Clustering

Advanced Search Techniques for Large Scale Data Analytics

Pavel Zezula and Jan Sedmidubsky

Masaryk University

http://disa.fi.muni.cz

High Dimensional Data

 Given a cloud of data points we want to understand its structure

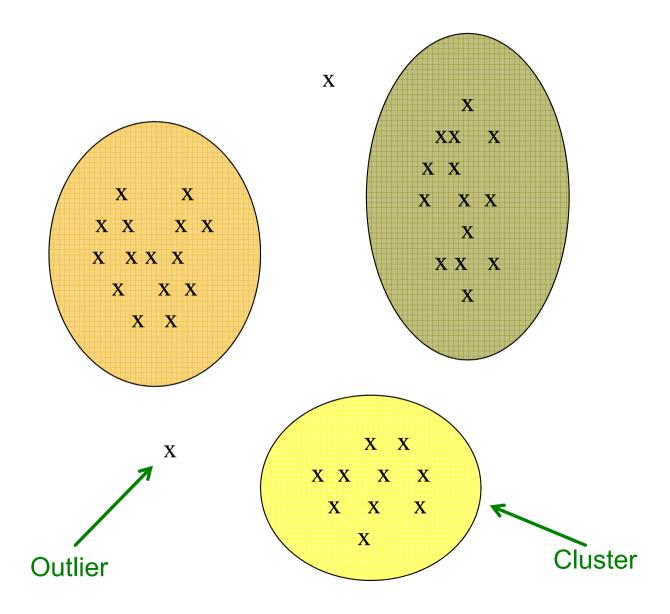
The Problem of Clustering

- Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that
 - Members of a cluster are close/similar to each other
 - Members of different clusters are dissimilar

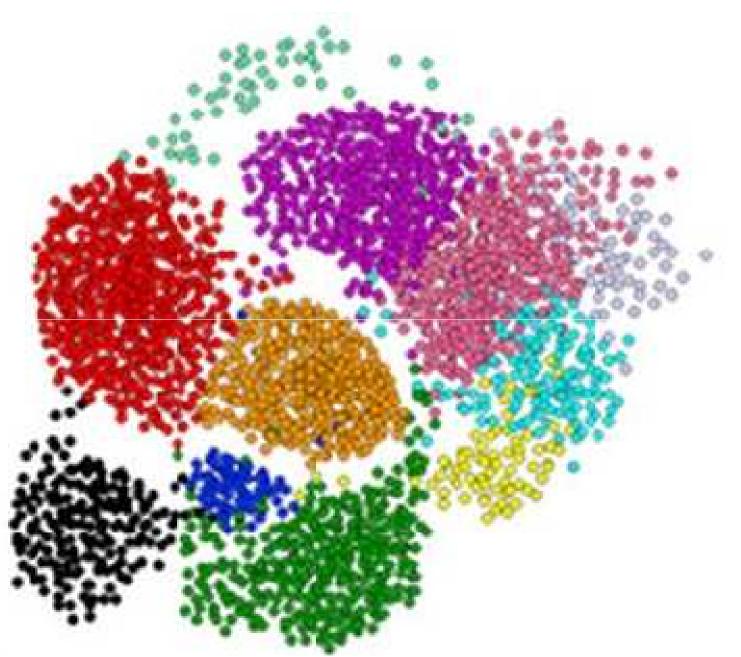
Usually:

- Points are in a high-dimensional space
- Similarity is defined using a distance measure
 - Euclidean, Cosine, Jaccard, edit distance, ...

Example: Clusters & Outliers



Clustering is a hard problem!



Why is it hard?

- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
- And in most cases, looks are not deceiving
- Many applications involve not 2, but 10 or 10,000 dimensions
- High-dimensional spaces look different:
 Almost all pairs of points are at about the same distance

Clustering Problem: Music CDs

- Intuitively: Music divides into categories, and customers prefer a few categories
 - But what are categories really?
- Represent a CD by a set of customers who bought it:
 - Similar CDs have similar sets of customers, and vice-versa

Clustering Problem: Music CDs

Space of all CDs:

- Think of a space with one dim. for each customer
 - Values in a dimension may be 0 or 1 only
 - A CD is a point in this space $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the i th customer bought the CD

Task: Find clusters of similar CDs

For Amazon, the dimension is tens of millions

Clustering Problem: Documents

Finding topics:

- Represent a document by a vector $(x_1, x_2,..., x_k)$, where $x_i = 1$ iff the i th word (in some order) appears in the document
 - It actually doesn't matter if k is infinite; i.e., we don't limit the set of words
- Documents with similar sets of words may be about the same topic

Cosine, Jaccard, and Euclidean

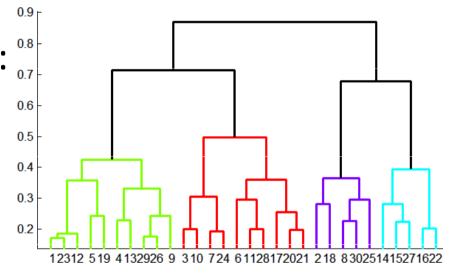
- As with CDs we have a choice when we think of documents as sets of words or shingles:
 - Sets as vectors: Measure similarity by the cosine distance
 - Sets as sets: Measure similarity by the Jaccard distance
 - Sets as points: Measure similarity by Euclidean distance

Overview: Methods of Clustering

Hierarchical:

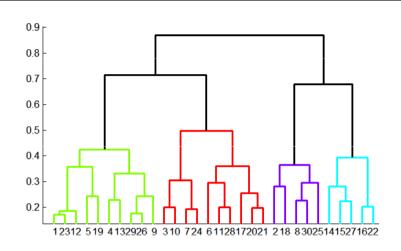
- Agglomerative (bottom up):
 - Initially, each point is a cluster
 - Repeatedly combine the two "nearest" clusters into one
- Divisive (top down):
 - Start with one cluster and recursively split it

- Maintain a set of clusters
- Points belong to "nearest" cluster



Hierarchical Clustering

Key operation:Repeatedly combinetwo nearest clusters

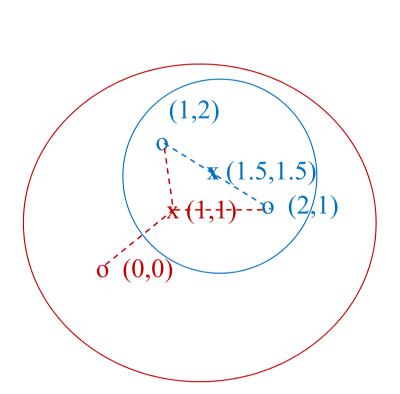


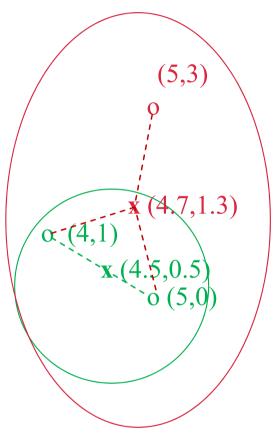
- Three important questions:
 - 1) How do you represent a cluster of more than one point?
 - 2) How do you determine the "nearness" of clusters?
 - 3) When to stop combining clusters?

Hierarchical Clustering

- Key operation: Repeatedly combine two nearest clusters
- (1) How to represent a cluster of many points?
 - Key problem: As you merge clusters, how do you represent the "location" of each cluster, to tell which pair of clusters is closest?
- Euclidean case: each cluster has a centroid = average of its (data)points
- (2) How to determine "nearness" of clusters?
 - Measure cluster distances by distances of centroids

Example: Hierarchical clustering

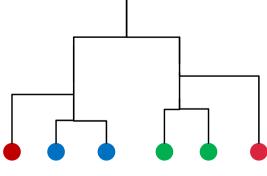




Data:

o ... data point

x ... centroid



Dendrogram

And in the Non-Euclidean Case?

What about the Non-Euclidean case?

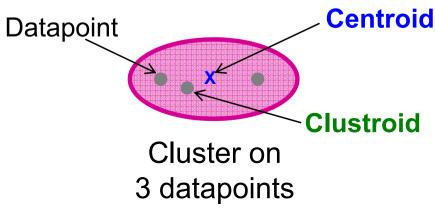
- The only "locations" we can talk about are the points themselves
 - i.e., there is no "average" of two points

Approach 1:

- (1) How to represent a cluster of many points?
 clustroid = (data)point "closest" to other points
- (2) How do you determine the "nearness" of clusters? Treat clustroid as if it were centroid, when computing inter-cluster distances

"Closest" Point?

- (1) How to represent a cluster of many points?
 clustroid = point "closest" to other points
- Possible meanings of "closest":
 - Smallest maximum distance to other points
 - Smallest average distance to other points
 - Smallest sum of squares of distances to other points
 - For distance metric **d** clustroid **c** of cluster **C** is: $\min_{c} \sum_{r \in C} d(x,c)^2$



Centroid is the avg. of all (data)points in the cluster. This means centroid is an "artificial" point.

Clustroid is an existing (data)point that is "closest" to all other points in

Defining "Nearness" of Clusters

- (2) How do you determine the "nearness" of clusters?
 - Approach 2: Intercluster distance = minimum of the distances between any two points, one from each cluster
 - Approach 3:
 Pick a notion of "cohesion" of clusters, e.g., maximum distance from the clustroid
 - Merge clusters whose union is most cohesive

Cohesion

- Approach 3.1: Use the diameter of the merged cluster = maximum distance between points in the cluster
- Approach 3.2: Use the average distance between points in the cluster
- Approach 3.3: Use a density-based approach
 - Take the diameter or avg. distance, e.g., and divide by the number of points in the cluster

Implementation

- Naïve implementation of hierarchical clustering:
 - At each step, compute pairwise distances between all pairs of clusters, then merge
 - O(N³)
- Careful implementation using priority queue can reduce time to O(N² log N)
 - Still too expensive for really big datasets that do not fit in memory

k-means clustering

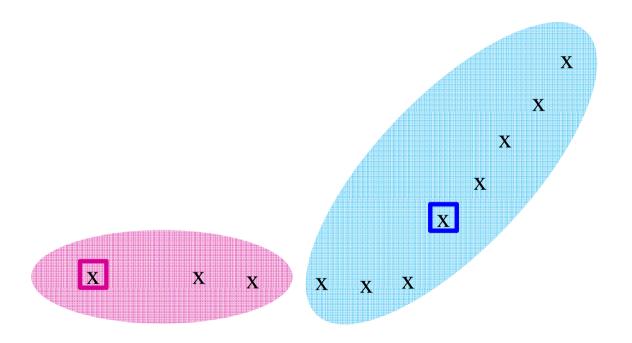
k-means Algorithm(s)

- Assumes Euclidean space/distance
- Start by picking k, the number of clusters
- Initialize clusters by picking one point per cluster
 - Example: Pick one point at random, then k-1 other points, each as far away as possible from the previous points

Populating Clusters

- 1) For each point, place it in the cluster whose current centroid it is nearest
- **2)** After all points are assigned, update the locations of centroids of the *k* clusters
- 3) Reassign all points to their closest centroid
 - Sometimes moves points between clusters
- Repeat 2 and 3 until convergence
 - Convergence: Points don't move between clusters and centroids stabilize

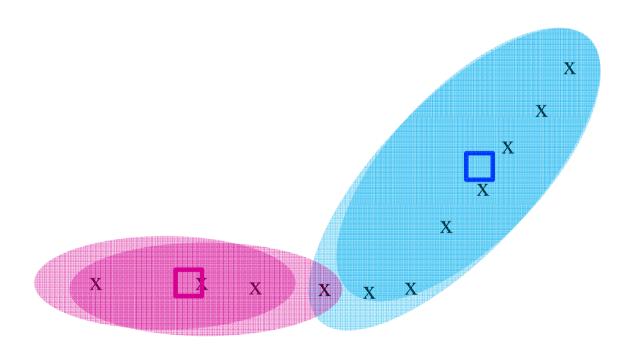
Example: Assigning Clusters



x ... data point ... centroid

Clusters after round 1

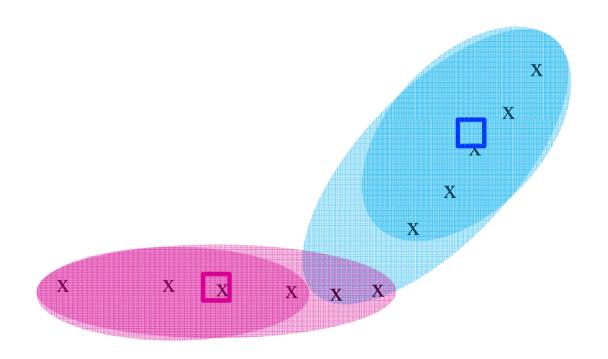
Example: Assigning Clusters



x ... data point ... centroid

Clusters after round 2

Example: Assigning Clusters



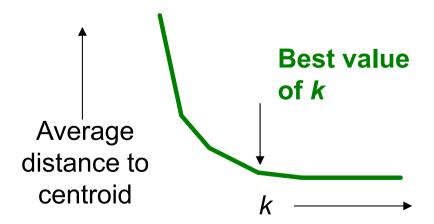
x ... data point ... centroid

Clusters at the end

Getting the k right

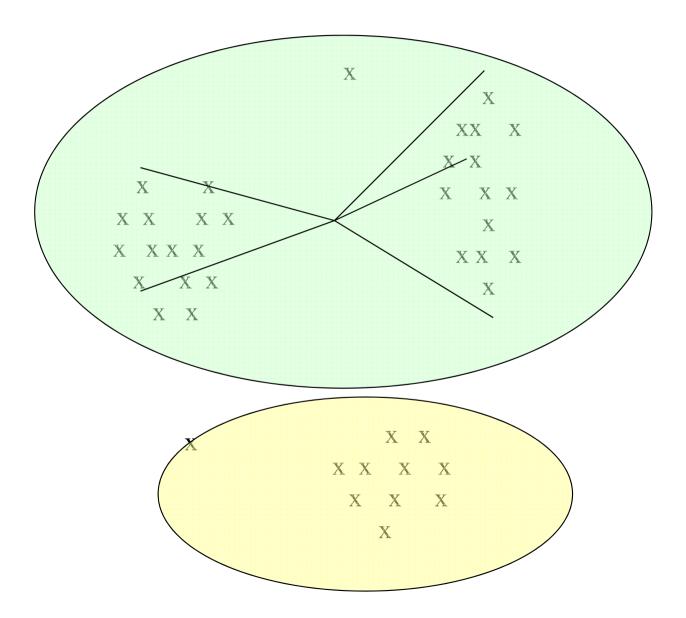
How to select *k*?

- Try different k, looking at the change in the average distance to centroid as k increases
- Average falls rapidly until right k, then changes little



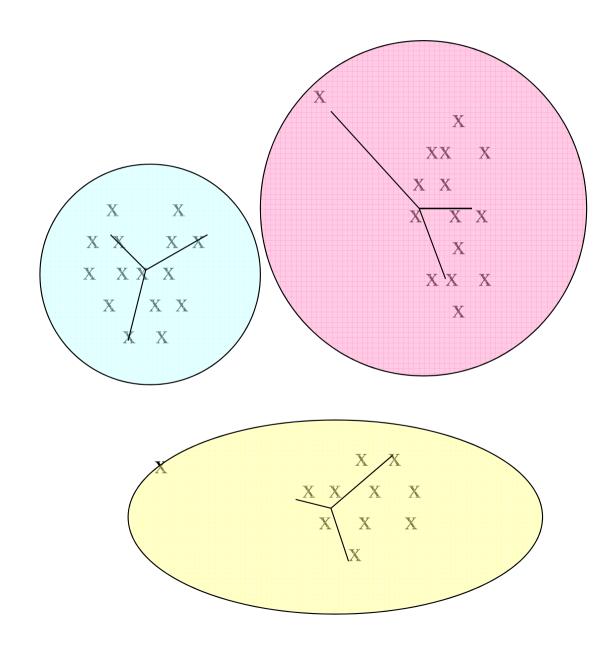
Example: Picking k

Too few; many long distances to centroid.



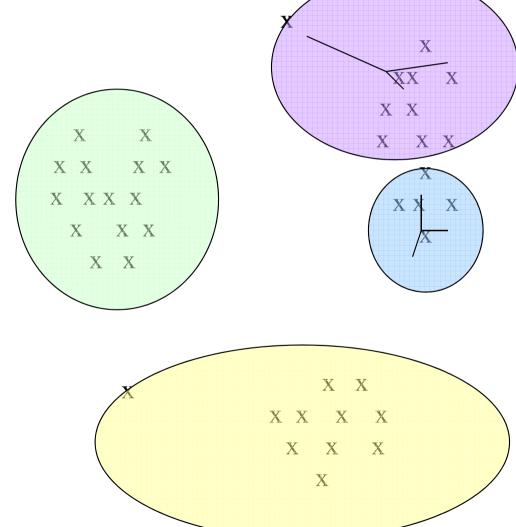
Example: Picking k

Just right; distances rather short.



Example: Picking k

Too many; little improvement in average distance.



The BFR Algorithm

Extension of k-means to large data

BFR Algorithm

- Gaussian or "normal" distribution | f_g(x) | .0214 | .00135 | .1359 | .3413 | .3413 | .1359 | .00135 | .367 | .36
- BFR [Bradley-Fayyad-Reina] is a variant of k-means designed to handle very large (disk-resident) data sets
- Assumes that clusters are normally distributed around a centroid in a Euclidean space
 - Standard deviations in different dimensions may vary
 - Clusters are axis-aligned ellipses
- Efficient way to summarize clusters
 (want memory required O(clusters) and not O(data))

BFR Algorithm

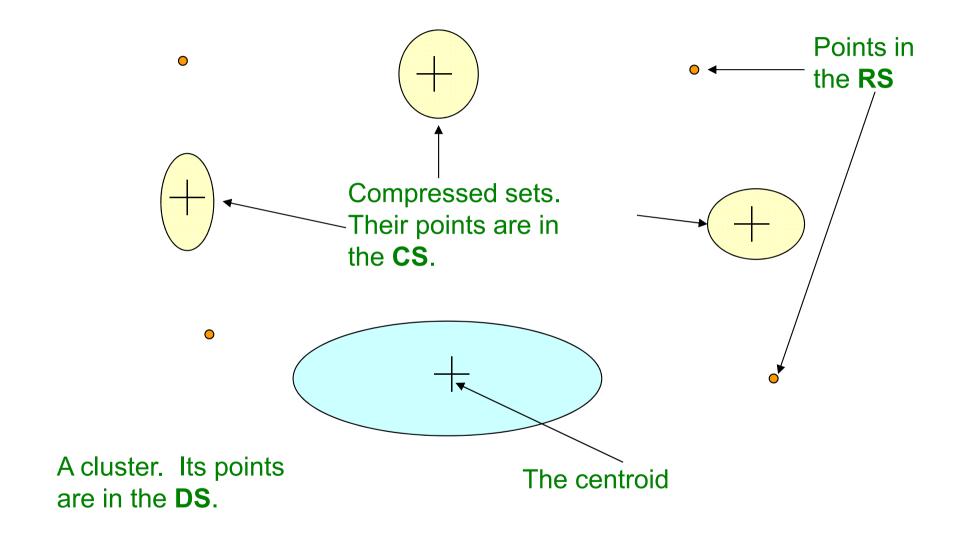
- Points are read from disk one main-memoryfull at a time
- Most points from previous memory loads are summarized by simple statistics
- To begin, from the initial load we select the initial k centroids by some sensible approach:
 - Take k random points
 - Take a small random sample and cluster optimally
 - Take a sample; pick a random point, and then
 k-1 more points, each as far from the previously selected points as possible

Three Classes of Points

3 sets of points which we keep track of:

- Discard set (DS):
 - Points close enough to a centroid to be summarized
- Compression set (CS):
 - Groups of points that are close together but not close to any existing centroid
 - These points are summarized, but not assigned to a cluster
- Retained set (RS):
 - Isolated points waiting to be assigned to a compression set

BFR: "Galaxies" Picture

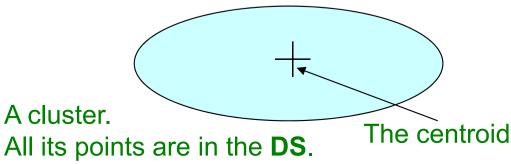


Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

Summarizing Sets of Points

For each cluster, the discard set (DS) is summarized by:

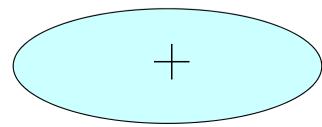
- The number of points, N
- The vector SUM, whose i^{th} component is the sum of the coordinates of the points in the i^{th} dimension
- The vector SUMSQ: i^{th} component = sum of squares of coordinates in i^{th} dimension



Summarizing Points: Comments

- 2d + 1 values represent any size cluster
 - \mathbf{d} = number of dimensions
- Average in each dimension (the centroid)
 can be calculated as SUM; / N
 - $SUM_i = i^{th}$ component of SUM
- Variance of a cluster's discard set in dimension i is: (SUMSQ_i / N) – (SUM_i / N)²
 - And standard deviation is the square root of that
- Next step: Actual clustering

Note: Dropping the "axis-aligned" clusters assumption would require storing full covariance matrix to summarize the cluster. So, instead of **SUMSQ** being a *d*-dim vector, it would be a *d x d* matrix, which is too big!



The "Memory-Load" of Points

Processing the "Memory-Load" of points (1):

- 1) Find those points that are "sufficiently close" to a cluster centroid and add those points to that cluster and the DS
 - These points are so close to the centroid that they can be summarized and then discarded
- 2) Use any main-memory clustering algorithm to cluster the remaining points and the old RS
 - Clusters go to the CS; outlying points to the RS

Discard set (DS): Close enough to a centroid to be summarized. **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

The "Memory-Load" of Points

Processing the "Memory-Load" of points (2):

- 3) DS set: Adjust statistics of the clusters to account for the new points
 - Add Ns, SUMs, SUMSQs
- 4) Consider merging compressed sets in the CS
- **5)** If this is the last round, add all compressed sets in the **CS** and all **RS** points into their nearest cluster

Discard set (DS): Close enough to a centroid to be summarized. **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

A Few Details...

- Q1) How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?
- Q2) How do we decide whether two compressed sets (CS) deserve to be combined into one?

How Close is Close Enough?

- Q1) We need a way to decide whether to put a new point into a cluster (and discard)
 - Using the Mahalanobis distance (MD) accept a point for a cluster if its MD is < some threshold (e.g., one standard dev. \sqrt{d})
 - If clusters are normally distributed in d dimensions, then after normalization, the threshold of one standard deviation \sqrt{d} means that 68% of the points of the cluster will have a Mahalanobis distance $<\sqrt{d}$
 - For point $(x_1, ..., x_d)$ and centroid $(c_1, ..., c_d)$
 - 1. Normalize in each dimension: $y_i = (x_i c_i) / \sigma_i$
 - 2. Take sum of the squares of the y_i
 - 3. Take the square root

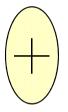
$$MD(x,c) = \sqrt{\sum_{i=1}^{d} y_i^2}$$

 σ_i ... standard deviation of points in the cluster in the i^{th} dimension

Should 2 CS clusters be combined?

Q2) Should 2 CS subclusters be combined?

- Compute the variance of the combined subcluster
 - N, SUM, and SUMSQ allow us to make that calculation quickly
- Combine if the combined variance is below some threshold



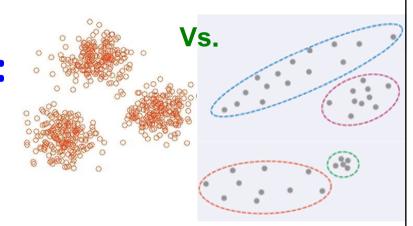
The CURE Algorithm

Extension of *k*-means to clusters of arbitrary shapes

The CURE Algorithm

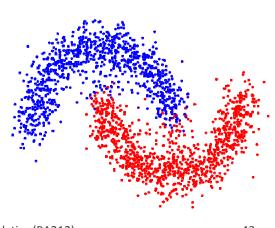
Problem with BFR/k-means:

- Assumes clusters are normally distributed in each dimension
- And axes are fixed ellipses at an angle are not OK

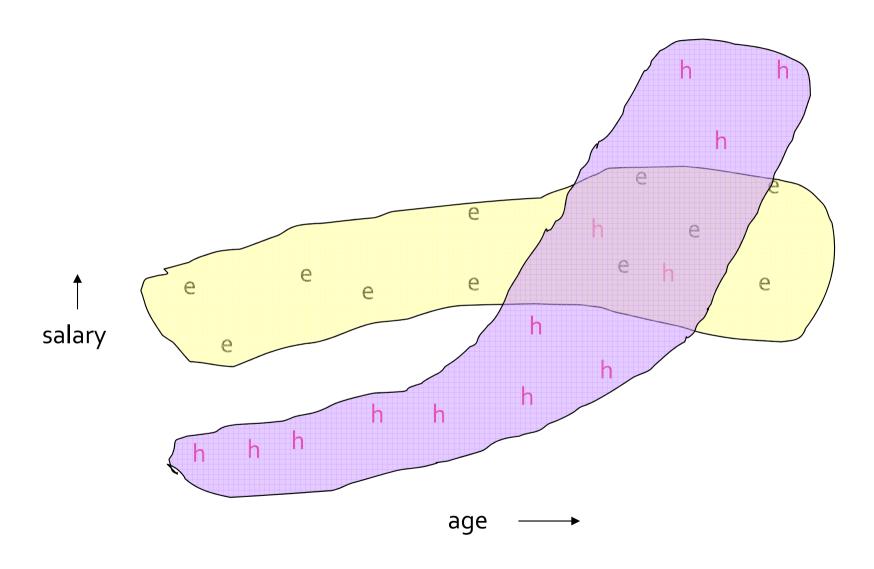


CURE (Clustering Using REpresentatives):

- Assumes a Euclidean distance
- Allows clusters to assume any shape
- Uses a collection of representative points to represent clusters



Example: Stanford Salaries

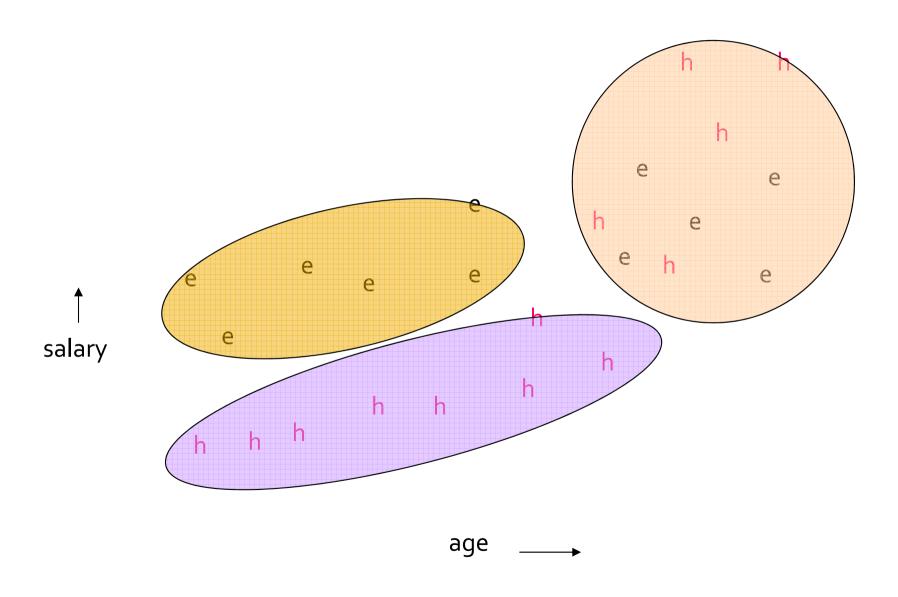


Starting CURE

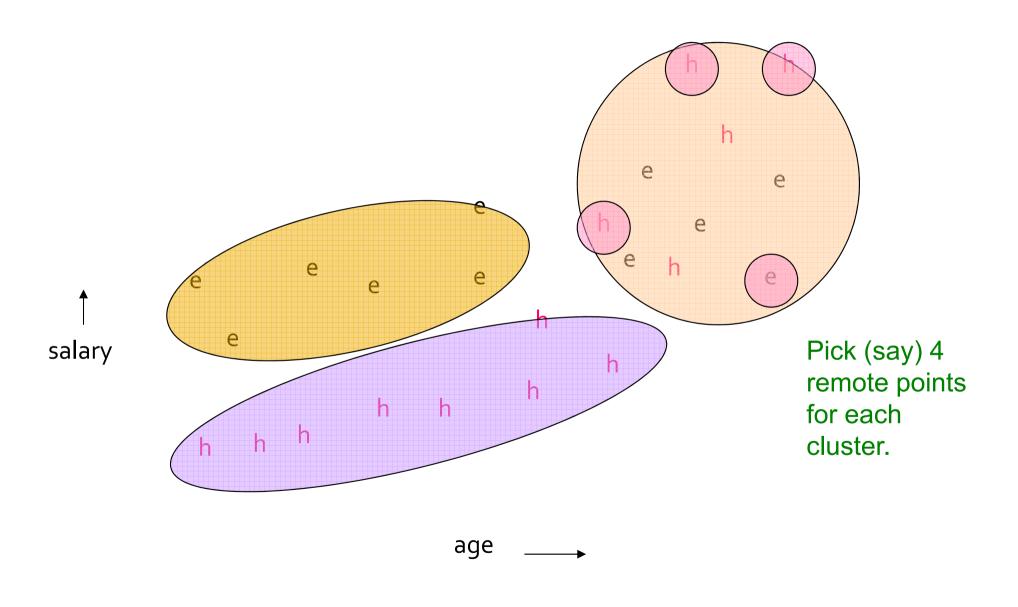
2 Pass algorithm. Pass 1:

- 0) Pick a random sample of points that fit in main memory
- 1) Initial clusters:
 - Cluster these points hierarchically group nearest points/clusters
- 2) Pick representative points:
 - For each cluster, pick a sample of points, as dispersed as possible
 - From the sample, pick representatives by moving them (say) 20% toward the centroid of the cluster

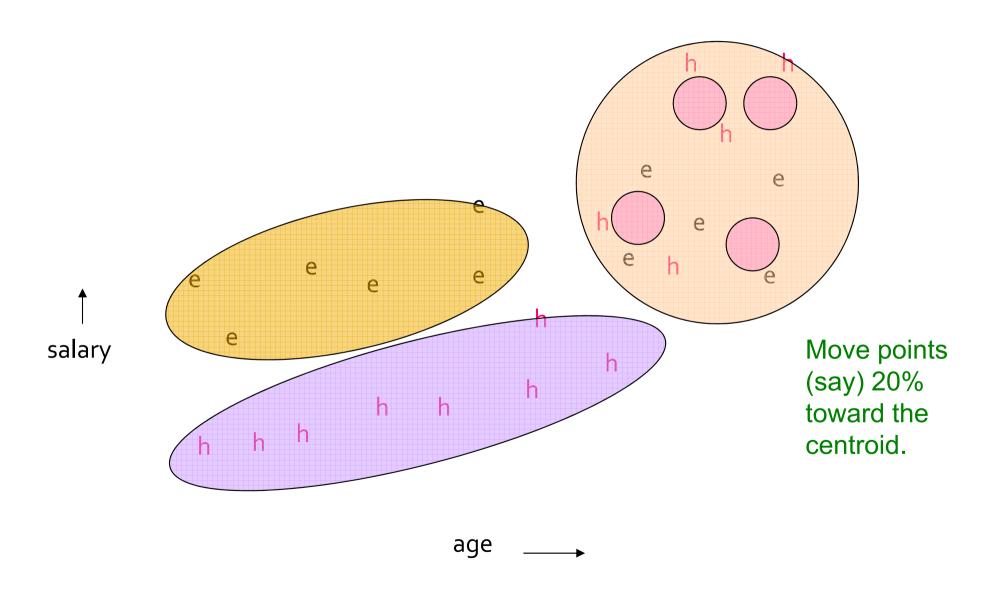
Example: Initial Clusters



Example: Pick Dispersed Points



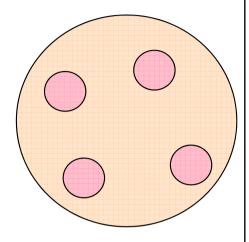
Example: Pick Dispersed Points



Finishing CURE

Pass 2:

 Now, rescan the whole dataset and visit each point p in the data set



- Place it in the "closest cluster"
 - Normal definition of "closest":
 Find the closest representative to p and assign it to representative's cluster

p

Summary

- Clustering: Given a set of points, with a notion of distance between points, group the points into some number of clusters
- Algorithms:
 - Agglomerative hierarchical clustering:
 - Centroid and clustroid
 - k-means:
 - Initialization, picking k
 - BFR
 - CURE