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 Similarity search examples: 
 Images, faces, motions, time series… 

 + visual examples 
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 Many problems can be expressed as  
finding “similar” sets: 
 Find near-neighbors in high-dimensional space 

 Examples: 
 Pages with similar words 
 For duplicate detection, classification by topic 

 Customers who purchased similar products 
 Products with similar customer sets 

 Images with similar features 
 Users who visited similar websites 
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 Given: High dimensional data points 
       

 
 For example: Image is a long vector of pixel colors                              

 

 And some distance function 
        

 
 Which quantifies the “distance” between 

  
 and 

  
 

 

 Goal: Find all pairs of data points 
       

 that are 

within some distance threshold 
        

 
 Note: Naïve solution would take 

   
  

where 
 

 is the number of data points 

 MAGIC: This can be done in 
  

!! How? 
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 Goal: Find near-neighbors in high-dim. space 
 We formally define “near neighbors” as  

points that are a “small distance” apart 
 For each application, we first need to define 

what “distance” means 
 Today: Jaccard distance/similarity 
 The Jaccard similarity of two sets is the size of their 

intersection divided by the size of their union: 
sim(C1, C2) = |C1C2|/|C1C2| 

 Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2| 
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3 in intersection 

8 in union 

Jaccard similarity= 3/8 

Jaccard distance = 5/8 
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 Goal: Given a large number (
 

 in the millions or 
billions) of documents, find “near duplicate” pairs 

 Applications: 
 Mirror websites, or approximate mirrors 
 Don’t want to show both in search results 

 Similar news articles at many news sites 
 Cluster articles by “same story” 

 Problems: 
 Many small pieces of one document can appear  

out of order in another 

 Too many documents to compare all pairs 

 Documents are so large or so many that they cannot  
fit in main memory 
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1. Shingling: Convert documents to sets 
 

2. Min-Hashing: Convert large sets to short 
signatures, while preserving similarity 

 

3. Locality-Sensitive Hashing: Focus on  
pairs of signatures likely to be from  
similar documents 

 Candidate pairs! 
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Docu- 

ment 

The set 

of strings 

of length k 

that appear 

in the doc- 

ument 

Signatures: 

short integer 

vectors that 

represent the 

sets, and 

reflect their 

similarity 

Locality- 

Sensitive 

Hashing 

Candidate 

pairs: 

those pairs 

of signatures 

that we need 

to test for 

similarity 
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Step 1: Shingling: Convert documents to sets 

Docu- 
ment 

The set 
of strings 
of length k 
that appear 
in the doc- 
ument 



 Step 1: Shingling: Convert documents to sets 
 

 Simple approaches: 

 Document = set of words appearing in document 

 Document = set of “important” words 

 Don’t work well for this application. Why? 
 

 Need to account for ordering of words! 
 A different way: Shingles! 
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 A k-shingle (or k-gram) for a document is a 
sequence of k tokens that appears in the doc 

 Tokens can be characters, words or something 
else, depending on the application 

 Assume tokens = characters for examples 
 

 Example: k=2; document D1 = abcab 
Set of 2-shingles: S(D1) = {ab, bc, ca} 

 Option: Shingles as a bag (multiset), count ab 
twice: S’(D1) = {ab, bc, ca, ab} 
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 To compress long shingles, we can hash them 
to (say) 4 bytes 

 Represent a document by the set of hash 
values of its k-shingles 

 Idea: Two documents could (rarely) appear to have 
shingles in common, when in fact only the hash-
values were shared 

 Example: k=2; document D1= abcab 
Set of 2-shingles: S(D1) = {ab, bc, ca} 
Hash the singles: h(D1) = {1, 5, 7} 
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 Document D1 is a set of its k-shingles C1=S(D1) 
 Equivalently, each document is a  

0/1 vector in the space of k-shingles 

 Each unique shingle is a dimension 

 Vectors are very sparse 

 A natural similarity measure is the  
Jaccard similarity: 

  sim(D1, D2) = |C1C2|/|C1C2| 
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 Documents that have lots of shingles in 
common have similar text, even if the text 
appears in different order 

 

 Caveat: You must pick k large enough, or most 
documents will have most shingles 

 k = 5 is OK for short documents 

 k = 10 is better for long documents 
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 Suppose we need to find near-duplicate 
documents among 

   
 million documents 

 

 Naïvely, we would have to compute pairwise  
Jaccard similarities for every pair of docs 



        
 ≈ 5*1011 comparisons 

 At 105 secs/day and 106 comparisons/sec,  
it would take 5 days 

 

 For 
     

 million, it takes more than a year… 
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Step 2: Minhashing: Convert large sets to 
short signatures, while preserving similarity 
 

Docu- 
ment 

The set 
of strings 
of length k 
that appear 
in the doc- 
ument 

Signatures: 
short integer 
vectors that 
represent the 
sets, and 
reflect their 
similarity 



 Many similarity problems can be  
formalized as finding subsets that  
have significant intersection 

 Encode sets using 0/1 (bit, boolean) vectors  

 One dimension per element in the universal set 

 Interpret set intersection as bitwise AND, and  
set union as bitwise OR 

 

 Example: C1 = 10111; C2 = 10011 

 Size of intersection = 3; size of union = 4,  

 Jaccard similarity (not distance) = 3/4 

 Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4 
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 Rows = elements (shingles) 
 Columns = sets (documents) 
 1 in row e and column s if and only 

if e is a member of s 

 Column similarity is the Jaccard 
similarity of the corresponding 
sets (rows with value 1) 

 Typical matrix is sparse! 
 Each document is a column: 
 Example: sim(C1 ,C2) = ? 

 Size of intersection = 3; size of union = 6,  
Jaccard similarity (not distance) = 3/6 

 d(C1,C2) = 1 – (Jaccard similarity) = 3/6 
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 So far: 

 Documents  Sets of shingles 

 Represent sets as boolean vectors in a matrix 

 Next goal: Find similar columns while 
computing small signatures 

 Similarity of columns == similarity of signatures 
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 Next Goal: Find similar columns, Small signatures 
 Naïve approach: 

 1) Signatures of columns: small summaries of columns 

 2) Examine pairs of signatures to find similar columns 

 Essential: Similarities of signatures and columns are related 

 3) Optional: Check that columns with similar signatures 
are really similar 

 Warnings: 

 Comparing all pairs may take too much time: Job for LSH 

 These methods can produce false negatives, and even false 
positives (if the optional check is not made) 
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 Key idea: “hash” each column C to a small 
signature h(C), such that: 

 (1) h(C) is small enough that the signature fits in RAM 

 (2) sim(C1, C2) is the same as the “similarity” of 
signatures h(C1) and h(C2) 

 

 Goal: Find a hash function h(·) such that: 

 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2) 

 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2) 
 

 Hash docs into buckets. Expect that “most” pairs 
of near duplicate docs hash into the same bucket! 
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 Goal: Find a hash function h(·) such that: 

 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2) 

 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2) 
 

 Clearly, the hash function depends on  
the similarity metric: 

 Not all similarity metrics have a suitable  
hash function 

 There is a suitable hash function for  
the Jaccard similarity: It is called Min-Hashing  
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 Imagine the rows of the boolean matrix 
permuted under random permutation  

 

 Define a “hash” function h(C) = the index of 
the first (in the permuted order ) row in 
which column C has value 1: 

   h (C) = min (C) 
 

 Use several (e.g., 100) independent hash 
functions (that is, permutations) to create a 
signature of a column 
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2nd element of the permutation 

is the first to map to a 1 

4th element of the permutation 

is the first to map to a 1 

0 1 0 1 

0 1 0 1 

1 0 1 0 

1 0 1 0 

1 0 1 0 

1 0 0 1 

0 1 0 1  

Input matrix (Shingles x Documents)  Permutation  

Note: Another (equivalent) way is to  

store row indexes: 

 

 

 

1 5 1 5 
2 3 1 3 
6 4 6 4 
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 Choose a random permutation  
 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2)  
 Why? 

 Let X be a doc (set of shingles), y X is a shingle 

 Then: Pr[(y) = min((X))] = 1/|X| 

 It is equally likely that any y X is mapped to the min element 

 Let y be s.t. (y) = min((C1C2)) 

 Then either:  (y) = min((C1))  if y  C1 , or 

     (y) = min((C2))  if y  C2 

 So the prob. that both are true is the prob. y  C1  C2 

 Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2)  

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 

0 1 

1 0 

0 0 

1 1 

0 0 

0 0  

One of the two 

cols had to have 

1 at position y 

26 



 We know: Pr[h(C1) = h(C2)] = sim(C1, C2) 
 Now generalize to multiple hash functions 

 

 The similarity of two signatures is the 
fraction of the hash functions in which they 
agree 

 

 Note: Because of the Min-Hash property, the 
similarity of columns is the same as the 
expected similarity of their signatures 
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Similarities: 
                   1-3      2-4    1-2   3-4 
Col/Col   0.75    0.75    0       0 
Sig/Sig   0.67    1.00    0       0 
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 Pick K=100 random permutations of the rows 
 Think of sig(C) as a column vector 
 sig(C)[i] = according to the i-th permutation, the 

index of the first row that has a 1 in column C 

  sig(C)[i] = min (i(C)) 

 Note: The sketch (signature) of document C is 
small  

  
 bytes! 

 

 We achieved our goal! We “compressed”  
long bit vectors into short signatures 
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 Permuting rows even once is prohibitive 
 Row hashing! 

 Pick K = 100 hash functions ki 

 Ordering under ki gives a random row permutation! 

 One-pass implementation 

 For each column C and hash-func. ki keep a “slot” for 
the min-hash value 

 Initialize all sig(C)[i] =  

 Scan rows looking for 1s 

 Suppose row j has 1 in column C 

 Then for each ki : 

 If ki(j) < sig(C)[i], then sig(C)[i]  ki(j) 
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How to pick a random 

hash function h(x)? 

Universal hashing: 

ha,b(x)=((a·x+b) mod p) mod N 

where: 

a,b … random integers 

p … prime number (p > N) 
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Step 3: Locality-Sensitive Hashing:  
Focus on pairs of signatures likely to be from 
similar documents 

Docu- 
ment 

The set 
of strings 
of length k 
that appear 
in the doc- 
ument 

Signatures: 
short integer 
vectors that 
represent the 
sets, and 
reflect their 
similarity 

Locality- 
Sensitive 
Hashing 

Candidate 
pairs: 
those pairs 
of signatures 
that we need 
to test for 
similarity 



 Goal: Find documents with Jaccard similarity at 
least s (for some similarity threshold, e.g., s=0.8) 

 

 LSH – General idea: Use a function f(x,y) that 
tells whether x and y is a candidate pair: a pair 
of elements whose similarity must be evaluated 

 

 For Min-Hash matrices:  

 Hash columns of signature matrix M to many buckets 

 Each pair of documents that hashes into the  
same bucket is a candidate pair 
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1 2 1 2 

1 4 1 2 

2 1 2 1 
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 Pick a similarity threshold s (0 < s < 1) 
 

 Columns x and y of M are a candidate pair if 
their signatures agree on at least fraction s of 
their rows:  
M (i, x) = M (i, y) for at least frac. s values of i 

 We expect documents x and y to have the same 
(Jaccard) similarity as their signatures 
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1 4 1 2 

2 1 2 1 
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 Big idea: Hash columns of  
signature matrix M several times 

 

 Arrange that (only) similar columns are 
likely to hash to the same bucket, with 
high probability 

 

 Candidate pairs are those that hash to 
the same bucket 
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Signature matrix  M 

r  rows 
per band 

b  bands 

   One 
signature 

1 2 1 2 

1 4 1 2 

2 1 2 1 
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 Divide matrix M into b bands of r rows 
 

 For each band, hash its portion of each 
column to a hash table with k buckets 

 Make k as large as possible 
 

 Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band 

 

 Tune b and r to catch most similar pairs,  
but few non-similar pairs 
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Matrix M 

r  rows b  bands 

Buckets 
Columns 2 and 6 

are probably identical  

(candidate pair) 

Columns 6 and 7 are 

surely different. 
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 There are enough buckets that columns are 
unlikely to hash to the same bucket unless 
they are identical in a particular band 

 

 Hereafter, we assume that “same bucket” 
means “identical in that band” 

 

 Assumption needed only to simplify analysis, 
not for correctness of algorithm 
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Assume the following case: 
 Suppose 100,000 columns of M (100k docs) 
 Signatures of 100 integers (rows) 
 Therefore, signatures take 40Mb 
 Choose b = 20 bands of r = 5 integers/band 

 

 Goal: Find pairs of documents that  
are at least s = 0.8 similar 
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 Find pairs of  s=0.8 similarity, set b=20, r=5 
 Assume: sim(C1, C2) = 0.8 
 Since sim(C1, C2)  s, we want C1, C2 to be a candidate 

pair: We want them to hash to at least 1 common bucket 
(at least one band is identical) 

 Probability C1, C2 identical in one particular  
band: (0.8)5 = 0.328 

 Probability C1, C2 are not similar in all of the 20 
bands: (1-0.328)20 = 0.00035  
 i.e., about 1/3000th of the 80%-similar column pairs  

are false negatives (we miss them) 

 We would find 99.965% pairs of truly similar documents 
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 Find pairs of  s=0.8 similarity, set b=20, r=5 
 Assume: sim(C1, C2) = 0.3 
 Since sim(C1, C2) < s we want C1, C2 to hash to NO  

common buckets (all bands should be different) 
 Probability C1, C2 identical in one particular 

band: (0.3)5  = 0.00243 
 Probability C1, C2 identical in at least 1 of 20 

bands: 1 - (1 - 0.00243)20 = 0.0474 
 In other words, approximately 4.74% pairs of docs 

with similarity 0.3% end up becoming candidate pairs 
 They are false positives since we will have to examine them 

(they are candidate pairs) but then it will turn out their 
similarity is below threshold s 
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 Pick: 

 The number of Min-Hashes (rows of M)  

 The number of bands b, and  

 The number of rows r per band 

 to balance false positives/negatives 
 

 Example: If we had only 15 bands of 5 
rows, the number of false positives would 
go down, but the number of false negatives 
would go up 
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       Similarity t =sim(C1, C2) of two sets 

Probability 
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No chance 
if t < s 

Probability = 1 
if t > s 
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Remember: 
Probability of 
equal hash-values 
= similarity 

       Similarity t =sim(C1, C2) of two sets 

Probability 
of sharing 
a bucket 
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 Columns C1 and C2 have similarity t 
 Pick any band (r rows) 

 Prob. that all rows in band equal = tr  

 Prob. that some row in band unequal = 1 - tr  
 

 Prob. that no band identical  = (1 - tr)b 
 

 Prob. that at least 1 band identical =                  
   1 - (1 - tr)b 
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t r  

All rows 
of a band 
are equal 

1 - 

Some row 
of a band 
unequal 

( )b  

 
No bands 
identical 

1 - 

At least 
one band 
identical 

s ~ (1/b)1/r  
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       Similarity t=sim(C1, C2) of two sets 

Probability 
of sharing 
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 Similarity threshold s 
 Prob. that at least 1 band is identical: 
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 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 
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 Picking r and b to get the best S-curve 

 50 hash-functions (r=5, b=10) 
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 Tune M, b, r to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures 

 

 Check in main memory that candidate pairs 
really do have similar signatures 

 

 Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar documents 
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 Shingling: Convert documents to sets 

 We used hashing to assign each shingle an ID 

 Min-Hashing: Convert large sets to short 
signatures, while preserving similarity 

 We used similarity preserving hashing to generate 
signatures with property Pr[h(C1) = h(C2)] = sim(C1, C2) 

 We used hashing to get around generating random 
permutations 

 Locality-Sensitive Hashing: Focus on pairs of 
signatures likely to be from similar documents 

 We used hashing to find candidate pairs of similarity  s 
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