

Exercises on Block2:

 Finding Frequent Item Sets Finding Similar Ittems Searching in Data StreamsAdvanced Search Techniques for Large Scale Data Analytics
Pavel Zezula and Jan Sedmidubsky
Masaryk University
http://disa.fi.muni.cz

Frequent Item Sets (1) - Assignment

- Suppose 100 items (numbered 1 to 100) and 100 baskets (numbered 1 to 100)
- Item i is in basket b if and only if i divides b with no remainder, i.e., item 1 is in all the baskets, item 2 is in all fifty of the even-numbered baskets, etc.
- Tasks:

1) Identify the frequent items when the support threshold is set to 5
2) Compute the confidence of these association rules
a) $\{5,7\} \rightarrow 2$
b) $\{2,3,4\} \rightarrow 5$

Frequent lten Sets (1) - Recap

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for item set I: Number of baskets containing all items in \boldsymbol{I}
- (Often expressed as a fraction of the total number of baskets)
- Given a support threshold s, then sets of items that appear

Support of
$\{$ Beer, Bread $\}=2$ in at least \boldsymbol{s} baskets are called frequent itemsets

Frequent lten Sets (1) - Recap

- Association Rules:

If-then rules about the contents of baskets

- $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \rightarrow \boldsymbol{j}$ means: "if a basket contains all of i_{l}, \ldots, i_{k} then it is likely to contain $j^{\prime \prime}$
- In practice there are many rules, want to find significant/interesting ones!
- Confidence of this association rule is the probability of \boldsymbol{j} given $\boldsymbol{I}=\left\{\boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{\boldsymbol{k}}\right\}$

1) $\mathbf{2 0}$ frequent items: $\mathbf{1 - 2 0}$
2) Association rules:
a) The baskets containing both items 5 and 7 are baskets 35 and 70 , in which only basket 70 also contains item 2. Hence, the confidence of the rule $\{5,7\} \rightarrow 2$ is $\mathbf{1 / 2}$.
b) The baskets whose numbers are the multiples of 12 contain item set $\{2,3,4\}$ as a subset - there are 8 such baskets. The baskets whose numbers are the multiples of 60 contain item set $\{2,3,4,5\}$ as a subset - there is 1 such basket. Hence, the confidence of the rule $\{2,3,4\} \rightarrow 5$ is $1 / 8$.

Frequent Item Sets (2) - Assignment

- Consider the following twelve baskets, each of them contains 3 of 6 items (1 through 6):

$$
\left.\begin{array}{r}
=\{1,2,3\} \\
=\{1,3,5\} \quad\{2,4,4\} \\
=\{3,5,6\} \quad\{1,4,5\}
\end{array}\right\}\{4,5,6\}
$$

- Suppose the support threshold is 4 . On the first pass of the PCY algorithm, a hash table with 11 buckets is used, and the set $\{i, j\}$ is hashed to bucket $i j$ mod 11:

1) Compute the support for each item and each pair of items
2) Which pairs hash to which buckets?
3) Which buckets are frequent?
4) Which pairs are counted on the second pass?

Frequent ltem Sets (2) - Recap

PCY Algorithm - First Pass

FOR (each basket) : FOR (each item in the basket) :
$\left.\begin{array}{l}\text { New } \\ \operatorname{in} \\ \text { PCY }\end{array}\right\} \begin{aligned} & \text { add } 1 \text { to item's count; } \\ & \text { (each pair of items) : } \\ & \text { hash the pair to a bucket; } \\ & \text { add } 1 \text { to the count for that bucket; }\end{aligned}$

- Few things to note:
- Pairs of items need to be generated from the input file; they are not present in the file
- We are not just interested in the presence of a pair, but we need to see whether it is present at least s (support) times

Frequent Item Sets (2) - Recap

- Observation: If a bucket contains a frequent pair, then the bucket is surely frequent
- However, even without any frequent pair, a bucket can still be frequent $: 8$
- So, we cannot use the hash to eliminate any member (pair) of a "frequent" bucket
- But, for a bucket with total count less than s, none of its pairs can be frequent :)
- Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)
- Pass 2:

Only count pairs that hash to frequent buckets

Frequent Item Sets (2) - Solution 1/4

1) Compute the support for each item and each pair of items

- Support for each item:

item	1	2	3	4	5	6
support	4	6	8	8	6	4

- Support for each pair of items:
\(\left.\begin{array}{llllllllllll}pair \& \{1,2\} \& \{1,3\} \& \{1,4\} \& \{1,5\} \& \{1,6\} \& \{2,3\} \& \{2,4\} \& \{2,5\}

support \& 2 \& 3 \& 2 \& 1 \& 0 \& 3 \& 4 \& 2\end{array}\right]\)| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| pair | $\{2,6\}$ | $\{3,4\}$ | $\{3,5\}$ | $\{3,6\}$ | $\{4,5\}$ | $\{4,6\}$ | $\{5,6\}$ |
| support 1 | 4 | 4 | 2 | 3 | 3 | 2 | |

Frequent Item Sets (2) - Solution 2/4

2) Which pairs hash to which buckets?

- The set $\{i, j\}$ is hashed to bucket no.: i $j \bmod 11$

| pair | $\{1,2\}$ | $\{1,3\}$ | $\{1,4\}$ | $\{1,5\}$ | $\{1,6\}$ | $\{2,3\}$ | $\{2,4\}$ | $\{2,5\}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| bucket | 2 | 3 | 4 | 5 | 6 | 6 | 8 | 10 |

Frequent Item Sets (2) - Solution 3/4

3) Which buckets are frequent?

- Bucket support - sum of supports of pairs belonging to the given bucket:

bucket	0	1	2	3	4	5	6	7
support	0	5	5	3	6	1	3	2
bucket	8	9	10					
support	6	3	2					

- The frequent buckets are those with support above 4, i.e., buckets: 1, 2, 4, 8

Frequent Item Sets (2) - Solution $4 / 4$

4) Which pairs are counted on the second pass

- As only pairs in frequent buckets will be counted on the second pass of PCY, they are:

$$
\{1,2\},\{1,4\},\{2,4\},\{2,6\},\{3,4\},\{3,5\},\{4,6\},\{5,6\}
$$

Compute the Jaccard similarities of each pair of the following three sets:

- A = $\{1,2,3,4\}$
- $B=\{2,3,5,7\}$
- $C=\{2,4,6\}$

Find ing Similar Items (1) - Solution

- $\operatorname{sim}(A, B)=2 / 6=1 / 3$
- $\operatorname{sim}(\mathrm{A}, \mathrm{C})=2 / 5$
- $\operatorname{sim}(B, C)=1 / 6$
- Consider two documents A and B
- If their 3 -shingle resemblance is 1 (using Jaccard similarity), does that mean that A and B are identical?
- If so, prove it. If not, give a counterexample.

Finding Simillar Items (2) - Recap

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
- Tokens can be characters, words or something else, depending on the application
- Assume tokens = characters for examples
- Example: k=2; document $\mathbf{D}_{\mathbf{1}}=\mathrm{abcab}$ Set of 2-shingles: $\mathbf{S}\left(\mathrm{D}_{1}\right)=\{a b, b c, c a\}$
- Option: Shingles as a bag (multiset), count ab twice: $\mathbf{S}^{\prime}\left(\mathrm{D}_{1}\right)=\{\mathrm{ab}, \mathrm{bc}, \mathrm{ca}, \mathrm{ab}\}$

Findiing Simillar Items (2) - Recap

- Document D_{1} is a set of its k-shingles $C_{1}=S\left(D_{1}\right)$
- Equivalently, each document is a $0 / 1$ vector in the space of k-shingles
- Each unique shingle is a dimension
- Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$
\operatorname{sim}\left(D_{1}, D_{2}\right)=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|
$$

- No, the documents A and B need not be identical
- Counterexample:
- A: abab
- 3-shingles: $S(A)=\{a b a, b a b\}$
- B: baba
- 3-shingles: $S(B)=\{b a b, a b a\}$
- $\operatorname{sim}(A, B)=|S(A) \cap S(B)| /|S(A) \cup S(B)|=1$

Find ing Simillar Items (3) - Assignment

- For the matrix

Element	D1	D_{2}	D_{3}	D_{4}
0	0	1	0	1
1	0	1	0	0
2	1	0	0	1
3	0	0	1	0
4	0	0	1	1
5	1	0	0	0

1) Compute the minhash signature for each column (document) using the following hash functions:

- $h_{1}(x)=2 x+1 \bmod 6$
- $h_{2}(x)=3 x+2 \bmod 6$
- $h_{3}(x)=5 x+2 \bmod 6$

2) Which of these hash functions are true permutations?
3) How close are the estimated Jaccard similarities for the six pairs of columns to the true Jaccard similarities?

- Rows = elements (e.g., shingles)
- Columns = sets (e.g., documents)
- 1 in row \boldsymbol{e} (shingle) and column s (document) if and only if \boldsymbol{e} is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!
- Each document is a column:
- Example: $\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=$?
- Size of intersection $=3$; size of union $=6$, Jaccard similarity (not distance) = 3/6
- $d\left(C_{1}, C_{2}\right)=1$ - (Jaccard similarity) $=3 / 6$

Documents

1	1	1	0
1	1	0	1
0	1	0	1
$\frac{0}{O}$			

Min-Hashing $2^{\text {nd }}$ element of the permutation Example
Permutation π Input natrix (Shingles x Documents)

Find ing Simillar ltems (3) - Solution 1+2/3

1) Compute the minhash signature for each column using the following hash functions:

- $h_{1}(x)=2 x+1 \bmod 6$
- $h_{2}(x)=3 x+2 \bmod 6$
- $h_{3}(x)=5 x+2 \bmod 6$

Hashes are computed on element IDs:

Element	D1	D2	D3	D4	$h_{1}(x)$	$h_{2}(x)$	$h_{3}(x)$	Minhash signature:			
0	0	1	0	1	1	2	2	D1	D2	D3	D4
1	0	1	0	0	3	5	1				
2	1	0	0	1	5	2	0	5	1	1	1
3	0	0	1	0	1	5	5	2	2	2	2
4	0	0	1	1	3	2	4	(rows correspond to hash functions)			
5	1	0	0	0	5	5	3				

2) Which of these hash functions are true permutations: $\boldsymbol{h}_{\mathbf{3}}$ only
3) How close are the estimated Jaccard similarities for the six pairs of columns (documents) to the true Jaccard similarities?

Jaccard similarities on	D_{1} / D_{2}	D_{1} / D_{3}	D_{1} / D_{4}	D_{2} / D_{3}	D_{2} / D_{4}	D_{3} / D_{4}
Original documents	0	0	0.25	0	0.25	0.25
Minhash signatures	0.33	0.33	0.67	0.67	0.67	0.67

- => the estimated Jaccard similarities are not close to the true ones at all
- To make the estimated similarity closer to the true one, there is a need of more and better (i.e., resulting in true permutations) hash functions

Data Streams (1) - Assignment

- Suppose we are maintaining a count of 1 s using the DGIM method
- Each bucket is represented by (i, t)
- i - the number of 1 s in the bucket
- t - the bucket timestamp (time of the most recent 1)
- Consider the following properties:
- Current time is 200
- Window size is 60
- Current buckets are:
- $(16,148)(8,162)(8,177)(4,183)(2,192)(1,197)(1,200)$
- At the next ten clocks (201 through 210), the stream has 0101010101
- What will the sequence of buckets be at the end of these ten inputs?

Data Streanns (1) - Recap

\qquad
Each stream bit has a timestamp (starting 1, 2, ...), recorded by modulo \mathbf{N} A bucket is a record consisting of:
(A) The timestamp of its end
(B) The number of 1 s between its beginning and end

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Buckets disappear when their end-time is $\boldsymbol{>} \boldsymbol{N}$ time units in the past

Data Streams (1) - Recap

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to \mathbf{N} time units before the current time

- $\mathbf{2}$ cases: Current bit is $\mathbf{0}$ or $\mathbf{1}$
- If the current bit is 0 : no other changes are needed

Data Streams (1) - Recap

If the current bit is 1 :

- (1) Create a new bucket of size $\mathbf{1}$, for just this bit
- End timestamp = current time
- (2) If there are now three buckets of size $\mathbf{1}$, combine the oldest two into a bucket of size 2
- (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
- (4) And so on ...

Data Streams (1) - Recap

Updating buckets (example):

Current state of the stream:

Bit of value 1 arrives

\square
b: \square

Two orange buckets get merged into a yellow bucket

\square

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged...

\square
\square
\square $6 \square \square$
State of the buckets after merging

- There are 5 occurrences of 1 s in the upcoming stream 0101010101 . Each one updates the buckets to be:
- (1) Combine the oldest two buckets of size 1

```
    (16, 148) (8, 162) (8, 177) (4, 183) (2,192) (1, 197) (1, 200) (1, 202)
=> (16, 148) (8, 162) (8,177) (4, 183) (2, 192) (2, 200) (1, 202)
- (2) No combination needed \((16,148)(8,162)(8,177)(4,183)(2,192)(2,200)(1,202)(1,204)\)
```

- (3) Combine the oldest two buckets of size 1, and then oldest two buckets of size 2
$(16,148)(8,162)(8,177)(4,183)(2,192)(2,200)(1,202)(1,204)(1,206)$
$=>(16,148)(8,162)(8,177)(4,183)(2,192)(2,200)(2,204)(1,206)$
$=>(16,148)(8,162)(8,177)(4,183)(4,200)(2,204)(1,206)$
- (4) No combination needed; window size is 60 , so $(16,148)$ should be dropped $(16,148)(8,162)(8,177)(4,183)(4,200)(2,204)(1,206)(1,208)$
$=>(8,162)(8,177)(4,183)(4,200)(2,204)(1,206)(1,208)$
- (5) Combine the oldest two buckets of size 1

$$
(8,162)(8,177)(4,183)(4,200)(2,204)(1,206)(1,208)(1,210)
$$

$=>(8,162)(8,177)(4,183)(4,200)(2,204)(2,208)(1,210)$

Data Streams (2) - Assignment

- Assume the Bloom Filter technique, B as a single array of 8 bits, and the following two hash functions:
- $h_{1}(x)=x \bmod 3$,
- $h_{2}(x)=x \bmod 7$.
- For the set $S=\{3,5\}$ of two keys and the stream 7, 12, ... of integer values:

1) Determine the content of the B bit array;
2) Apply the Bloom Filter technique to the first two stream values (i.e., 7 and 12) and decide whether they pass through the filter, or not;
3) What should be the best number of hash functions for this scenario with $|S|=2$ keys and $|B|=8$ bits?

Data Streanns (2) - Recap

- Consider: $|\mathbf{S}|=\boldsymbol{m},|\mathbf{B}|=\boldsymbol{n}$ Stream item \times
- \boldsymbol{k} hash functions $\boldsymbol{h}_{1}, \ldots ., \boldsymbol{h}_{\boldsymbol{k}}$
- Initialization:
- Set B to all Os
- Hash each element $\boldsymbol{s} \in \boldsymbol{S}$ using each hash function $\boldsymbol{h}_{\boldsymbol{i}}$, set $\mathrm{B}\left[h_{i}(s)\right]=1 \quad$ (for each $\boldsymbol{i}=\mathbf{1}, . ., \boldsymbol{k}$)
- Run-time:
(note: we have a single array $B!$)
- When a stream element with key \boldsymbol{x} arrives

- That is, \boldsymbol{x} hashes to a bucket set to $\mathbf{1}$ for every hash function $\boldsymbol{h}_{\boldsymbol{i}}(\boldsymbol{x})$
- Otherwise discard the element \boldsymbol{x}

Data Streams (2) - Recap

- $m=1$ billion, $n=8$ billion
- $\mathbf{k}=1:\left(1-\mathrm{e}^{-1 / 8}\right)=0.1175$
- $k=2:\left(1-e^{-1 / 4}\right)^{2}=0.0493$
- What happens as we keep increasing k ?

- "Optimal" value of $\boldsymbol{k}: \mathbf{n} / \boldsymbol{m} \ln (\mathbf{2})$
- In our case: Optimal $k=8 \ln (2)=5.54 \approx 6$

Data Streams (2) - Solution

- Keys: $S=\{3,5\}$

Stream: 7, 12, ...

- Hash functions: $h_{1}(x)=x \bmod 3 \quad h_{2}(x)=x \bmod 7$

1) The B bit array of size 8 contains 1 s at the positions to which the keys are hashed by all the hash functions

- $h_{1}(3)=3 \bmod 3=0 \quad h_{1}(5)=5 \bmod 3=2$

B:

- $h_{2}(3)=3 \bmod 7=3 \quad h_{2}(5)=5 \bmod 7=5$

1	0	1	1	0	1	0	0

2) Stream values 7 and 12 :

- $h_{1}(7)=7 \bmod 3=1 \quad h_{1}(12)=12 \bmod 3=0$
$\rightarrow 7$ does not pass;12 passes
- $h_{2}(7)=7 \bmod 7=0 \quad h_{2}(12)=12 \bmod 7=5$

3) The best number of hash functions for $|S|=2$ keys and $|B|=8$ bits:

$$
n / m \cdot \ln (2)=|B| /|S| \cdot \ln (2)=8 / 2 \cdot \ln (2)=2.77 \sim 3
$$

