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 Suppose 100 items (numbered 1 to 100) and 
100 baskets (numbered 1 to 100) 

 Item i is in basket b if and only if i divides b with no 
remainder, i.e., item 1 is in all the baskets, item 2 is 
in all fifty of the even-numbered baskets, etc. 

 Tasks: 

1) Identify the frequent items when the support 
threshold is set to 5 

2) Compute the confidence of these association rules 

a) {5, 7} → 2 

b) {2, 3, 4} → 5 
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 Simplest question: Find sets of items that 
appear together “frequently” in baskets 

 Support for item set I: Number of baskets 
containing all items in I 

 (Often expressed as a fraction  
of the total number of baskets) 

 Given a support threshold s,  
then sets of items that appear  
in at least s baskets are called  
frequent itemsets 
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Support of  

{Beer, Bread} = 2 



4 

 Association Rules: 
If-then rules about the contents of baskets 

 {i1, i2,…,ik} → j  means: “if a basket contains 
all of i1,…,ik then it is likely to contain j” 

 In practice there are many rules, want to find 
significant/interesting ones! 

 Confidence of this association rule is the 
probability of j given I = {i1,…,ik} 
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1) 20 frequent items: 1–20 
2) Association rules: 

a) The baskets containing both items 5 and 7 are baskets 35 
and 70, in which only basket 70 also contains item 2. 
Hence, the confidence of the rule {5, 7} → 2 is 1/2. 

b) The baskets whose numbers are the multiples of 12 contain 
item set {2, 3, 4} as a subset – there are 8 such baskets. The 
baskets whose numbers are the multiples of 60 contain 
item set {2, 3, 4, 5} as a subset – there is 1 such basket. 
Hence, the confidence of the rule {2, 3, 4} → 5 is 1/8. 
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 Consider the following twelve baskets, each of them 
contains 3 of 6 items (1 through 6): 
 {1, 2, 3}   {2, 3, 4}   {3, 4, 5}   {4, 5, 6} 

 {1, 3, 5}   {2, 4, 6}   {1, 3, 4}   {2, 4, 5} 

 {3, 5, 6}   {1, 2, 4}   {2, 3, 5}   {3, 4, 6} 
 Suppose the support threshold is 4. On the first pass of 

the PCY algorithm, a hash table with 11 buckets is used, 
and the set {i, j} is hashed to bucket i j mod 11: 
1) Compute the support for each item and each pair of items 

2) Which pairs hash to which buckets? 

3) Which buckets are frequent? 

4) Which pairs are counted on the second pass? 
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PCY Algorithm – First Pass 
FOR (each basket) : 

 FOR (each item in the basket) : 

  add 1 to item’s count; 

 FOR (each pair of items) : 

  hash the pair to a bucket; 

  add 1 to the count for that bucket; 
 

 Few things to note: 
 Pairs of items need to be generated from the input 

file; they are not present in the file 

 We are not just interested in the presence of a pair, 
but we need to see whether it is present at least s 
(support) times 
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New 

in 

PCY 



 Observation: If a bucket contains a frequent pair, 
then the bucket is surely frequent 

 However, even without any frequent pair,  
a bucket can still be frequent   
 So, we cannot use the hash to eliminate any  

member (pair) of a “frequent” bucket 
 But, for a bucket with total count less than s,  

none of its pairs can be frequent  
 Pairs that hash to this bucket can be eliminated as 

candidates (even if the pair consists of 2 frequent items) 
 

 Pass 2:  
Only count pairs that hash to frequent buckets 
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1) Compute the support for each item and each pair of 
items 

 Support for each item: 
 

item 1 2 3 4 5 6 

support 4 6 8 8 6 4 

 

 Support for each pair of items: 
 

pair {1, 2} {1, 3} {1, 4} {1, 5} {1, 6} {2, 3} {2, 4} {2, 5} 

support 2 3 2 1 0 3 4 2 

 

pair {2, 6} {3, 4} {3, 5} {3, 6} {4, 5} {4, 6} {5, 6}  

support 1 4 4 2 3 3 2  
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2) Which pairs hash to which buckets? 

 The set {i, j} is hashed to bucket no.: i j mod 11 
 

pair {1, 2} {1, 3} {1, 4} {1, 5} {1, 6} {2, 3} {2, 4} {2, 5}  

bucket 2 3 4 5 6 6 8 10  

 

pair {2, 6} {3, 4} {3, 5} {3, 6} {4, 5} {4, 6} {5, 6}  

bucket 1 1 4 7 9 2 8  
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3) Which buckets are frequent? 

 Bucket support – sum of supports of pairs belonging to the 
given bucket: 

 

bucket 0 1 2 3 4 5 6 7 

support 0 5 5 3 6 1 3 2 

 

bucket 8 9 10 

support 6 3 2 

 

 The frequent buckets are those with support above 4, i.e., 
buckets: 1, 2, 4, 8 
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4) Which pairs are counted on the second pass 

 As only pairs in frequent buckets will be counted on the 
second pass of PCY, they are: 

 {1, 2}, {1, 4}, {2, 4}, {2, 6}, {3, 4}, {3, 5}, {4, 6}, {5, 6} 
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 Compute the Jaccard similarities of each pair 
of the following three sets: 

 A = {1, 2, 3, 4} 

 B = {2, 3, 5, 7} 

 C = {2, 4, 6} 
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 sim(A, B) = 2/6 = 1/3 
 sim(A, C) = 2/5 
 sim(B, C) = 1/6 
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 Consider two documents A and B 

 If their 3-shingle resemblance is 1 (using Jaccard 
similarity), does that mean that A and B are 
identical? 

 If so, prove it. If not, give a counterexample. 
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 A k-shingle (or k-gram) for a document is a 
sequence of k tokens that appears in the doc 

 Tokens can be characters, words or something 
else, depending on the application 

 Assume tokens = characters for examples 
 

 Example: k=2; document D1 = abcab 
Set of 2-shingles: S(D1) = {ab, bc, ca} 

 Option: Shingles as a bag (multiset), count ab 
twice: S’(D1) = {ab, bc, ca, ab} 
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 Document D1 is a set of its k-shingles C1=S(D1) 
 Equivalently, each document is a  

0/1 vector in the space of k-shingles 

 Each unique shingle is a dimension 

 Vectors are very sparse 

 A natural similarity measure is the  
Jaccard similarity: 

  sim(D1, D2) = |C1 C2|/|C1 C2| 
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 No, the documents A and B need not be identical 

 Counterexample: 

 A: abab 
 3-shingles: S(A) = {aba, bab} 

 B: baba 
 3-shingles: S(B) = {bab, aba} 

 

 sim(A, B) = | S(A)  S(B) | / | S(A)  S(B)| = 1 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 18 



 For the matrix 
 
 
 
 
 
1) Compute the minhash signature for each column 

(document) using the following hash functions: 
 h1(x) = 2x + 1 mod 6 

 h2(x) = 3x + 2 mod 6 

 h3(x) = 5x + 2 mod 6 

2) Which of these hash functions are true permutations? 

3) How close are the estimated Jaccard similarities for the 
six pairs of columns to the true Jaccard similarities? 
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Element D1 D2 D3 D4 

0 0 1 0 1 

1 0 1 0 0 

2 1 0 0 1 

3 0 0 1 0 

4 0 0 1 1 

5 1 0 0 0 



 Rows = elements (e.g., shingles) 
 Columns = sets (e.g., documents) 
 1 in row e (shingle) and column s 

(document) if and only if e is a 
member of s 

 Column similarity is the Jaccard 
similarity of the corresponding sets 
(rows with value 1) 

 Typical matrix is sparse! 
 Each document is a column: 
 Example: sim(C1 ,C2) = ? 
 Size of intersection = 3; size of union = 6,  

Jaccard similarity (not distance) = 3/6 

 d(C1,C2) = 1 – (Jaccard similarity) = 3/6 

 Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 0 0 

1 0 1 0 

1 0 1 1 

0 1 1 1  

Documents 

S
h
in

g
le

s
 

20 



3 

4 

7 

2 

6 

1 

5 

Signature matrix M 

1 2 1 2 

5 

7 

6 

3 

1 

2 

4 

1 4 1 2 

4 

5 

1 

6 

7 

3 

2 

2 1 2 1 

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212) 

2nd element of the permutation 

is the first to map to a 1 

4th element of the permutation 

is the first to map to a 1 

0 1 0 1 

0 1 0 1 

1 0 1 0 

1 0 1 0 

1 0 1 0 

1 0 0 1 

0 1 0 1  

Input matrix (Shingles x Documents)  Permutation  
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Min-Hashing 
Example 



1) Compute the minhash signature for each column using the 
following hash functions: 
 h1(x) = 2x + 1 mod 6 

 h2(x) = 3x + 2 mod 6 

 h3(x) = 5x + 2 mod 6 

Hashes are computed on element IDs: 

 

 

 

 

 
 

2) Which of these hash functions are true permutations: h3 only 
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Element D1 D2 D3 D4 h1(x) h2(x) h3(x) 

0 0 1 0 1 1 2 2 

1 0 1 0 0 3 5 1 

2 1 0 0 1 5 2 0 

3 0 0 1 0 1 5 5 

4 0 0 1 1 3 2 4 

5 1 0 0 0 5 5 3 

D1 D2 D3 D4 

5 1 1 1 

2 2 2 2 

0 1 4 0 

Minhash signature: 

(rows correspond to 
hash functions) 



3) How close are the estimated Jaccard similarities for 
the six pairs of columns (documents) to the true 
Jaccard similarities? 
 
 
 
 

 => the estimated Jaccard similarities are not close 
to the true ones at all 

 To make the estimated similarity closer to the true one, 
there is a need of more and better (i.e., resulting in true 
permutations) hash functions 
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Jaccard similarities 
on 

D1 / D2 D1 / D3 D1 / D4 D2 / D3 D2 / D4 D3 / D4 

Original documents 0 0 0.25 0 0.25 0.25 

Minhash signatures 0.33 0.33 0.67 0.67 0.67 0.67 



 Suppose we are maintaining a count of 1s using the 
DGIM method 
 Each bucket is represented by (i, t) 
 i – the number of 1s in the bucket 
 t – the bucket timestamp (time of the most recent 1) 

 Consider the following properties: 
 Current time is 200 
 Window size is 60 
 Current buckets are: 
 (16, 148) (8, 162) (8, 177) (4, 183) (2, 192) (1, 197) (1, 200) 

 At the next ten clocks (201 through 210), the stream has 
0101010101 

 What will the sequence of buckets be at the end of 
these ten inputs? 
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N 

1 of 

size 2 

2 of 

size 4 

2 of 

size 8 

At least 1 of 

size 16.  Partially 

beyond window. 

2 of 

size 1 

1001010110001011010101010101011010101010101110101010111010100010110010 

Each stream bit has a timestamp (starting 1, 2, …), recorded by modulo N 

A bucket is a record consisting of: 
     (A) The timestamp of its end 
     (B) The number of 1s between its beginning and end 
 

Three properties of buckets that are maintained: 
• Either one or two buckets with the same power-of-2 number of 1s 
• Buckets do not overlap in timestamps 
• Buckets are sorted by size 
Buckets disappear when their end-time is > N  time units in the past 



 When a new bit comes in, drop the last 
(oldest) bucket if its end-time is prior to N  
time units before the current time 

 

 

 

 

 

 2 cases: Current bit is 0 or 1 
 

 If the current bit is 0:  
no other changes are needed 
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N 

1001010110001011010101010101011010101010101110101010111010100010110010 



 If the current bit is 1: 

 (1) Create a new bucket of size 1, for just this bit 

 End timestamp = current time 

 (2) If there are now three buckets of size 1, 
combine the oldest two into a bucket of size 2 

 (3) If there are now three buckets of size 2, 
 combine the oldest two into a bucket of size 4 

 (4) And so on … 
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28 

1001010110001011010101010101011010101010101110101010111010100010110010 

0010101100010110101010101010110101010101011101010101110101000101100101 

0010101100010110101010101010110101010101011101010101110101000101100101 

0101100010110101010101010110101010101011101010101110101000101100101101 

0101100010110101010101010110101010101011101010101110101000101100101101 

0101100010110101010101010110101010101011101010101110101000101100101101 
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Current state of the stream: 

Bit of value 1 arrives 

Two orange buckets get merged into a yellow bucket 

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1: 

Buckets get merged… 

State of the buckets after merging 

Updating buckets (example): 



 There are 5 occurrences of 1s in the upcoming stream 
0101010101. Each one updates the buckets to be: 
 (1) Combine the oldest two buckets of size 1 

 (16, 148)  (8, 162)  (8, 177)  (4, 183)  (2, 192)  (1, 197)  (1, 200)  (1, 202) 
       => (16, 148)  (8, 162)  (8, 177)  (4, 183)  (2, 192)  (2, 200)  (1, 202) 

 (2) No combination needed 
 (16, 148)  (8, 162)  (8, 177)  (4, 183)  (2, 192)  (2, 200)  (1, 202)  (1, 204) 

 (3) Combine the oldest two buckets of size 1, and then oldest two buckets of size 2 
 (16, 148)  (8, 162)  (8, 177)  (4, 183)  (2, 192)  (2, 200)  (1, 202)  (1, 204)  (1, 206) 
       => (16, 148)  (8, 162)  (8, 177)  (4, 183)  (2, 192)  (2, 200)  (2, 204)  (1, 206) 
       => (16, 148)  (8, 162)  (8, 177)  (4, 183)  (4, 200)  (2, 204)  (1, 206) 

 (4) No combination needed; window size is 60, so (16, 148) should be dropped 
 (16, 148)  (8, 162)  (8, 177)  (4, 183)  (4, 200)  (2, 204)  (1, 206)  (1, 208) 
       => (8, 162)  (8, 177)  (4, 183)  (4, 200)  (2, 204)  (1, 206)  (1, 208) 

 (5) Combine the oldest two buckets of size 1 
 (8, 162)  (8, 177)  (4, 183)  (4, 200)  (2, 204)  (1, 206)  (1, 208)  (1, 210) 
       => (8, 162)  (8, 177)  (4, 183)  (4, 200)  (2, 204)  (2, 208)  (1, 210) 
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 Assume the Bloom Filter technique, B as a single array of 8 

bits, and the following two hash functions: 

 h1(x) = x mod 3, 

 h2(x) = x mod 7. 

 For the set S = {3, 5} of two keys and the stream 7, 12, ... of 

integer values: 

1) Determine the content of the B bit array; 

2) Apply the Bloom Filter technique to the first two stream values (i.e., 7 and 12) 

and decide whether they pass through the filter, or not; 

3) What should be the best number of hash functions for this scenario with |S| = 2 

keys and |B| = 8 bits? 
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 Consider: |S| = m, |B| = n 
 k hash functions h1 ,…, hk 

 Initialization: 

 Set B to all 0s 

 Hash each element s  S using each hash function hi, 
set B[hi(s)] = 1   (for each i = 1,.., k) 

 Run-time: 

 When a stream element with key x arrives 

 If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S 
 That is, x hashes to a bucket set to 1 for every hash function hi(x) 

 Otherwise discard the element x 
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(note: we have a  

single array B!) 

0010001011000 Bit array B 

Stream item x 

Hash x by k 
functions 

Drop the item x 



 m = 1 billion, n = 8 billion 

 k = 1: (1 – e-1/8) = 0.1175 

 k = 2: (1 – e-1/4)2 = 0.0493 
 

 

 What happens as we  
keep increasing k? 

 

 “Optimal” value of k: n/m ln(2) 

 In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6 
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 Keys: S = {3, 5}  Stream: 7, 12, ... 

 Hash functions: h1(x) = x mod 3 h2(x) = x mod 7 

 

1) The B bit array of size 8 contains 1s at the positions to which the keys are 

hashed by all the hash functions 

 h1(3) = 3 mod 3 = 0 h1(5) = 5 mod 3 = 2 

 h2(3) = 3 mod 7 = 3 h2(5) = 5 mod 7 = 5 

2) Stream values 7 and 12: 

 h1(7) = 7 mod 3 = 1 h1(12) = 12 mod 3 = 0 

 h2(7) = 7 mod 7 = 0 h2(12) = 12 mod 7 = 5 

3) The best number of hash functions for |S| = 2 keys and |B| = 8 bits: 

 n / m ∙ ln(2) = |B| / |S| ∙ ln(2) = 8 / 2 ∙ ln(2) = 2.77 ~ 3 
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1 0 1 1 0 1 0 0 

B: 

 7 does not pass; 12 passes 


