

HMM Parameter Estimation: the Baum-Welch algorithm

PA154 Language Modeling (5.1)

Pavel Rychly´

pary@fi.muni.cz

March 16, 2023

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/˜hajic

HMM: The Tasks

 \blacksquare HMM(the general case):

- **Fi** five-tuple (S, S_0, Y, P_S, P_Y) , where:
	- $S = \{s_1, s_2, \ldots, s_T\}$ is the set of states, S_0 is the initial state,
	- $Y = \{y_1, y_2, \ldots, y_v\}$ is the output alphabet,
	- $P_{\rm S}(s_i|s_i)$ is the set of prob. distributions of transitions,
	- $P_Y(y_k|s_i,s_i)$ is the set of output (emission) probability distributions.

Given an HMM & an output sequence $Y = \{y_1, y_2, \ldots, y_k\}$:

- (Task 1) compute the probability of *Y*;
- \blacksquare (Task 2) compute the most likely sequence of states which has generated *Y*
- \blacksquare (Task 3) Estimating the parameters (transition/output distributions)

A variant of Expectation–Maximization

■ Idea(∼EM, for another variant see LM smoothing (lecture 2.2)):

- Start with (possibly random) estimates of P_5 and P_7 .
- Compute (fractional) "counts" of state transitions/emissions taken, from *P^S* and *P^Y* , given data *Y*
- Adjust the estimates of P_s and P_Y from these "counts" (using MLE, i.e. relative frequency as the estimate).
- **Remarks:**
	- \blacksquare many more parameters than the simple four-way smoothing
	- no proofs here; see Jelinek Chapter 9

Setting

- HMM (without P_S , P_Y)(*S*, S_0 , Y), and data $T = \{y_i \in Y\}_{i=1...|T|}$ ■ will use $T \sim |T|$
- **HMM** structure is given: (S, S_0)
- P_5 : Typically, one wants to allow "fully connected" graph
	- (i.e. no transitions forbidden \sim no transitions set to hard 0)
	- \blacksquare why? \rightarrow we better leave it on the learning phase, based on the data!
	- sometimes possible to remove some transitions ahead of time
- \blacksquare P_Y : should be restricted (if not, we will not get anywhere!)
	- restricted \sim hard 0 probabilities of $p(y|s, s')$
	- \blacksquare "Dictionary": states \leftrightarrow words, "m:n" mapping on $S \times Y$ (in general)

Initialization

- \blacksquare For computing the initial expected "counts"
- **Important part**
	- EM guaranteed to find a *local* maximum only (albeit a good one in most cases)
- P_Y initialization more important
	- \blacksquare fortunately, often easy to determine
		- together with dictionary \leftrightarrow vocabulary mapping, get counts, then MLE
- **■** P ^{*S*} initialization less important
	- e.g. uniform distribution for each $p(.|s)$

Data structures

■ Will need storage for:

- \blacksquare The predetermined structure of the HMM (unless fully connected \rightarrow need not to keep it!)
- The parameters to be estimated (P_5, P_7)
- The expected counts (same size as (P_S, P_Y))
- The training data $T = \{y_i \in Y\}_{i=1...T}$
- The trellis (if f.c.): \blacksquare

The Algorithm Part I

- 1. Initialize P_S , P_V
- 2. Compute "forward" probabilities:
	- **F** follow the procedure for trellis (summing), compute $\alpha(s, i)$ everywhere
	- use the current values of P_S , $P_Y(p(s'|s), p(y|s, s'))$:

$$
\alpha(\mathsf{s}',i)=\sum_{\mathsf{s}\rightarrow\mathsf{s}},\alpha(\mathsf{s},i-1)\times p(\mathsf{s}'|\mathsf{s})\times p(\mathsf{y}_i|\mathsf{s},\mathsf{s}')
$$

- \blacksquare NB: do not throw away the previous stage!
- 3. Compute "backward" probabilities
	- **start at all nodes of the last stage, proceed backwards,** $\beta(s, i)$
	- i.e., probability of the "tail" of data from stage i to the end of data $\beta(\mathsf{s}',i) = \sum_{\mathsf{s}' \leftarrow \mathsf{s}} \beta(\mathsf{s},i+1) \times p(\mathsf{s}|\mathsf{s}') \times p(\mathsf{y}_{i+1}|\mathsf{s}',\mathsf{s})$
	- also, keep the $\beta(s, i)$ at all trellis states

The Algorithm Part II

4. Collect counts:

 \blacksquare for each output/transition pair compute

 $c(y,s,s') = \sum_{i=0, k-1, y=y_{i+1}} \sum_{y=y_{i+1}}^{\infty} \alpha(s,i) \underbrace{p(s'|s) p(y_{i+1}|s,s')}_{\text{tris transition prob}} \beta(s',i+1)$ this transition prob one pass through data, only stop at (output) y × output prob $c(s, s') = \sum_{y \in Y} c(y, s, s')$ (assuming all observed y_i in *Y*) $c(s) = \sum_{s' \in S} c(s, s')$

5. Reestimate: $p'(s'|s) = c(s, s') / c(s)$ $p'(y|s, s') = c(y, s, s') / c(s, s')$

6. Repeat 2-5 until desired convergence limit is reached

Baum-Welch: Tips & Tricks

Normalization badly needed

long training data \rightarrow extremely small probabilities

Normalize α, β using the same norm. factor:

 $N(i) = \sum_{s \in S} \alpha(s, i)$ as follows:

- \blacksquare compute $\alpha(s, i)$ as usual (Step 2 of the algorithm), computing the sum *N*(*i*) at the given stage *i* as you go.
- at the end of each stage, recompute all αs (for each state s): $\alpha^*(s, i) = \alpha(s, i)/N(i)$
- use the same *N(i)* for β s at the end of each backward (Step 3) stage:

 $\beta^*(s, i) = \beta(s, i)/N(i)$

Example

- Task: pronunciation of "the"
- Solution: build HMM, fully connected, 4 states:
	- \blacksquare S short article, L long article, C,V word starting w/consonant, vowel
	- thus, only "the" is ambiguous (a, an, the not members of C.V)
- Output form states only $(p(w|s, s') = p(w|s'))$

Example: Initialization

■ Output probabilities:

- $p_{init}(w|c) = c(c, w)/c(c)$; where $c(S, the) = c(L, the) = c(the)/2$ (other than that, everything is deterministic)
- \blacksquare Transition probabilities:

 $\rho_{\mathit{init}}(c'|c) = 1/4(\mathit{uniform})$

- Don't forget:
	- about the space needed
	- initialize $\alpha(X, 0) = 1$ (X : the never-occuring front buffer st.)
	- \blacksquare initialize $\beta(s, T) = 1$ for all s (except for $s = X$)

Fill in alpha, beta

 \blacksquare Left to right, alpha: $\alpha(\textbf{s}',i)=\sum_{\textbf{s}\to \textbf{s}'}\alpha(\textbf{s},i-1)\times p(\textbf{s}'|\textbf{s})\times p(w_i|\textbf{s}')\text{, where } \textbf{s}'\text{ is the }$ output from states

Remember normalization $(N(i))$.

Similary, beta (on the way back from the end).

Counts & Reestimation

- One pass through data
- At each position *i*, go through all pairs (*sⁱ* ,*si*+1)
- Increment appropriate counters by frac. counts (Step 4):

$$
= inc(y_{i+1}, s_i, s_{i+1}) = a(s_i, i) p(s_{i+1}|s_i) p(y_{i+1}|s_{i+1}) b(s_{i+1, i+1})
$$

 $c(y, s_i, s_{i+1})+=$ inc (for y at pos i+1)

$$
\blacksquare \ \ c(s_i,s_{i+1}) += \mathsf{inc} \ (\mathsf{always})
$$

c(s ^{*i*})+ = inc (always) $inc(biq, L, C) = \alpha(L, 7)p(C|L)p(biq, C)\beta(V, 8)$ inc(big,S,C)=α(*S*, 7)*p*(*C*|*S*)*p*(big,*C*)β(*V*, 8)

Reestimate $p(s'|s)$, $p(y|s)$

and hope for increase in $p(C|S)$ and $p(V|L)$...!!

HMM: Final Remarks

Parameter "tying"

- keep certain parameters same (\sim just one "counter" for all of them)
- \blacksquare any combination in principle possible
- **ex.:** smoothing (just one set of lambdas)
- Real Numbers Output
	- Y of infinite size (*R*, *R n*)
		- parametric (typically: few) distribution needed (e.g., "Gaussian")
- \blacksquare "Empty" transitions: do not generate output
	- ∼ vertical areas in trellis; do not use in "counting"