expansion performed by the

optimizer based on cost
◼ It is the optimizer and not the programmer that

performs query rewriting

PA152, Vlastislav Dohnal, FI MUNI, 2023 54

Materialized Views

◼ In Oracle

CREATE MATERIALIZED VIEW OrdersByVendor
BUILD IMMEDIATE REFRESH COMPLETE
ENABLE QUERY REWRITE
AS
SELECT vendor, sum(quantity*price) AS amount
FROM order, item
WHERE order.itemnum = item.itemnum
GROUP BY vendor;

PA152, Vlastislav Dohnal, FI MUNI, 2023 55

Materialized Views

◼ Example

QUERY REWRITE

Query:

◼ SELECT vendor, sum(quantity*price) AS amount
FROM order, item
WHERE order.itemnum = item.itemnum

AND vendor=‘Apple’;

◼ OrdersByVendor view will be substituted:

 SELECT vendor, amount FROM OrdersByVendor
WHERE vendor=‘Apple’;

PA152, Vlastislav Dohnal, FI MUNI, 2023 56

Materialized Views

◼ Example

SQLServer, using triggers for maintenance

1m orders – 5 purchasers and 20 vendors

10k items

- 62.2

21900

31900

-5000

0

5000

10000

15000

20000

25000

30000

35000

insert vendor total purchaser total

gain with aggregate maintenance (%)

PA152, Vlastislav Dohnal, FI MUNI, 2023 61

Database Triggers

◼ A trigger is a stored procedure

Collection of SQL statements that executes as

a result of an event.

◼ Events:

DML – insert, update, delete

DDL – definition of tables, …

Time-related events (not common)

PA152, Vlastislav Dohnal, FI MUNI, 2023 62

Database Triggers

◼ Independent of an application/API

Executed as part of the transaction containing

the enabling event by DBMS.

◼ Not using triggers requires implementation

of constraints in app

◼ Induce overhead

May insert to other tables, …

Firing can be conditional

◼ E.g., after price update, number of ordered items

◼ Not on updates to item description, …

PA152, Vlastislav Dohnal, FI MUNI, 2023 63

Global (Schema) Changes

◼ Materialized views

 If refreshed automatically…

◼ Creating indexes

◼ Schema change

See the next slides

◼ Relation partitioning

See the next slides

◼ …

PA152, Vlastislav Dohnal, FI MUNI, 2023 64

Using Indexes
◼ Small table

 Indexes created

But not used

◼ Example

courses(id, title, credits)

SELECT COUNT(*) FROM courses;
◼ Result: 5

SELECT * FROM courses
WHERE id=‘MA102’;
◼ Table-scan is used

PA152, Vlastislav Dohnal, FI MUNI, 2023 65

Using Indexes

◼ Relation read sequentially (table scan / seq scan)

All records are checked

→ slow

◼ Creating index (index scan)

Speeds up SELECTs

Slows down INSERTs, UPDATEs, DELETEs

◼ Indexes must be updated

PA152, Vlastislav Dohnal, FI MUNI, 2023 66

Influence of Indexes on Costs

◼ False friends

More indexes, faster evaluation!

◼ In theory, valid only for SELECT queries

◼ Each index increases update costs

Necessary to update both relation and index

Exception:

◼ INSERT INTO table SELECT …

◼ DELETE FROM table WHERE …

PA152, Vlastislav Dohnal, FI MUNI, 2023 67

Influence of Indexes: Example
◼ Relation

 StarsIn(id, movieTitle, movieYear, starName)

◼ Qmovies

 SELECT movieTitle, movieYear FROM StarsIn

WHERE starName=‘name’;

◼ Qstars

 SELECT starName FROM StarsIn

WHERE movieTitle=‘title’ AND movieYear=year;

◼ Insert

 INSERT INTO StarsIn (movieTitle, movieYear,starName)

VALUES (‘title’, year, ‘name’);

PA152, Vlastislav Dohnal, FI MUNI, 2023 68

Influence of Indexes: Example
◼ Assumptions

B(StarsIn) = 10 blocks

Each actor stars in 3 movies on average

Each movie has 3 stars on average

Relation is not sorted
◼ If index is present, 3 reads of disk (3 records).

Searching in index
◼ 1 block read

 Index update
◼ 1 block read and 1 block write

 Insert to relation
◼ 1 block read and 1 block write

 i.e., not locating any free block

PA152, Vlastislav Dohnal, FI MUNI, 2023 69

Influence of Indexes: Example
◼ Costs in blocks for individual operations

 Probability of individual operations

◼ Qmovies=p1, Qstars=p2, Insert=1 - p1 - p2

Ope-

ration

No

indexes

Index
starName

Index
movieTitle, movieYear

Both

indexes

Qmovies 10 4 10 4

Qstars 10 10 4 4

Insert 2 4 4 6

Avg.

costs

2 + 8p1 + 8p2 4 + 6p2 4 + 6p1 6 - 2p1 - 2p2

◼ Scenario 1: p1 = p2 = 0.1 → no indexes

◼ Scenario 2: p1 = p2 = 0.4 → both indexes

PA152, Vlastislav Dohnal, FI MUNI, 2023 70

Optimizing Indexes

1. Define a batch of operations

 i.e., composition of load

 Analyze log files to find out query types,

updates and their frequencies

2. Suggest different indexes

 Optimizer estimates costs to evaluate the

batch

 Choose a configuration with least costs

 Create corresponding indexes

PA152, Vlastislav Dohnal, FI MUNI, 2023 71

Optimizing Indexes
◼ Point 2 in detail:

 A set of possible indexes

 Initially without any index

 Repeat
◼ Estimate costs of batch for each possible index

◼ Create the index offering the greatest decrease of costs
 Use it in next iterations

◼ Repeat until an index has been created

◼ The process can be done automatically
 MS AutoAdmin (http://research.microsoft.com/en-us/projects/autoadmin/default.aspx)

◼ MS Index Tuning Wizard (S. Chaudhuri, V. Narasayya: An efficient, Cost-Driven Index Selection Tool for Microsoft

SQL Server. Proceedings of VLDB Conference, 1997) & the best 10-year paper in 2007!

 Oracle 10g (http://www.oracle-base.com/articles/10g/AutomaticSQLTuning10g.php)

http://research.microsoft.com/en-us/projects/autoadmin/default.aspx
http://www.oracle-base.com/articles/10g/AutomaticSQLTuning10g.php

PA152, Vlastislav Dohnal, FI MUNI, 2023 72

Referential Integrity

◼ Creating foreign key may not induce an

index on the key’s attributes

◼ Example in PostgreSQL (db.fi.muni.cz)

Hotel – primary key id

Room – primary key id, foreign key hotel_id

◼ V(Room, hotel_id) = 6

◼ Queries (check EXPLAIN plans)

SELECT * FROM hotel WHERE id=2;
SELECT * FROM room WHERE hotel_id=2 AND number=1;

PA152, Vlastislav Dohnal, FI MUNI, 2023 73

Referential Integrity

◼ Query

◼ No indexes (output of EXPLAIN SELECT…)

◼ Create an index on hotel_id

Seq Scan on room (cost=0.00..8750.89 rows=105 width=22)
Filter: ((hotel_id = 2) AND (number = 1))

CREATE INDEX room_hotel_id_fkey ON room (hotel_id);

Bitmap Heap Scan on room (cost=974.87..5782.99 rows=105 width=22)
Recheck Cond: (hotel_id = 2)
Filter: (number = 1)
-> Bitmap Index Scan on room_hotel_id_fkey (cost=0.00..974.84 rows=52608 width=0)

Index Cond: (hotel_id = 2)

SELECT * FROM room WHERE hotel_id=2 AND number=1;

PA152, Vlastislav Dohnal, FI MUNI, 2023 74

Referential Integrity

◼ Foreign keys may slow down deletions

drastically

◼ Example

DELETE FROM hotel WHERE id=500;

◼ Foreign key in room references table hotel

◼ During deletion room must be checked for

existence of records hotel_id=500

◼ Recommendation

Create indexes on foreign keys

Combining Indexes
◼ Query

◼ Index only on hotel_id

◼ Index only on number

PA152, Vlastislav Dohnal, FI MUNI, 2023 75

SELECT * FROM room WHERE hotel_id=2 AND number=1;

"Bitmap Heap Scan on room (cost=960.80..5756.77 rows=103 width=22)"
" Recheck Cond: (hotel_id = 2)"
" Filter: (number = 1)"
" -> Bitmap Index Scan on room_hotel_id_fkey (cost=0.00..960.77 rows=51798 width=0)"
" Index Cond: (hotel_id = 2)"

"Bitmap Heap Scan on room (cost=13.02..1688.30 rows=103 width=22)"
" Recheck Cond: (number = 1)"
" Filter: (hotel_id = 2)"
" -> Bitmap Index Scan on room_number_idx (cost=0.00..12.99 rows=628 width=0)"
" Index Cond: (number = 1)"

Combining Indexes
◼ Query

◼ Index on hotel_id, number

◼ Two indexes on hotel_id and number

PA152, Vlastislav Dohnal, FI MUNI, 2023 76

SELECT * FROM room WHERE hotel_id=2 AND number=1;

"Bitmap Heap Scan on room (cost=5.34..366.14 rows=103 width=22)"
" Recheck Cond: ((hotel_id = 2) AND (number = 1))"
" -> Bitmap Index Scan on room_hotel_id_number_fkey (cost=0.00..5.31 rows=103 width=0)"
" Index Cond: ((hotel_id = 2) AND (number = 1))"

"Bitmap Heap Scan on room (cost=974.07..1334.86 rows=103 width=22)"
" Recheck Cond: ((number = 1) AND (hotel_id = 2))"
" -> BitmapAnd (cost=974.07..974.07 rows=103 width=0)"
" -> Bitmap Index Scan on room_number_idx (cost=0.00..12.99 rows=628 width=0)"
" Index Cond: (number = 1)"
" -> Bitmap Index Scan on room_hotel_id_fkey (cost=0.00..960.77 rows=51798 width=0)"
" Index Cond: (hotel_id = 2)"

Reversed-key Index
◼ Specialty by Oracle

◼ Increases index updates throughput

Number of insertions / updates per second

◼ Idea

Key values are reversed in index

→ sequence-generated values are scattered

◼ E.g., 12345 and 12346 → 54321 and 64321

→ diminishes collisions in concurrent index

updates

◼ CREATE INDEX idx ON tab(attr) REVERSE;
PA152, Vlastislav Dohnal, FI MUNI, 2023 77

PA152, Vlastislav Dohnal, FI MUNI, 2023 78

Global (Schema) Changes

◼ Creating indexes

◼ Schema change

See next slides

◼ Relation partitioning

See next slides

Lecture Takeaways
◼ Pure predicates vs functional indexes

Time with time zone issues

◼ Avoid unnecessary statements

◼ Do not overuse temp tables

◼ Mind impacts of new indexes

PA152, Vlastislav Dohnal, FI MUNI, 2023 81

	Snímek 1: PA152: Efficient Use of DB 9. Query Tuning
	Snímek 2: Credits
	Snímek 3: Query Tuning
	Snímek 4: Query Execution Plan
	Snímek 5: Monitoring Queries
	Snímek 6: Query Tuning
	Snímek 7: Query Rewriting
	Snímek 8: Query Rewriting
	Snímek 9: Index Usage
	Snímek 10: Index Usage
	Snímek 11: Index Usage (cont.)
	Snímek 12: Index Usage (cont.)
	Snímek 13: Index Usage (cont.)
	Snímek 14: Index Usage (cont.)
	Snímek 15: Eliminate unneeded DISTINCTs
	Snímek 16: Example of DISTINCTs
	Snímek 17: Eliminate unneeded DISTINCTs
	Snímek 18: Eliminate unneeded DISTINCTs
	Snímek 19: Eliminate unneeded DISTINCTs
	Snímek 20: Eliminate unneeded DISTINCTs
	Snímek 21: Unneeded DISTINCT (1)
	Snímek 22: Unneeded DISTINCT (2)
	Snímek 23: Unneeded DISTINCT (3)
	Snímek 24: Nested Queries
	Snímek 25: Rewriting Nested Queries
	Snímek 26: Types of Nested Queries
	Snímek 27: Types of Nested Queries
	Snímek 28: Types of Nested Queries
	Snímek 29: Rewriting Uncorrel. Subq. without Aggregates
	Snímek 30: Rewriting Uncorrel. Subq. without Aggregates
	Snímek 31: Rewriting Correlated Subqueries
	Snímek 32: Rewriting Correlated Subqueries
	Snímek 33: Rewriting Correlated Subqueries
	Snímek 34: Rewriting Correlated Subqueries
	Snímek 35: Rewriting Correlated Subqueries
	Snímek 36: The Infamous COUNT Bug
	Snímek 37: Rewriting Correlated Subqueries
	Snímek 38: Rewriting Correlated Subqueries
	Snímek 39: Query Rewriting
	Snímek 40: Abuse of Temporaries
	Snímek 41: Use of Having
	Snímek 42: Use of Having
	Snímek 43: Use of Having
	Snímek 44: Use of Views
	Snímek 45: Use of Views
	Snímek 46: Use of Views
	Snímek 47: Use of Views
	Snímek 48: Query Rewriting: Performance Impact
	Snímek 49: Aggregate Maintenance
	Snímek 50: Aggregate Maintenance
	Snímek 51: Aggregate Maintenance
	Snímek 52: Aggregate Maintenance
	Snímek 53: Materialized Views
	Snímek 54: Materialized Views
	Snímek 55: Materialized Views
	Snímek 56: Materialized Views
	Snímek 61: Database Triggers
	Snímek 62: Database Triggers
	Snímek 63: Global (Schema) Changes
	Snímek 64: Using Indexes
	Snímek 65: Using Indexes
	Snímek 66: Influence of Indexes on Costs
	Snímek 67: Influence of Indexes: Example
	Snímek 68: Influence of Indexes: Example
	Snímek 69: Influence of Indexes: Example
	Snímek 70: Optimizing Indexes
	Snímek 71: Optimizing Indexes
	Snímek 72: Referential Integrity
	Snímek 73: Referential Integrity
	Snímek 74: Referential Integrity
	Snímek 75: Combining Indexes
	Snímek 76: Combining Indexes
	Snímek 77: Reversed-key Index
	Snímek 78: Global (Schema) Changes
	Snímek 81: Lecture Takeaways

