Advertising on the Web

Advanced Search Techniques for Large Scale Data Analytics

Pavel Zezula and Jan Sedmidubsky

Masaryk University

http://disa.fi.muni.cz

Online Algorithms

Classic model of algorithms

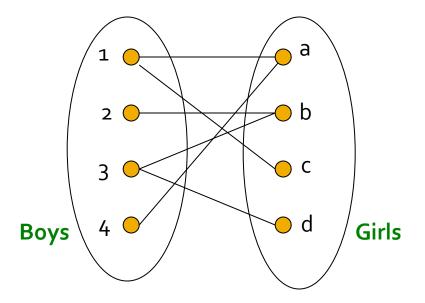
- You get to see the entire input, then compute some function of it
- In this context, "offline algorithm"

Online Algorithms

- You get to see the input one piece at a time, and need to make irrevocable decisions along the way
- Similar to the data stream model

Online Bipartite Matching

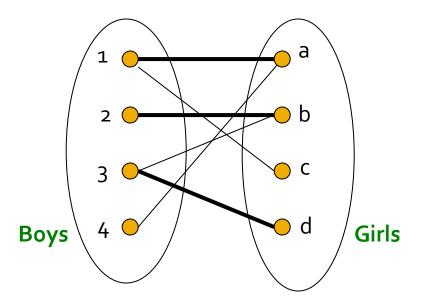
Example: Bipartite Matching



Nodes: Boys and Girls; Edges: Preferences

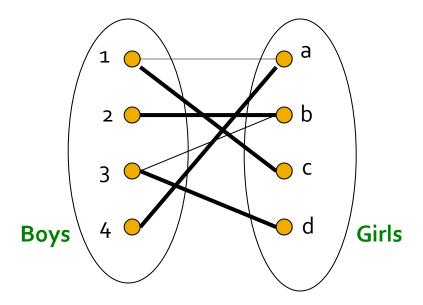
Goal: Match boys to girls so that maximum number of preferences is satisfied

Example: Bipartite Matching



M = {(1,a),(2,b),(3,d)} is a matching Cardinality of matching = |M| = 3

Example: Bipartite Matching



M = {(1,c),(2,b),(3,d),(4,a)} is a perfect matching

Perfect matching ... all vertices of the graph are matched **Maximum matching** ... a matching that contains the largest possible number of matches

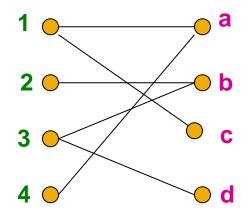
Matching Algorithm

- Problem: Find a maximum matching for a given bipartite graph
 - A perfect one if it exists
- There is a polynomial-time offline algorithm based on augmenting paths (Hopcroft & Karp 1973, see http://en.wikipedia.org/wiki/Hopcroft-Karp algorithm)
- But what if we do not know the entire graph upfront?

Online Graph Matching Problem

- Initially, we are given the set boys
- In each round, one girl's choices are revealed
 - That is, girl's edges are revealed
- At that time, we have to decide to either:
 - Pair the girl with a boy
 - Do not pair the girl with any boy
- Example of application:
 Assigning tasks to servers

Online Graph Matching: Example



(1,a) (2,b) (3,d)

Greedy Algorithm

- Greedy algorithm for the online graph matching problem:
 - Pair the new girl with any eligible boy
 - If there is none, do not pair girl
- How good is the algorithm?

Competitive Ratio

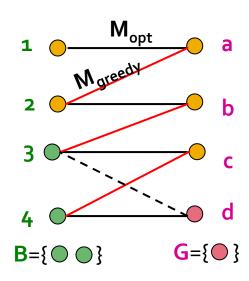
For input I, suppose greedy produces matching M_{greedy} while an optimal matching is M_{opt}

Competitive ratio = $min_{all\ possible\ inputs\ l}$ ($|M_{greedy}|/|M_{opt}|$)

(what is greedy's worst performance over all possible inputs I)

Analyzing the Greedy Algorithm

- Consider a case: M_{greedy}≠ M_{opt}
- Consider the set G of girls
 matched in M_{opt} but not in M_{greedy}
- Then every boy B <u>adjacent</u> to girls in G is already matched in M_{areedv}:



- If there would exist such non-matched (by M_{greedy}) boy adjacent to a non-matched girl then greedy would have matched them
- Since boys B are already matched in M_{greedy} then (1) $|M_{greedy}| ≥ |B|$

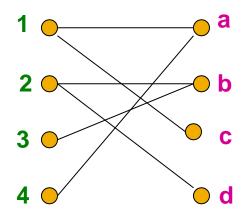
Analyzing the Greedy Algorithm

Summary so far:

- Girls G matched in M_{opt} but not in M_{greedy}
- $\blacksquare (1) |M_{qreedy}| \ge |B|$
- There are at least |G| such boys $(|G| \le |B|)$ otherwise the optimal $(|G| \le |B|)$ algorithm couldn't have matched all girls in G
 - So: $|G| \le |B| \le |M_{greedy}|$
- By definition of G also: $|\mathbf{M}_{opt}| \le |\mathbf{M}_{greedy}| + |\mathbf{G}|$
 - Worst case is when $|G| = |B| = |M_{greedy}|$
- $|M_{opt}| \le 2|M_{greedy}|$ then $|M_{greedy}|/|M_{opt}| \ge 1/2$

G={**O**}

Worst-case Scenario



(1,a) (2,b)

Web Advertising

History of Web Advertising

- Banner ads (1995-2001)
 - Initial form of web advertising
 - Popular websites charged
 X\$ for every 1,000
 "impressions" of the ad
 - Called "CPM" rate (Cost per thousand impressions)
 - Modeled similar to TV, magazine ads
 - From untargeted to demographically targeted
 - Low click-through rates
 - Low ROI for advertisers

CPM...cost per *mille Mille*...thousand in Latin

Performance-based Advertising

- Introduced by Overture around 2000
 - Advertisers bid on search keywords
 - When someone searches for that keyword, the highest bidder's ad is shown
 - Advertiser is charged only if the ad is clicked on
- Similar model adopted by Google with some changes around 2002
 - Called Adwords

Ads vs. Search Results

Web

Results 1 - 10 of about 2,230,000 for geico. (0.04 seco

GEICO Car Insurance. Get an auto insurance quote and save today ...

GEICO auto insurance, online car insurance quote, motorcycle insurance quote, online insurance sales and service from a leading insurance company.

www.geico.com/ - 21k - Sep 22, 2005 - Cached - Similar pages

Auto Insurance - Buy Auto Insurance

Contact Us - Make a Payment

More results from www.geico.com »

Geico, Google Settle Trademark Dispute

The case was resolved out of court, so advertisers are still left without legal guidance on use of trademarks within ads or as keywords.

www.clickz.com/news/article.php/3547356 - 44k - Cached - Similar pages

Google and GEICO settle AdWords dispute | The Register

Google and car insurance firm **GEICO** have settled a trade mark dispute over ... Car insurance firm **GEICO** sued both Google and Yahoo! subsidiary Overture in ... www.theregister.co.uk/2005/09/google **geico** settlement/ - 21k - Cached - Similar pages

GEICO v. Google

... involving a lawsuit filed by Government Employees Insurance Company (GEICO). GEICO has filed suit against two major Internet search engine operators, ... www.consumeraffairs.com/news04/geico_google.html - 19k - Cached - Similar pages

Sponsored Links

Great Car Insurance Rates

Simplify Buying Insurance at Safeco See Your Rate with an Instant Quote www.Safeco.com

Free Insurance Quotes

Fill out one simple form to get multiple quotes from local agents. www.HometownQuotes.com

5 Free Quotes, 1 Form.

Get 5 Free Quotes In Minutes! You Have Nothing To Lose. It's Free sayyessoftware.com/Insurance Missouri

Web 2.0

- Performance-based advertising works!
 - Multi-billion-dollar industry

Interesting problem:
What ads to show for a given query?

Adwords Problem

Given:

- 1. A set of bids by advertisers for search queries
- 2. A click-through rate for each advertiser-query pair
- 3. A budget for each advertiser (say for 1 month)
- 4. A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
 - 1. The size of the set is no larger than the limit on the number of ads per query
 - 2. Each advertiser has bid on the search query
 - 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon

Adwords Problem

- A stream of queries arrives at the search engine: q_1 , q_2 , ...
- Several advertisers bid on each query
- When query q_i arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: Maximize search engine's revenues
 - Simple solution: Instead of raw bids, use the "expected revenue per click" (i.e., Bid*CTR)
- Clearly we need an online algorithm!

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
Α	\$1.00	1%	1 cent
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
		Click through rate	Expected revenue

Complications: Budget

- Two complications:
 - Budget
 - CTR of an ad is unknown

- Each advertiser has a limited budget
 - Search engine guarantees that the advertiser will not be charged more than their daily budget

Complications: CTR

- CTR: Each ad has a different likelihood of being clicked
 - Advertiser 1 bids \$2, click probability = 0.1
 - Advertiser 2 bids \$1, click probability = 0.5
 - Clickthrough rate (CTR) is measured historically
 - Very hard problem: Exploration vs. exploitation
 Exploit: Should we keep showing an ad for which we have good estimates of click-through rate
 or

Explore: Shall we show a brand new ad to get a better sense of its click-through rate

Greedy Algorithm

Our setting: Simplified environment

- There is 1 ad shown for each query
- All advertisers have the same budget B
- All ads are equally likely to be clicked
- Value of each ad is the same (=1)

Simplest algorithm is greedy:

- For a query pick any advertiser who has bid 1 for that query
- Competitive ratio of greedy is 1/2

Bad Scenario for Greedy

- Two advertisers A₁ and A₂
 - \blacksquare A_1 bids on query x, A_2 bids on x and y
 - Both have budgets of \$4
- Query stream: x x x x y y y y
 - Worst case greedy choice: A₂ A₂ A₂ A₂ _ _ _ _
 - Optimal: A₁ A₁ A₁ A₁ A₂ A₂ A₂ A₂
 - Competitive ratio = ½
- This is the worst case!
 - Note: Greedy algorithm is deterministic it always resolves draws in the same way

BALANCE Algorithm [MSVV]

- BALANCE Algorithm by Mehta, Saberi,
 Vazirani, and Vazirani
 - For each query, pick the advertiser with the largest unspent budget
 - Break ties arbitrarily (but in a deterministic way)

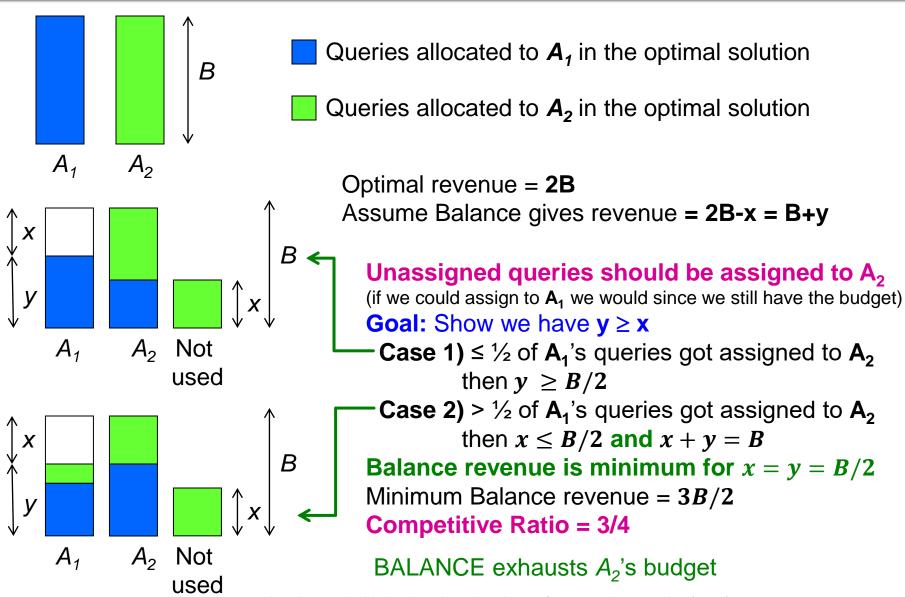
Example: BALANCE

- Two advertisers A₁ and A₂
 - \blacksquare A_1 bids on query x, A_2 bids on x and y
 - Both have budgets of \$4
- Query stream: x x x x y y y y
- BALANCE choice: A₁ A₂ A₁ A₂ A₂ A₂ A₂ _ _ _
 - Optimal: A₁ A₁ A₁ A₁ A₂ A₂ A₂ A₂
- In general: For BALANCE on 2 advertisers
 Competitive ratio = ¾

Analyzing BALANCE

- Consider simple case (w.l.o.g.):
 - 2 advertisers, A_1 and A_2 , each with budget B (≥ 1)
 - Optimal solution exhausts both advertisers' budgets
- BALANCE must exhaust at least one advertiser's budget:
 - If not, we can allocate more queries
 - Whenever BALANCE makes a mistake (both advertisers bid on the query), advertiser's unspent budget only decreases
 - Since optimal exhausts both budgets, one will for sure get exhausted
 - Assume BALANCE exhausts A₂'s budget, but allocates x queries fewer than the optimal
 - Revenue: BAL = 2B x

Analyzing Balance

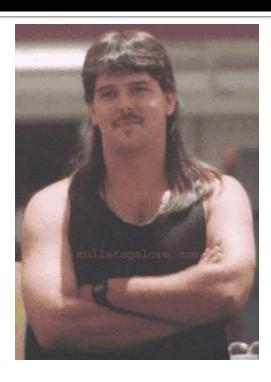


BALANCE: General Result

- In the general case with N advertisers, worst competitive ratio of BALANCE is 1–1/e = approx. 0.63
 - Interestingly, no online algorithm has a better competitive ratio!

Recommender Systems: Content-based Systems & Collaborative Filtering

Example: Recommender Systems



Customer X

- Buys Metallica CD
- Buys Megadeth CD



Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

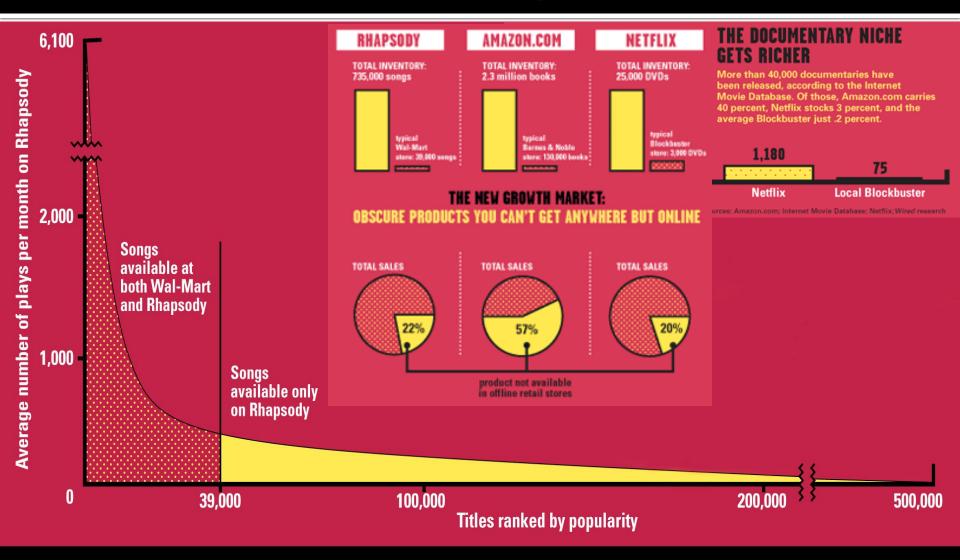
Recommendations



From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller: http://www.wired.com/wired/archive/12.10/tail.html

Sidenote: The Long Tail



Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks Source: Chris Anderson (2004)

Types of Recommendations

- Editorial and hand curated
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...

Formal Model

- X = set of Customers
- S = set of Items
- **Utility function** $u: X \times S \rightarrow R$
 - R = set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems:
 - 1) Content-based
 - 2) Collaborative
 - 3) Latent factor based

Content-based Recommender Systems

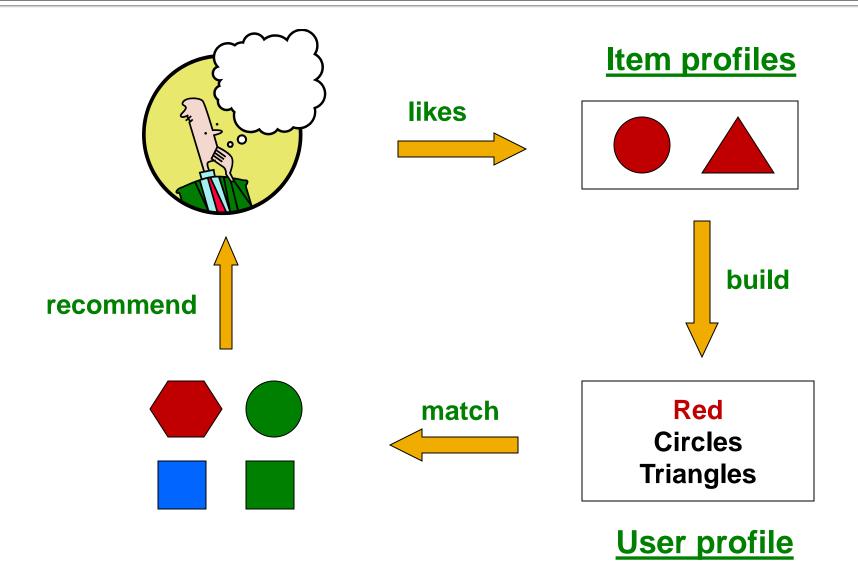
Content-based Recommendations

 Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action



User Profiles and Prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item
- •

Prediction heuristic:

Given user profile x and item profile i, estimate

$$u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$$

Collaborative Filtering

Harnessing quality judgments of other users

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

