PA152: Efficient Use of DB

10. Schema Tuning

Vlastislav Dohnal

" I
Schema

m Relation schema

relation name and a list of attributes, their types
and integrity constraints

E.g.,
m Table student(uco, name, last_name, day_of birth)
m Database schema

Schema of all relations

PA152, Vlastislav Dohnal, FI MUNI, 2022 2

"
Differences in Schema
m Same data organized differently

m Example of business requirements

Suppliers
m Address

Orders
» Part/product, quantity, supplier

PA152, Vlastislav Dohnal, FI MUNI, 2022 3

" I
Differences in Schema

m Alternatives

Schema 1

m Orderl(supplier_id, part_id, quantity,
supplier _address)

Schema 2
m Order2(supplier_id, part_id, quantity)
m Supplier(id, address)
m Differences
Schema 2 saves space.

Schema 1 may not keep address when there
IS no order.

PA152, Vlastislav Dohnal, FI MUNI, 2022 4

" I
Differences in Schema

m Performance trade-off

Frequent access to address of supplier given
an ordered part

s — schema 1 is good (no need for join)

Many new orders
= — schema 1 wastes space (address duplicates)
= — relation will be stored in more blocks

PA152, Vlastislav Dohnal, FI MUNI, 2022 5

" S
Theory of Good Schema

m Normal forms
INF, 2NF, 3NF, Boyce-Codd NF, ...

m Functional dependency
A—>B

= B functionally depends on A

m Value of attr. B is determined if we know the value
of attr. A

mLett, s be rows of a relation,
then t[A] = s[A] = t[B] = s[B]

PA152, Vlastislav Dohnal, FI MUNI, 2022 6

" S
Theory of Good Schema

m Orderl(supplier_id, part_id, quantity,
supplier_address)

m Functional dependency example:

supplier_i1d — supplier_address
supplier_id, part_id — guantity

PA152, Vlastislav Dohnal, FI MUNI, 2022 7

"
Theory of Good Schema
m K Is a primary key
K—>R

L5 RforanyLc K

m I.e., for each attribute A in R holds:
K—->AandL-5A

m Example
Supplier(id, address)
iId — address
Id Is the (primary) key

PA152, Vlastislav Dohnal, FI MUNI, 2022

" S
Theory of Good Schema

m Example

Orderl(supplier_id, part_id, quantity,
supplier_address)

supplier_id — supplier_address
supplier_id, part_id — guantity

supplier_id, part_id is the primary key

PA152, Vlastislav Dohnal, FI MUNI, 2022 9

BN
Schema Normalization

m 1NF — all attributes are atomic

m 2NF — all attributes depend on a whole
super-key

m 3NF — all attributes depend directly on a
candidate key

no transitive dependency

m Normalization
= transformation to BCNF/3NF

PA152, Vlastislav Dohnal, FI MUNI, 2022 10

BN
Schema Normalization

m A relation R i1s normalized if

every functional dependency X — A involving
attributes in R has the property that X is a
(super-)key.

m Example

Orderl(supplier_id, part_id, quantity,
supplier_address)

= supplier_id — supplier_address

m supplier_id, part_id — quantity
Is not normalized

PA152, Vlastislav Dohnal, FI MUNI, 2022 11

B
Schema Normalization

m Example

Order2(supplier_id, part_id, quantity)
= supplier_id, part_id — quantity
Supplier(id, address)
m iId — address
Schema is normalized

PA152, Vlastislav Dohnal, FI MUNI, 2022 12

" S
Schema Normalization: Example

m Bank

Customer has an account
Customer has an address

Account Is open at a branch of the bank

m |s relation normalized?
Bank(customer, account, address, branch)

PA152, Vlastislav Dohnal, FI MUNI, 2022 13

" J
Schema Normalization: Example
m Relation
Bank(customer, account, address, branch)
customer — account

customer —» address
account — branch

m Primary key Is customer
Proven by functional dependencies...

m Relation is not normalized
There Is a transitive dependency.

PA152, Vlastislav Dohnal, FI MUNI, 2022 14

" S
Schema Normalization: Example

m Relation decomposition

Bank(customer, account, address, -branch)

m customer — account
m customer — address

Account(account, branch)
m account — branch

Normalized now...

PA152, Vlastislav Dohnal, FI MUNI, 2022 15

"
Practical Schema Design

m |[dentify entities
Customer, supplier, order, ...

m Each entity has attributes
Customer has an address, phone number, ...

m There are two constraints on attributes:
An attribute cannot have attribute of its own (is
atomic).

The entity associated with an attribute must
functionally determine that attribute.
m A functional dependency for each non-key attribute.

PA152, Vlastislav Dohnal, FI MUNI, 2022 16

"
Practical Schema Design

m Each entity becomes a relation

m To these relations, add relations that
reflect relationships between entities

E.g., WorksOn(emp _id, project_id)

m |[dentify the functional dependencies
among all attributes and check that the
schema is normalized

If functional dependency AB — C, then ABC
should be part of the same relation.

PA152, Vlastislav Dohnal, FI MUNI, 2022 17

" S
Vertical Partitioning

m Example: Telephone Provider

Customer entity has id, address and
remaining credit value.
m Deps:
iId — address
Id — credit

Normalized schema design
Customer(id, address, credit)

m Or
CustAddr(id, address)
CustCredit(id, credit)

Which design is better?

PA152, Vlastislav Dohnal, FI MUNI, 2022 18

" S
Vertical Partitioning

m Which design is better, depends on the
query pattern:

The application that sends a monthly
statement.

The credit is updated or examined several
times a day.

m —> The second schema might be better

Relation CustCredit Is smaller
m Fewer blocks; may fit in main memory
m — faster table/index scan

PA152, Vlastislav Dohnal, FI MUNI, 2022 19

" S
Vertical Partitioning

m Single relation Is better than two
If attributes are gqueried together
— no need for join

m Two relations are better If

Attributes queried separately (or some much
more often)

Attributes are large (long strings, ...)
m Caveat: LOBs are stored apart of the relation.

Or some attributes are updated more often
than the others.

PA152, Vlastislav Dohnal, FI MUNI, 2022 20

"
Vertical Partitioning
m Another example

Customer has id and address (street, city, zip)

m Is this normalization convenient?
CustStreet(id, street)
CustCity(id, city, zip)

PA152, Vlastislav Dohnal, FI MUNI, 2022 21

"
Vertical Partitioning: Performance

m R(X,Y,Z) - Xinteger, Y and Z large strings
Performance depends on guery pattern

Table-scan 0,02
No partitioning: § 0015
R(X,Y,Z)
~ 0,01 4
Vert. part.: 2
R1(X,Y) 3 0,005
R2(X,2) -
O _
No Vertical No Vertical
SQLserver Zk Partitioning - Partitioning - Partitioning - Partitioning -
WindOWS 2k Query XYZ Query XYZ Query XY Query XY

PA152, Vlastislav Dohnal, FI MUNI, 2022 22

Vertical Partitioning: Performance
m R(X,Y,Z) - Xinteger, Y and Z long strings

Selection X=?, project XY or XYZ

Index Scan

Vert. part.

gives advantage if

proportion of
accessing XY is

greater than 25%.

Join requires 2
index accesses.

1000

800

400

Throughput (queries/sec)

200

0

e S

600 g—— & ——— ¢ o

—6—no vertical
partitioning

-&-vertical
partitioning

0

20 40 60 80

% of access that only concern XY

100

PA152, Vlastislav Dohnal, FI MUNI, 2022 23

" S
Vertical Antipartitioning

m Start with normalized schema

m Add attributes of a relation to the other
m Example

Stock market (brokers)

= Price trends for last 3 000 trading days

m Broker’'s decision based on last 10 day mainly
Schema

m StockDetall(stock id, issue_date, company)
m StockPrice(stock id, date, price)

PA152, Vlastislav Dohnal, FI MUNI, 2022 24

" S
Vertical Antipartitioning

m Schema
StockDetall(stock id, iIssue date, company)
StockPrice(stock_id, date, price)

m Queries for all 10-day prices are
expensive

Even though there is an index on stock_id,
date

Join Is needed for further information from
StockDetall

PA152, Vlastislav Dohnal, FI MUNI, 2022 25

"
Vertical Antipartitioning
m Replicate some data

m Schema

StockDetail(stock id, issue date, company,

price_today, price_yesterday, ...,
price_10d_ago)

StockPrice(stock id, date, price)

m Queries for all 10-day prices
1x index scan; no join

PA152, Vlastislav Dohnal, FI MUNI, 2022 26

" S
Vertical Antipartitioning

m Disadvantage

Data replication
= Not high

= Can diminish by not storing in StockPrice
— queries for average price get complicated, ...

PA152, Vlastislav Dohnal, FI MUNI, 2022 27

" S
Tuning Denormalization

m Denormalization

violating normalization

for the sake of performance!
m Good for

Attributes from different normalized relations
are often accessed together

m Bad for

Updates are frequent
m — locate “source” data to update replicas

PA152, Vlastislav Dohnal, FI MUNI, 2022 28

"
Tuning Denormalization

m Example (TPC-H)
region(r_regionkey, r name, r_comment)
nation(n_nationkey, n_name, n_regionkey, n_comment)

supplier(s_suppkey, s name, s_address,
S_nationkey, s phone, s acctbal, s comment)

item(i_orderkey, |_partkey, I _suppkey, I_linenumber,
|_quantity, i_extendedprice, I_discount, |_tax,
|_returnflag, 1_linestatus, i_shipdate, I _commitdate,
|_receiptdate, I_shipmode, i_comment)

T(item) = 600 000

T(supplier) = 500, T(nation) = 25, T(region) =5

m Query: Find items of European suppliers

PA152, Vlastislav Dohnal, FI MUNI, 2022 29

" S
Tuning Denormalization

m Denormalization of item

itemdenormalized (i_orderkey, | _partkey , i_suppkey,
|_linenumber, 1_quantity, i_extendedprice,
|_discount, 1_tax, I_returnflag, i_linestatus,
|_shipdate, I_commitdate, |_receiptdate,
|_shipmode, I comment, i_regionname);

600 000 rows

PA152, Vlastislav Dohnal, FI MUNI, 2022 30

" S
Tuning Denormalization

m Queries:

SELECT i_orderkey, i_partkey, i_suppkey, i_linenumber,
i_quantity, i_extendedprice, i_discount, i_tax,
i_returnflag, i_linestatus, i_shipdate, i_commitdate,
i_receiptdate, i_shipinstruct, i_shipmode, i_comment, r_name
FROM item, supplier, nation, region
WHERE i_suppkey = s_suppkey AND s_nationkey = n_nationkey AND
n_regionkey = r_regionkey AND r_name = 'Europe’;

SELECT i_orderkey, i_partkey, i_suppkey, i_linenumber,

i_quantity, i_extendedprice, i_discount, i_tax,

i_returnflag, i_linestatus, i_shipdate, i_commitdate,

i_receiptdate, i_shipinstruct, i_shipmode, i_comment, i_regionname
FROM itemdenormalized
WHERE i_regionname = 'Europe’;

PA152, Vlastislav Dohnal, FI MUNI, 2022 31

Tuning Denormalization: Performance

m Query:

Find items of European suppliers

Normalized:
join of 4 relations

Denormalized:
one relation
54% perf. gain

Oracle 8i EE
Windows 2k

Throughput (Queries/sec)

0,0020

0,0015

0,0010 -

0,0005 -

0,0000 -

Vi

3x 18GB disk
(10 000 rpm)

normalized //denormalized
. AR

PA152, Vlastislav Dohnal, FI MUNI, 2022 32

" S
Clustered Storage of Relations

m An alternative to denormalization

m Not always supported by DB system
m Oracle

Clustered storage of two relations

m Order(supplier_id, product_id, quantity)
m Supplier(id, address)

Storage

m Order records stored at the corresponding supplier
record

PA152, Vlastislav Dohnal, FI MUNI, 2022 33

" S
Clustered Storage of Relations

m Example
m Order(supplier_id, product_id, quantity)
m Supplier(id, address)

10, Inter-pro.cz Hodonin |12, Skolex ModFice
10, 235, 5 12, 12, 50
10, 545, 10 12, 34, 120

11, Unikov Bzenec
11, 123, 30
11,234 2
11, 648, 10
11, 956, 1

PA152, Vlastislav Dohnal, FI MUNI, 2022 34

" S
Horizontal Partitioning

m Divides table by its rows
Vertical partitioning = by columns

m Motivation
Smaller volume of data to process
Rapid deletions

m Use
Data archiving
Spatial partitioning

PA152, Vlastislav Dohnal, FI MUNI, 2022 35

" S
Horizontal Partitioning

m Automatically

Modern (commercial) DB systems
s MS SQL Server 2005 and later
= Oracle 9i and later, ...
s PostgreSQL 10

m Manually

With DBMS support
= Query optimizer
Without DBMS support

PA152, Vlastislav Dohnal, FI MUNI, 2022 36

" S
Horizontal Partitioning

m Query rewrites

Automatic partitioning
m NO rewrites necessary

Manual partitioning

= With DB support

No rewrites necessary
Table inheritance / definition of views with UNION ALL

= Without DB support

Manual query rewrite
List of tables in FROM clause must be changed

PA152, Vlastislav Dohnal, FI MUNI, 2022 37

"
Horizontal Partitioning: SQL Server

m MS SQL Server 2005 and later

Define partitioning function

s CREATE PARTITION FUNCTION

m Partitioning to intervals
Define partitioning scheme

s CREATE PARTITION SCHEME

m Where to store data (what storage partitions)
Create partitioned table

s CREATE TABLE ... ON partitioning scheme

m Stored data are automatically split into partitions
Create indexes

s CREATE INDEX

m Indexes are created on table partitions, i.e., automatically
partitioned

PA152, Vlastislav Dohnal, FI MUNI, 2022 38

"
Horizontal Partitioning: Oracle

m Oracle 91 and later

Partitioning by intervals, enums, hashing

» Composite partitioning supported
Partitions split into subpartitions

Included in syntax of CREATE TABLE

http://docs.oracle.com/cd/B19306 01/server.102/b14200/statements 7002.him#i2129707

m PostgreSQL 10 and later

Partitioning by intervals, enums, hashing

s CREATE TABLE ... (...) PARTITION BY RANGE
(--);

PA152, Vlastislav Dohnal, FI MUNI, 2022 39

http://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_7002.htm#i2129707

" JJ
Horizontal Partitioning: MariaDB
m Part of SQL syntax, applies to indexes

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE) ENGINE=MyISAM
PARTITION BY HASH(MONTH(tr_date))
PARTITIONS 6
CREATE TABLE ti ...
PARTITION BY RANGE (MONTH(tr_date)) (
PARTITION spring VALUES LESS THAN (4),
PARTITION summer VALUES LESS THAN (7),
PARTITION fall VALUES LESS THAN (10),
] Types: PARTITION winter VALUES LESS THAN MAXVALUE):

hash, range, list; also double partitioning

m Limitation on UNIQUE constraints

All columns used in the table’s partitioning
expression must be part of every unique key the

table may have. =

PA152, Vlastislav Dohnal, FI MUNI, 2022 40

"
Horizontal Partitioning: PostgreSQL

m PostgreSQL 8.2 and later
Partitioning by intervals, enums

L P”ﬂClpIe (http://wvvw.postqresql.orq/docs/current/static/ddI—partitioninq.html)

Table inheritance

m Create a base table
No data stored, no indexes, ...

» Individual partitions are inherited tables
For each table, a CHECK constraint to limit data is defined

m Create necessary indexes
Disadvantage: ref. integrity cannot be used

PA152, Vlastislav Dohnal, FI MUNI, 2022 a1

http://www.postgresql.org/docs/current/static/ddl-partitioning.html

"
Horizontal Partitioning: PostgreSQL

m Principle

Inserting records
m Inserted into base table

m Insert rules defined on the base table
Insertion to the “newest” partition only — one RULE
In general, one rule per partition is defined
Triggers can be used too...

In case views are used,
m Define INSTEAD OF triggers

PA152, Vlastislav Dohnal, FI MUNI, 2022 42

Horizontal Partitioning: PostgreSQL
m Example in xdohnal schema (db.fi.muni.cz)

Not partitioned table account
= Primary key id home city

count

= R(account) = 200 000 home_city1
QN home_city2
= V(account,home_city) =5 home_city3
home_city4
home_city5
Partitioned table account_parted

= by home_city (5 partitions)
Partitions: account_partedl .. account_parted5

PA152, Vlastislav Dohnal, FI MUNI, 2022 43

40020
40186
39836
39959
39999

"
Horizontal Partitioning: PostgreSQL
m Statistics

Table Rows Sizes Indexes
account 200000| 41984 kB| 4 408 kB
account_parted 0 0 kB 8 kB

account_parted1 40 020| 8432 kB 896 kB
account_parted2 40 186| 8 464 kB 896 kB
account_parted3 39836| 8 392kB 888 kB
account_parted4 39959 8416 kB 896 kB

account_parted5 39999| 8424 kB 896 kB
Totals: | 200000 | 42 128 kB| 4 472 kB

PA152, Vlastislav Dohnal, FI MUNI, 2022 44

" A
Horizontal Partitioning: PostgreSQL
m Query optimizer
Allow checking constraint on partitions

set constraint_exclusion=o0n;

m Queries (compare execution plans)

select * from account where id=8;
select * from account_parted where id=8;

select count(*) from account where home_city='home_city1";
select count(*) from account_parted where home_city="home_city1’;

select * from account where home_city="home_cityl' and id=8;
select * from account_parted where home_city='home_cityl' and id=8;

PA152, Vlastislav Dohnal, FI MUNI, 2022 45

" J
Transaction Tuning

m Application view on a transaction

It runs Isolated — without any concurrent
activity.

m Database view on a transaction

Atomic and consistent change of data; many
can be run concurrently.

So, correctness of result must be ensured.

PA152, Vlastislav Dohnal, FI MUNI, 2022 46

" J
Transaction Concurrency

m Two transactions are concurrent If their
executions overlap in time.

Can happen on a single thread/processor too,
e.g., one waiting for I/0O to complete.

m Concurrency control

Controls activity of transactions and make the
result appear equivalent to serial execution.

Typically achieved by mutual exclusion
m E£.9., semaphore

PA152, Vlastislav Dohnal, FI MUNI, 2022 a7

" J
Transaction Concurrency

m A semaphore on entire database (one
transaction at a time)

Good for in-memory databases.

m Locking mechanism is good for secondary
memory databases.

Read (shared) locks and write (exclusive)
ocks.

Record level and relation (table) level

PA152, Vlastislav Dohnal, FI MUNI, 2022 48

" J
Concurrency through locking

m Rules

A transaction must hold a lock on x before
accessing It.

A transaction must not acquire a lock on any
item y after releasing a lock on any item x.

m This ensures correctness

no update can be made to data read (and
locked) by someone else.

PA152, Vlastislav Dohnal, FI MUNI, 2022 49

" A
Duration of Transaction

m Duration effects on performance

More locks a transaction requests, more likely
it Is that it will wait for some other transaction

to finish.

The longer T executes, the longer some other
transaction may wait if it is blocked by T.

m [n operational DBs, shorter transactions
are preferred.
since updates are frequent

PA152, Vlastislav Dohnal, FI MUNI, 2022 50

" J
Transaction Design

m Avoid user-interaction during a transaction
m Lock only what you need

E.g., do not filter recs in an app
m Chop transaction

E.g., T accesses x and y. Any other T" accesses
at most one of x or y and nothing else. T can be
divided into two transaction (each modifying x
and y separately).

m \Weaken isolation level

Many DBMSes default to releasing read locks on
completing the read 10.

PA152, Vlastislav Dohnal, FI MUNI, 2022 51

" A
| evels of Isolation

m Serializable

m Repeatable read
Phantom reads (newly inserted recs)

m Read committed

Non-repeatable reads (a transaction has
committed an update)

m Read uncommitted

Dirty reads (non-committed recs); writes are
still atomic

m No locking

PA152, Vlastislav Dohnal, FI MUNI, 2022 52

" J
Query Tuning: Takeaways

m Five basic principles
Think globally; fix locally

Break bottlenecks by partitioning
m transactions, relations, also more HW ((-:

Start-up costs are high; running costs are low

m E.g., It IS expensive to begin a read operation on a
disk.

Render unto server what is due unto server
Be prepared for trade-offs

PA152, Vlastislav Dohnal, FI MUNI, 2022 53

	Snímek 1: PA152: Efficient Use of DB 10. Schema Tuning
	Snímek 2: Schema
	Snímek 3: Differences in Schema
	Snímek 4: Differences in Schema
	Snímek 5: Differences in Schema
	Snímek 6: Theory of Good Schema
	Snímek 7: Theory of Good Schema
	Snímek 8: Theory of Good Schema
	Snímek 9: Theory of Good Schema
	Snímek 10: Schema Normalization
	Snímek 11: Schema Normalization
	Snímek 12: Schema Normalization
	Snímek 13: Schema Normalization: Example
	Snímek 14: Schema Normalization: Example
	Snímek 15: Schema Normalization: Example
	Snímek 16: Practical Schema Design
	Snímek 17: Practical Schema Design
	Snímek 18: Vertical Partitioning
	Snímek 19: Vertical Partitioning
	Snímek 20: Vertical Partitioning
	Snímek 21: Vertical Partitioning
	Snímek 22: Vertical Partitioning: Performance
	Snímek 23: Vertical Partitioning: Performance
	Snímek 24: Vertical Antipartitioning
	Snímek 25: Vertical Antipartitioning
	Snímek 26: Vertical Antipartitioning
	Snímek 27: Vertical Antipartitioning
	Snímek 28: Tuning Denormalization
	Snímek 29: Tuning Denormalization
	Snímek 30: Tuning Denormalization
	Snímek 31: Tuning Denormalization
	Snímek 32: Tuning Denormalization: Performance
	Snímek 33: Clustered Storage of Relations
	Snímek 34: Clustered Storage of Relations
	Snímek 35: Horizontal Partitioning
	Snímek 36: Horizontal Partitioning
	Snímek 37: Horizontal Partitioning
	Snímek 38: Horizontal Partitioning: SQL Server
	Snímek 39: Horizontal Partitioning: Oracle
	Snímek 40: Horizontal Partitioning: MariaDB
	Snímek 41: Horizontal Partitioning: PostgreSQL
	Snímek 42: Horizontal Partitioning: PostgreSQL
	Snímek 43: Horizontal Partitioning: PostgreSQL
	Snímek 44: Horizontal Partitioning: PostgreSQL
	Snímek 45: Horizontal Partitioning: PostgreSQL
	Snímek 46: Transaction Tuning
	Snímek 47: Transaction Concurrency
	Snímek 48: Transaction Concurrency
	Snímek 49: Concurrency through locking
	Snímek 50: Duration of Transaction
	Snímek 51: Transaction Design
	Snímek 52: Levels of Isolation
	Snímek 53: Query Tuning: Takeaways

