

HMM Algorithms: Trellis and Viterbi

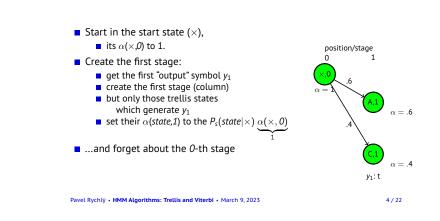
PA154 Language Modeling (4.2)

Pavel Rychlý

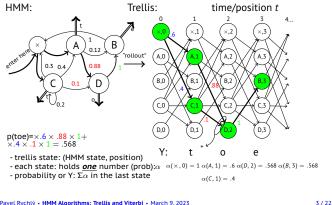
pary@fi.muni.cz

March 9, 2023

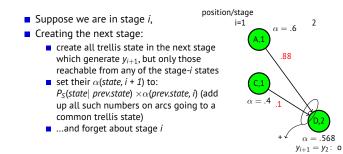
Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic


HMM: The Two Tasks

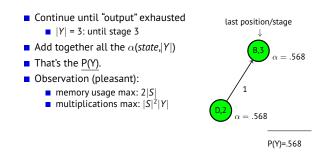
- HMM (the general case):
 - five-tuple (S, S_0 , Y, P_s , P_Y), where:
 - **S** = { $s_1, s_2, ..., s_T$ } is the set of states, S_0 is the initial,
 - $Y = \{y_1, y_2, \dots, y_v\}$ is the output alphabet,
 - $P_s(s_j|s_i)$ is the set of prob. distributions of transitions, ■ $P_Y(y_k|s_i, s_j)$ is the set of output (emission) probability
 - distributions.
- Given an HMM & an output sequence $Y = \{y_1, y_2, \dots, y_k\}$
 - (Task 1) compute the probability of Y;
 - (Task 2) compute the most likely sequence of states which has generated Y.


Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

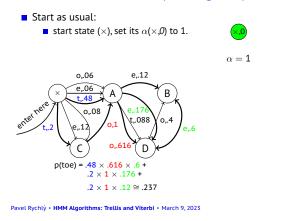
Creating the Trellis: The Start



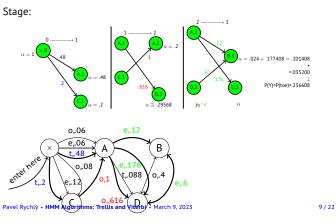
Trellis - Deterministic Output


Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

Trellis: The Next Step

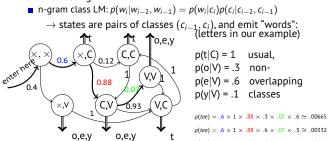

5/22

Trellis: The Last Step



Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

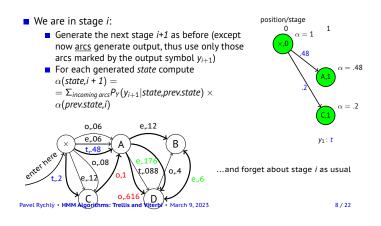
Trellis: The General Case (still, bigrams)



Trellis: The Complete Example

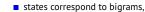
Trigrams with Classes

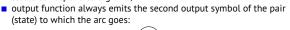
More interesting:

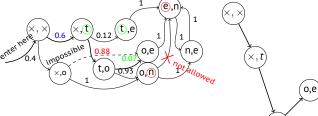

 $p(teo) = .6 \times 1 \times .88 \times .6 \times .07 \times .3 \cong .00332$ $p(tov) = .6 \times 1 \times .88 \times .3 \times .07 \times .1 \cong .00111$ $p(tty) = .6 \times 1 \times .12 \times 1 \times 1 \times .1 \simeq .0072$

Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

11/22

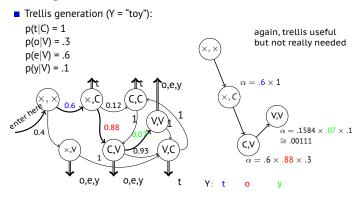

7/22


General Trellis: The Next Step



The Case of Trigrams

Like before, but:

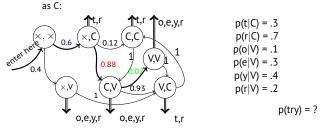

 $p(toe) = .6 \times .88 \times .07 \cong .037$

Multiple paths not possible \rightarrow trellis not really needed

10 / 22

t,o

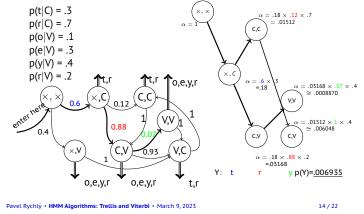
Class Trigrams: the Trellis



Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

12/22

Overlapping Classes

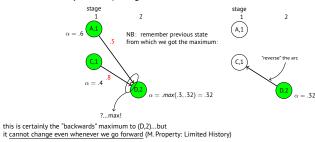

- Imagine that classes may overlap
- e.g. 'r' is sometimes vowel sometimes consonant, belongs to V as well

Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

13/22

Overlapping Classes: Trellis Example

Trellis: Remarks


- So far, we went left to right (computing α)
- Same result: going right to left (computing β)
 supposed we know where to start (finite data)
- In fact, we might start in the middle going left and right
- Important for parameter estimation (Forward-Backward Algortihm alias Baum-Welch)
- Implementation issues:
 - scaling/normalizing probabilities, to avoid too small numbers & addition problems with many transitions

Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

15/22

The Crucial Observation

Imagine the trellis build as before (but do not compute the αs yet; assume they are o.k.); stage *i*:

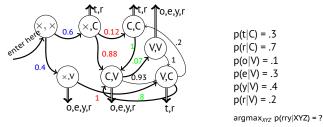
Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

17 / 22

The Viterbi Algorithm

- Solving the task of finding the most likely sequence of states which generated the observed data
- i.e., finding

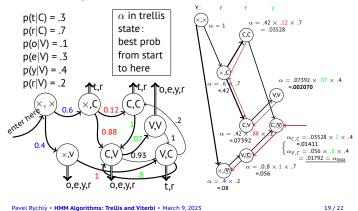
 $S_{best} = argmax_{S}P(S|Y)$ which is equal to (Y is constant and thus P(Y) is fixed): $S_{best} = argmax_{S}P(S,Y) =$


- $= argmax_{s} P(s_{0}, s_{1}, s_{2}, \dots, s_{k}, y_{1}, y_{2}, \dots, y_{k}) =$
- $= \operatorname{argmax}_{S} \prod_{i=1..k} \mathsf{P}(y_1|s_i, s_{i-1}) \mathsf{P}(s_i|s_{i-1})$

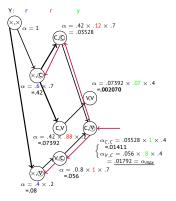
Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

16/22

Viterbi Example


'r' classification (C or V?, sequence?):

Possible state seq.: $(\times, V)(V, C)(C, V)[VCV]$, $(\times, C)(C, C)(C, V)[CCV]$, $(\times, C)(C, V)(V, V)[CVV]$


Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

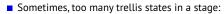
Viterbi Computation

n-best State Sequences

- Keep track of <u>n</u> best "back pointers":
 Ex.: n= 2: Two "winners":
 - VCV (best)
 CCV (2nd best)

Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

20 / 22


Tracking Back the n-best paths

- Backtracking-style algorithm:
 - Start at the end, in the best of the n states (*s*_{best})
 - Put the other n-1 best nodes/back pointer pairs on stack, except those leading from s_{best} to the same best-back state.
- Follow the back "beam" towards the start of the data, spitting out nodes on the way (backwards of course) using always only the <u>best</u> back pointer.
- At every beam split, push the diverging node/back pointer pairs onto the stack (node/beam width is sufficient!).
- When you reach the start of data, close the path, and pop the topmost node/back pointer(width) pair from the stack.
- Repeat until the stack is empty; expand the result tree if necessary.

Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

21/22

Pruning

\sqrt{A}	$\alpha = .002$	
F	$\alpha = .043$	
J B	$\alpha = .001$	criteria: (a) α < threshold (b) $\Sigma \pi$ < threshold (c) # of states > threshold (get rid of smallest α)
Х	$\alpha = .231$	
$\sqrt{2}$	$\alpha = .002$	
\sim	$\alpha = .000003$	
X	$\alpha = .000435$	
\mathbf{x}	$\alpha = .0066$	
/		

Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

22 / 22