

HMM Algorithms: Trellis and Viterbi

PA154 Language Modeling (4.2)

Pavel Rychlý

pary@fi.muni.cz

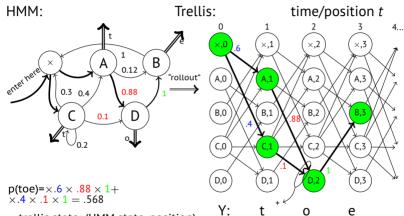
March 9, 2023

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.ihu.edu/ hajic

HMM: The Two Tasks

- HMM (the general case):
 - five-tuple (S, S_0 , Y, P_s , P_Y), where:
 - \blacksquare S = $\{s_1, s_2, \dots, s_T\}$ is the set of states, S_0 is the initial,
 - $\mathbf{Y} = \{y_1, y_2, \dots, y_v\}$ is the output alphabet,
 - $P_s(s_j|s_i)$ is the set of prob. distributions of transitions,
 - $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions.
- Given an HMM & an output sequence $Y = \{y_1, y_2, \dots, y_k\}$
 - (Task 1) compute the probability of Y;
 - (Task 2) compute the most likely sequence of states which has generated Y.

Trellis - Deterministic Output

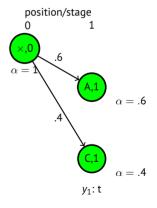


- trellis state: (HMM state, position)
- each state: holds *one* number (prob): $\alpha \alpha(\times, 0) = 1 \alpha(A, 1) = .6 \alpha(D, 2) = .568 \alpha(B, 3) = .568$
- probability or Y: $\Sigma \alpha$ in the last state

$$\alpha(C, 1) = .4$$

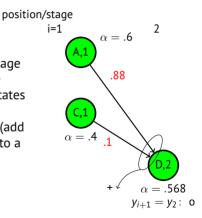
Creating the Trellis: The Start

- \blacksquare Start in the start state (\times),
 - its $\alpha(\times,0)$ to 1.
- Create the first stage:
 - \blacksquare get the first "output" symbol y_1
 - create the first stage (column)
 - but only those trellis states which generate y₁
 - set their $\alpha(state,1)$ to the $P_s(state|\times)$ $\alpha(\times,0)$
- ...and forget about the *0*-th stage



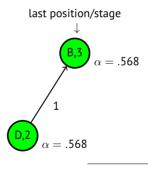
Trellis: The Next Step

- Suppose we are in stage *i*,
- Creating the next stage:
 - create all trellis state in the next stage which generate y_{i+1}, but only those reachable from any of the stage-i states
 - set their $\alpha(state, i + 1)$ to: $P_S(state | prev.state) \times \alpha(prev.state, i)$ (add up all such numbers on arcs going to a common trellis state)
 - ...and forget about stage i



Trellis: The Last Step

- Continue until "output" exhausted
 - |Y| = 3: until stage 3
- Add together all the $\alpha(state, |Y|)$
- That's the P(Y).
- Observation (pleasant):
 - memory usage max: 2|S|
 - multiplications max: $|S|^2|Y|$

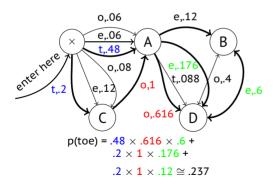


P(Y)=.568

Trellis: The General Case (still, bigrams)

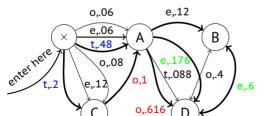
- Start as usual:
 - start state (\times), set its $\alpha(\times,0)$ to 1.

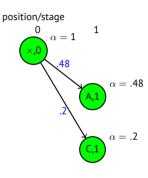
 $\alpha = 1$



General Trellis: The Next Step

- We are in stage *i*:
 - Generate the next stage i+1 as before (except now <u>arcs</u> generate output, thus use only those arcs marked by the output symbol y_{i+1})
 - For each generated *state* compute $\alpha(state, i + 1) = \sum_{incoming\ arcs} P_Y(y_{i+1}|state, prev.state) \times \alpha(prev.state, i)$





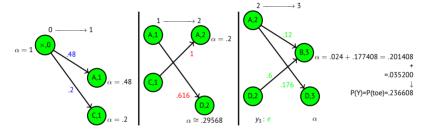
y₁: *t*

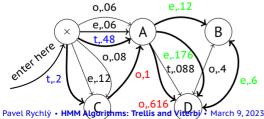
 \dots and forget about stage i as usual

Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

Trellis: The Complete Example

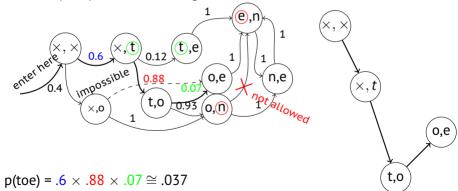
Stage:





The Case of Trigrams

- Like before, but:
 - states correspond to bigrams,
 - output function always emits the second output symbol of the pair (state) to which the arc goes:

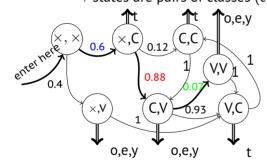


Multiple paths not possible → trellis not really needed Pavel Rychlý • HMM Algorithms: Trellis and Viterbi • March 9, 2023

Trigrams with Classes

- More interesting:
 - n-gram class LM: $p(w_i|w_{i-2},w_{i-1}) = p(w_i|c_i)p(c_i|c_{i-2},c_{i-1})$

 \rightarrow states are pairs of classes (c_{i-1}, c_i) , and emit "words": (letters in our example)

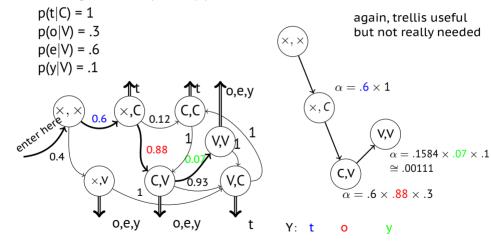


$$\begin{split} p(t|C) &= 1 & \text{usual,} \\ p(o|V) &= .3 & \text{non-} \\ p(e|V) &= .6 & \text{overlapping} \\ p(y|V) &= .1 & \text{classes} \end{split}$$

$$p(toe) = .6 \times 1 \times .88 \times .3 \times .07 \times .6 \cong .00665$$
 $p(teo) = .6 \times 1 \times .88 \times .6 \times .07 \times .3 \cong .00332$
 $p(toy) = .6 \times 1 \times .88 \times .3 \times .07 \times .1 \cong .00111$
 $p(tty) = .6 \times 1 \times .12 \times 1 \times 1 \times .1 \cong .0072$

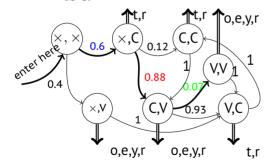
Class Trigrams: the Trellis

■ Trellis generation (Y = "toy"):



Overlapping Classes

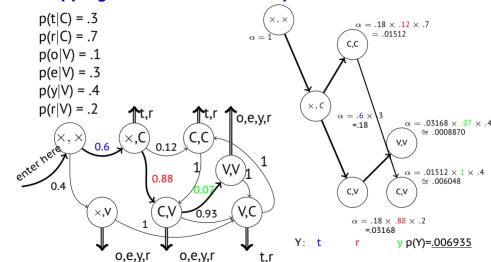
- Imagine that classes may overlap
 - e.g. 'r' is sometimes vowel sometimes consonant, belongs to V as well as C:



$$p(t|C) = .3$$

 $p(r|C) = .7$
 $p(o|V) = .1$
 $p(e|V) = .3$
 $p(y|V) = .4$
 $p(r|V) = .2$
 $p(try) = ?$

Overlapping Classes: Trellis Example



Trellis: Remarks

- \blacksquare So far, we went left to right (computing α)
- Same result: going right to left (computing β)
 - supposed we know where to start (finite data)
- In fact, we might start in the middle going left <u>and</u> right
- Important for parameter estimation (Forward-Backward Algortihm alias Baum-Welch)
- Implementation issues:
 - scaling/normalizing probabilities, to avoid too small numbers & addition problems with many transitions

The Viterbi Algorithm

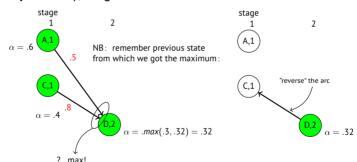
- Solving the task of finding the most likely sequence of states which generated the observed data
- i.e., finding

$$S_{best} = argmax_S P(S|Y)$$

which is equal to (Y is constant and thus P(Y) is fixed):
 $S_{best} = argmax_S P(S,Y) =$
 $= argmax_S P(s_0, s_1, s_2, ..., s_k, y_1, y_2, ..., y_k) =$
 $= argmax_S \Pi_{i=1} P(y_1|s_i, s_{i-1}) P(s_i|s_{i-1})$

The Crucial Observation

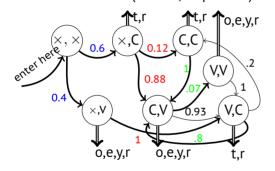
Imagine the trellis build as before (but do not compute the α s yet; assume they are o.k.); stage i:



this is certainly the "backwards" maximum to (D,2)...but it cannot change even whenever we go forward (M. Property: Limited History)

Viterbi Example

• 'r' classification (C or V?, sequence?):



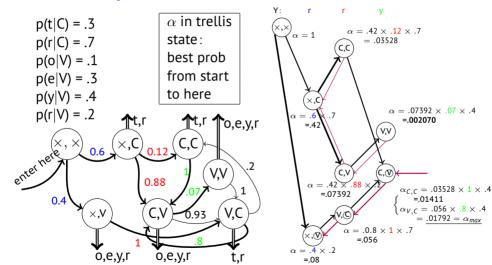
$$p(t|C) = .3$$

 $p(r|C) = .7$
 $p(o|V) = .1$
 $p(e|V) = .3$
 $p(y|V) = .4$
 $p(r|V) = .2$

 $argmax_{XYZ} p(rry|XYZ) = ?$

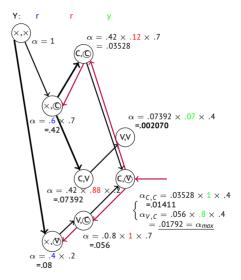
Possible state seq.: $(\times, V)(V, C)(C, V)[VCV]$, $(\times, C)(C, C)(C, V)[CCV]$, $(\times, C)(C, V)(V, V)[CVV]$

Viterbi Computation



n-best State Sequences

- Keep track of <u>n</u> best "back pointers":
- Ex.: n= 2: Two "winners":
 - VCV (best)
 - CCV (2nd best)

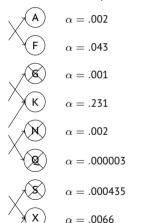


Tracking Back the n-best paths

- Backtracking-style algorithm:
 - \blacksquare Start at the end, in the best of the n states (s_{best})
 - Put the other n-1 best nodes/back pointer pairs on stack, except those leading from *s*_{best} to the same best-back state.
- Follow the back "beam" towards the start of the data, spitting out nodes on the way (backwards of course) using always only the <u>best</u> back pointer.
- At every beam split, push the diverging node/back pointer pairs onto the stack (node/beam width is sufficient!).
- When you reach the start of data, close the path, and pop the topmost node/back pointer(width) pair from the stack.
- Repeat until the stack is empty; expand the result tree if necessary.

Pruning

■ Sometimes, too many trellis states in a stage:



criteria: (a) $\alpha <$ threshold (b) $\Sigma \pi <$ threshold (c) # of states > threshold (get rid of smallest α)