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Motivation: Large Scale Data Processing

Many tasks: Process lots of data to produce other data
Want to use hundreds or thousands of CPUs

... but this needs to be easy

MapReduce provides:
Automatic parallelization and distribution
Fault-tolerance
I/O scheduling
Status and monitoring
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Programming model

Input & Output: each a set of key/value pairs Programmer specifies
two functions:

map ( in key , i n v a l u e ) −> l i s t ( out key , i n te rmed ia te va lue )

Processes input key/value pair
Produces set of intermediate pairs

reduce ( out key , l i s t ( i n te rmed ia te va lue ) ) −> l i s t ( ou t va lue )

Combines all intermediate values for a particular key
Produces a set of merged output values (usually just one)

Inspired by similar primitives in LISP and other languages
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Example: Count word occurrences

map( S t r i n g input key , S t r i n g i n p u t v a l u e ) :
/ / i npu t key : document name
/ / i n p u t v a l u e : document contents
for each word w i n i n p u t v a l u e :

Emi t In te rmed ia te (w, ” 1 ” ) ;

reduce ( S t r i n g output key , I t e r a t o r i n te rmed ia te va lues ) :
/ / ou tpu t key : a word
/ / ou tpu t va lues : a l i s t o f counts
i n t r e s u l t = 0 ;
for each v i n in te rmed ia te va lues :

r e s u l t += ParseIn t ( v ) ;
Emit ( AsStr ing ( r e s u l t ) ) ;

Pseudocode: See appendix in paper for real code
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Model is Widely Applicable
MapReduce Programs In Google Source Tree

Example uses:

distributed grep distributed sort web link-graph reversal
term-vector per host web access log stats inverted index construction
document clustering machine learning statistical machine translation
... ... ...
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Implementation Overview

Typical cluster:
100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
Limited bisection bandwidth
Storage is on local IDE disks
GFS: distributed file system manages data (SOSP’03)
Job scheduling system: jobs made up of tasks, scheduler
assigns tasks to machines

Implementation is a C++ library linked into user programs
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Execution
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Parallel Execution

Pavel Rychlý · MapReduce · March 30, 2023 8 / 32

Task Granularity And Pipelining
Fine granularity tasks: many more map tasks than machines

Minimizes time for fault recovery
Can pipeline shuffling with map execution
Better dynamic load balancing

Often use 200,000 map/5000 reduce tasks/ 2000 machines
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Pavel Rychlý · MapReduce · March 30, 2023 13 / 32 Pavel Rychlý · MapReduce · March 30, 2023 14 / 32
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Pavel Rychlý · MapReduce · March 30, 2023 19 / 32 Pavel Rychlý · MapReduce · March 30, 2023 20 / 32

Fault tolerance: Handled via re-execution

On worker failure:
Detect failure via periodic heartbeats
Re-execute completed and in-progress map tasks
Re-execute in progress reduce tasks
Task completion committed through master

Master failure:
Could handle, but don’t yet (master failure unlikely)

Robust: lost 1600 of 1800 machines once, but finished fine

Semantics in presence of failures: see paper
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Refinement: Redundant Execution

Slow workers significantly lengthen completion time
Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Solution: Near end of phase, spawn backup copies of tasks
Whichever one finishes first ”wins”

Effect: Dramatically shortens job completion time
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Refinement: Locality Optimization

Master scheduling policy:
Asks GFS for locations of replicas of input file blocks
Map tasks typically split into 64MB (== GFS block size)
Map tasks scheduled so GFS input block replica are on same
machine or same rack

Effect: Thousands of machines read input at local disk speed
Without this, rack switches limit read rate
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Refinement: Skipping Bad Records

Map/Reduce functions sometimes fail for particular inputs
Best solution is to debug & fix, but not always possible
On seg fault:

Send UDP packet to master from signal handler
Include sequence number of record being processed

If master sees two failures for same record:
Next worker is told to skip the record

Effect: Can work around bugs in third-party libraries
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Other Refinements (see paper)

Sorting guarantees within each reduce partition
Compression of intermediate data
Combiner: useful for saving network bandwidth
Local execution for debugging/testing
User-defined counters
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Performance

Tests run on cluster of 1800 machines:
4 GB of memory
Dual-processor 2 GHz Xeons with Hyperthreading
Dual 160 GB IDE disks
Gigabit Ethernet per machine
Bisection bandwidth approximately 100 Gbps

Two benchmarks:

MR Grep Scan 1010 100-byte records to extract records matching
a rare pattern (92K matching records)

MR Sort Sort 1010 100-byte records (modeled after TeraSort benchmark)
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MR Grep

Locality optimization helps:
1800 machines read 1 TB of data at peak of ≈ 31 GB/s
Without this, rack switches would limit to 10 GB/s

Startup overhead is significant for short jobs
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MR Sort
Backup tasks reduce job completion time significantly
System deals well with failures
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Experience: Rewrite of Production Indexing
System

Rewrote Google’s production indexing system using MapReduce

Set of 10, 14, 17, 21, 24 MapReduce operations
New code is simpler, easier to understand
MapReduce takes care of failures, slow machines
Easy to make indexing faster by adding more machines
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Usage: MapReduce jobs run in August 2004

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days

Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB

Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351
Average reduce tasks per job 55

Unique map implementations 395
Unique reduce implementations 269
Unique map/reduce combinations 426
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Related Work

Programming model inspired by functional language primitives
Partitioning/shuffling similar to many large-scale sorting
systems

NOW-Sort [’97]
Re-execution for fault tolerance

BAD-FS [’04] and TACC [’97]
Locality optimization has parallels with Active Disks/Diamond
work

Active Disks [’01], Diamond [’04]
Backup tasks similar to Eager Scheduling in Charlotte system

Charlotte [’96]
Dynamic load balancing solves similar problem as River’s
distributed queues

River [’99]
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Conclusions

MapReduce has proven to be a useful abstraction
Greatly simplifies large-scale computations at Google
Fun to use: focus on problem, let library deal w/ messy details

Thanks to Josh Levenberg, who has made many significant
improvements and to everyone else at Google who has used and helped
to improve MapReduce.
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