FI

Evaluation of Word Embeddings

PA154 Language Modeling (8.2)

Pavel Rychlý

Natural Language Processing Centre Faculty of Informatics, Masaryk University

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

April 4, 2023

Word Embeddings

- many hyperparameters, diffrent training data
- different results even for same parameters and data
- what is better?
- how to compare quality of vectors?
- evaluate a direct outcome: word similarities

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

Sketch Engine Thesaurus

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

Thesaurus evaluation

Gold standard

- very low inter-annotater agreement
- there are many directions of similarities
- existing gold standards not usable

Thesaurus evaluation Gold standard

Source	Most similar words to queen
serelex	king, brooklyn, bowie, prime minister, mary, bronx,
	rolling stone, elton john, royal family, princess
Thesaurs.com	monarch, ruler, consort, empress, regent, female ruler,
	female sovereign, queen consort, queen dowager
SkE on BNC	king, prince, charles, elizabeth, edward, mary, gentle-
	man, lady, husband, sister, mother, princess, father
SkE on enTenTen08	princess, prince, king, emperor, monarch, lord, lady, sis-
	ter, lover, ruler, goddess, hero, mistress, warrior
word2vec on BNC	princess, prince, Princess, king, Diana, Queen, duke,
	palace, Buckingham, duchess, lady-in-waiting, Prince
powerthesaurus.org	empress, sovereign, monarch, ruler, czarina, queen con-
	sort, king, queen regnant, princess, rani, queen regent

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

4/17

Analogy queries

- evaluation of word embeddings (word2vec)
- "*a* is to *a*^{*} as *b* is to *b*^{*}", where *b*^{*} is hidden

3/17

Analogy gueries

- evaluation of word embeddings (word2vec)
- **a** is to a^* as b is to b^* , where b^* is hidden
- syntactic: good is to best as smart is to smarter
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans:

Analogy gueries

Analogy queries

Alternatives to cosine similarity

$$\square cos(x,y) = \frac{v_x \cdot v_y}{\sqrt{v_x \cdot v_x} \sqrt{v_y \cdot v_y}}$$

arg max_{$b^* \in V$} cos($b^*, a^* - a + b$) =

Analogy queries Alternatives to cosine similarity

■
$$cos(x, y) = \frac{v_x \cdot v_y}{\sqrt{v_x \cdot v_x} \sqrt{v_y \cdot v_y}}$$

■ $arg \max_{b^* \in V} cos(b^*, a^* - a + b) =$
 $arg \max_{b^* \in V} (cos(b^*, a^*) - cos(b^*, a) + cos(b^*, b))$
(CosAdd)

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

7/17

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

Analogy queries Alternatives to cosine similarity

- $\Box cos(x,y) = \frac{v_x \cdot v_y}{\sqrt{v_x \cdot v_x} \sqrt{v_y \cdot v_y}}$
- arg max_{$b^* \in V$} $cos(b^*, a^* a + b) =$ arg max_{$b^* \in V$} $(cos(b^*, a^*) - cos(b^*, a) + cos(b^*, b))$ (CosAdd)
- arg max_{$b^* \in V$} $\frac{cos(b^*,a^*)cos(b^*,b)}{cos(b^*,a)}$ (CosMul)
- SkE uses Jaccard similarity instead of cosine similarity: JacAdd, JacMul

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

7/17

Thesaurus Evaluation

Results on capital-common-countries question set (462 queries)

(102 queries)						
	BNC		SkELL			
	count	percent	count	percent		
CosAdd	58	12.6	183	39.6		
CosMul	99	21.4	203	43.9		
JacAdd	32	6.9	319	69.0		
JacMul	57	12.3	443	95.9		
word2vec	159	34.4	366	79.2		

Results depends not only on data but also on the evaluation method.

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

8/17

7/17

Results on other corpora

More English corpora, using JacMul

Corpus	size (M)	correct
BNC	112	57
SkELL	1,520	443
araneum maius (LCL sketches)	1,200	224
enclueweb16	16,398	448
ententen 08	3,268	0
ententen 12	12,968	0
ententen 13	22,878	439

Problems of analogy queries

- Pair of words does not define an exact relation
- Berlin Germany: capital, biggest city
- in what time?
- Canberra

Problems of analogy queries

Problems of analogy queries

Problems of original data set

- English only English only needs extra knowledge needs extra knowledge Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart Alpina, Smart (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela Merkel, Capri, pineapple) Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023 Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023 Problems of original data set Problems of original data set English only English only needs extra knowledge needs extra knowledge Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart Alpina, Smart (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela Merkel, Capri, pineapple) Merkel, Capri, pineapple) Peter, Andrew, James, John, Thaddaeus, Bartholomew, Thomas, Peter, Andrew, James, John, Thaddaeus, Bartholomew, Thomas, Noah, Matthew Noah, Matthew January, March, May, July, Wednesday, September, November, February, June 13/17 Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023 Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023 Problems of original data set
 - English only
 - needs extra knowledge
 - Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart
 - (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela Merkel, Capri, pineapple)
 - Peter, Andrew, James, John, Thaddaeus, Bartholomew, Thomas, Noah, Matthew
 - January, March, May, July, Wednesday, September, November, February, June
 - tiger, dog, lion, cougar, jaguar, leopard, cheetah, wildcat, lynx
 - mostly proper names (7 out of 8)

New data set: HAMOD

Problems of original data set

- 7 languages: Czech, Slovak, English, German, French, Italian, Estonian
- 128 clusters (8 words + 8 outliers)
- https://github.com/lexicalcomputing/hamod

New data set - example

Colors		Electronics		
Czech	English	Czech	English	
červená	red	televize	television	
modrá	blue	reproduktor	speaker	
zelená	green	notebook	laptop	
žlutá	yellow	tablet	tablet	
fialová	purple	mp3 přehrávač	mp3 player	
růžová	pink	mobil	phone	
oranžová	orange	rádio	radio	
hnědá	brown	playstation	playstation	
dřevěná	wooden	blok	notebook	
skleněná	glass	sešit	workbook	
temná	dark	kniha	book	
zářivá	bright	CD	CD	
pruhovaný	striped	energie	energy	
puntíkovaný	dotted	světlo	light	
smutná	sad	papír	paper	
nízká	low	ráno	morning	

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

15/17

Evaluation

9 clusters only, 72 queries

	OOP	Accuracy
Czes2	92.2	70.8
czTenTen12	93.4	79.2
csTenTen17	94.3	81.9
czTenTen12 (fasttext)	97.7	87.5
Czech Common Crawl	98.1	95.8

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

Construction

- each human evaluator goes through all the sets (only once) for their native language
- 1 exercise: 8 inliers + 1 outlier (randomly chosen from the list of outliers for each set)
- in each turn, the evaluator selects the outlier
- simple web interface for the exercise
- Inter-Annotator Agreement: Estonian 0.93, Czech 0.97

Pavel Rychlý • Evaluation of Word Embeddings • April 4, 2023

17/17