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� Classic model of algorithms� Classic model of algorithms

� You get to see the entire input, then compute � You get to see the entire input, then compute 

some function of it

� In this context, “offline algorithm”� In this context, “offline algorithm”

� Online Algorithms� Online Algorithms

� You get to see the input one piece at a time, and � You get to see the input one piece at a time, and 

need to make irrevocable decisions along the way

� Similar to the data stream model� Similar to the data stream model

2Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212)





a1

2

a

b2

3

b

c

4 dBoys Girls

Nodes: Boys and Girls; Edges: PreferencesNodes: Boys and Girls; Edges: Preferences

Goal: Match boys to girls so that maximum 

number of preferences is satisfied
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number of preferences is satisfied
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M = {(1,a),(2,b),(3,d)} is a matchingM = {(1,a),(2,b),(3,d)} is a matching

Cardinality of matching = |M| = 3
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4 dBoys Girls

M = {(1,c),(2,b),(3,d),(4,a)} is a 

perfect matchingperfect matching

Perfect matching… all vertices of the graph are matched
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Perfect matching… all vertices of the graph are matched
Maximum matching…  a matching that contains the largest possible number of matches



� Problem: Find a maximum matching for a � Problem: Find a maximum matching for a 

given bipartite graphgiven bipartite graph

� A perfect one if it exists

� There is a polynomial-time offline algorithm 

based on augmenting paths (Hopcroft & Karp 1973,based on augmenting paths (Hopcroft & Karp 1973,

see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)

� But what if we do not know the entire � But what if we do not know the entire 

graph upfront?
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� Initially, we are given the set boys� Initially, we are given the set boys

� In each round, one girl’s choices are revealed� In each round, one girl’s choices are revealed

� That is, girl’s edges are revealed

� At that time, we have to decide to either:� At that time, we have to decide to either:

� Pair the girl with a boy� Pair the girl with a boy

� Do not pair the girl with any boy

� Example of application: 

Assigning tasks to serversAssigning tasks to servers
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� Greedy algorithm for the online graph � Greedy algorithm for the online graph 

matching problem:matching problem:

� Pair the new girl with any eligible boy

� If there is none, do not pair girl� If there is none, do not pair girl

� How good is the algorithm?� How good is the algorithm?

10Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212)



� For input I, suppose greedy produces � For input I, suppose greedy produces 

matching Mgreedy while an optimal matching Mgreedy while an optimal 

matching is Mopt

Competitive ratio = 

min (|M |/|M |)minall possible inputs I (|Mgreedy|/|Mopt|)

(what is greedy’s worst performance over all possible inputs I)(what is greedy’s worst performance over all possible inputs I)
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� Consider a case: M ≠ M a
Mopt1� Consider a case: Mgreedy≠ Mopt

� Consider the set G of girls 

a

b

Mopt1

2� Consider the set G of girls 

matched in Mopt but not in Mgreedy

� Then every boy B adjacent to girls 

b

c

2

3

� Then every boy B adjacent to girls 

in G is already matched in Mgreedy:
d

G={     }B={          }

4

in G is already matched in Mgreedy:

� If there would exist such non-matched 

(by Mgreedy) boy adjacent to a non-matched (by Mgreedy) boy adjacent to a non-matched 

girl then greedy would have matched them

� Since boys B are already matched in M then � Since boys B are already matched in Mgreedy then 

(1) |Mgreedy|≥ |B|(1) |Mgreedy|≥ |B|
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� Summary so far: a
Mopt1

� Summary so far:

� Girls G matched in Mopt but not in Mgreedy

a

b

1

2
� Girls G matched in Mopt but not in Mgreedy

� (1) |Mgreedy|≥ |B|

� There are at least |G| such boys 

c

d

3

4� There are at least |G| such boys 

(|G| ≤ |B|) otherwise the optimal 

d

G={     }B={          }

4

(|G| ≤ |B|) otherwise the optimal 

algorithm couldn’t have matched all girls in G

� So: |G| ≤ |B| ≤ |M |� So: |G| ≤ |B| ≤ |Mgreedy|

� By definition of G also: |Mopt| ≤ |Mgreedy| + |G|� By definition of G also: |Mopt| ≤ |Mgreedy| + |G|

� Worst case is when |G| = |B| = |Mgreedy|

� |M | ≤ 2|M | then |M |/|M | ≥≥≥≥ 1/2� |Mopt| ≤ 2|Mgreedy| then |Mgreedy|/|Mopt| ≥≥≥≥ 1/2
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� Banner ads (1995-2001)� Banner ads (1995-2001)

� Initial form of web advertising� Initial form of web advertising

� Popular websites charged 

X$ for every 1,000 X$ for every 1,000 

“impressions” of the ad

� Called “CPM” rate 

(Cost per thousand impressions)
CPM…cost per mille
Mille�thousand in Latin

� Modeled similar to TV, magazine ads

� From untargeted to demographically targeted� From untargeted to demographically targeted

� Low click-through rates

Low ROI for advertisers� Low ROI for advertisers
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� Introduced by Overture around 2000� Introduced by Overture around 2000

� Advertisers bid on search keywords� Advertisers bid on search keywords

� When someone searches for that keyword, the 

highest bidder’s ad is shownhighest bidder’s ad is shown

� Advertiser is charged only if the ad is clicked on� Advertiser is charged only if the ad is clicked on

� Similar model adopted by Google with some � Similar model adopted by Google with some 

changes around 2002

� Called Adwords� Called Adwords
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� Performance-based advertising works!� Performance-based advertising works!

� Multi-billion-dollar industry� Multi-billion-dollar industry

� Interesting problem: � Interesting problem: 

What ads to show for a given query? 
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� Given:� Given:

� 1. A set of bids by advertisers for search queries

2. A click-through rate for each advertiser-query pair� 2. A click-through rate for each advertiser-query pair

� 3. A budget for each advertiser (say for 1 month)� 3. A budget for each advertiser (say for 1 month)

� 4. A limit on the number of ads to be displayed with 
each search queryeach search query

� Respond to each search query with a set of 
advertisers such that:advertisers such that:

� 1. The size of the set is no larger than the limit on the 
number of ads per querynumber of ads per query

� 2. Each advertiser has bid on the search query

� 3. Each advertiser has enough budget left to pay for � 3. Each advertiser has enough budget left to pay for 
the ad if it is clicked upon
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� A stream of queries arrives at the search � A stream of queries arrives at the search 
engine: q1, q2, …

Several advertisers bid on each query
1 2

� Several advertisers bid on each query
� When query qi arrives, search engine must � When query qi arrives, search engine must 

pick a subset of advertisers whose ads are 
shownshown

� Goal: Maximize search engine’s revenues� Goal: Maximize search engine’s revenues

� Simple solution: Instead of raw bids, use the 

“expected revenue per click” (i.e., Bid*CTR)“expected revenue per click” (i.e., Bid*CTR)

� Clearly we need an online algorithm!� Clearly we need an online algorithm!
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Advertiser Bid CTR Bid * CTR

A $1.00 1% 1 centA

B

$1.00

$0.75

1%

2%

1 cent

1.5 centsB

C

$0.75

$0.50

2%

2.5%

1.5 cents

1.125 centsC $0.50 2.5% 1.125 cents

Click through

rate

Expected

revenuerate revenue
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� Two complications:� Two complications:

� Budget� Budget

� CTR of an ad is unknown

� Each advertiser has a limited budget� Each advertiser has a limited budget

� Search engine guarantees that the advertiser 

will not be charged more than their daily budgetwill not be charged more than their daily budget
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� CTR: Each ad has a different likelihood of � CTR: Each ad has a different likelihood of 

being clickedbeing clicked

� Advertiser 1 bids $2, click probability = 0.1

� Advertiser 2 bids $1, click probability = 0.5� Advertiser 2 bids $1, click probability = 0.5

� Clickthrough rate (CTR) is measured historically� Clickthrough rate (CTR) is measured historically

� Very hard problem: Exploration vs. exploitation

Exploit: Should we keep showing an ad for which we have Exploit: Should we keep showing an ad for which we have 

good estimates of click-through rate 

oror

Explore:  Shall we show a brand new ad to get a better 

sense of its click-through ratesense of its click-through rate
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� Our setting: Simplified environment� Our setting: Simplified environment

� There is 1 ad shown for each query� There is 1 ad shown for each query

� All advertisers have the same budget B

� All ads are equally likely to be clicked� All ads are equally likely to be clicked

� Value of each ad is the same (=1)� Value of each ad is the same (=1)

� Simplest algorithm is greedy:� Simplest algorithm is greedy:

� For a query pick any advertiser who has 

bid 1 for that querybid 1 for that query

� Competitive ratio of greedy is 1/2� Competitive ratio of greedy is 1/2
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� Two advertisers A and A� Two advertisers A1 and A2

� A1 bids on query x, A2 bids on x and y� A1 bids on query x, A2 bids on x and y

� Both have budgets of $4

� Query stream: x x x x y y y y� Query stream: x x x x y y y y

� Worst case greedy choice: A2  A2 A2 A2 _ _ _ _ � Worst case greedy choice: A2  A2 A2 A2 _ _ _ _ 

� Optimal: A1  A1 A1 A1 A2  A2 A2 A2

� Competitive ratio = ½� Competitive ratio = ½

� This is the worst case!� This is the worst case!
� Note: Greedy algorithm is deterministic – it always 

resolves draws in the same wayresolves draws in the same way
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� BALANCE Algorithm by Mehta, Saberi, � BALANCE Algorithm by Mehta, Saberi, 

Vazirani, and VaziraniVazirani, and Vazirani

� For each query, pick the advertiser with the 

largest unspent budgetlargest unspent budget

� Break ties arbitrarily (but in a deterministic way)
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� Two advertisers A and A� Two advertisers A1 and A2

� A1 bids on query x, A2 bids on x and y� A1 bids on query x, A2 bids on x and y

� Both have budgets of $4

� Query stream: x x x x y y y y

� BALANCE choice: A1 A2 A1 A2 A2 A2 _ _1 2 1 2 2 2

� Optimal: A1  A1 A1 A1 A2  A2 A2 A2

� In general: For BALANCE on 2 advertisers

Competitive ratio = ¾Competitive ratio = ¾
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� Consider simple case (w.l.o.g.): � Consider simple case (w.l.o.g.): 
� 2 advertisers, A1 and A2, each with budget B (≥1)

� Optimal solution exhausts both advertisers’ budgets� Optimal solution exhausts both advertisers’ budgets

� BALANCE must exhaust at least one � BALANCE must exhaust at least one 
advertiser’s budget:
� If not, we can allocate more queries� If not, we can allocate more queries

� Whenever BALANCE makes a mistake (both advertisers bid 
on the query), advertiser’s unspent budget only decreaseson the query), advertiser’s unspent budget only decreases

� Since optimal exhausts both budgets, one will for sure get 
exhaustedexhausted

� Assume BALANCE exhausts A2’s budget, 
but allocates x queries fewer than the optimalbut allocates x queries fewer than the optimal

� Revenue: BAL = 2B - x
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Queries allocated to A in the optimal solution
B

Queries allocated to A
1
in the optimal solution

Queries allocated to A
2
in the optimal solution

A1 A2
Optimal revenue = 2B
Assume Balance gives revenue = 2B-x = B+y

y

B
x

Assume Balance gives revenue = 2B-x = B+y

xy

A1 A2 Not 

usedused

x

xy

B
x
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BALANCE exhausts A2’s budget
A1 A2 Not 

used



� In the general case with N advertisers, worst � In the general case with N advertisers, worst 

competitive ratio of BALANCE is 1–1/e = competitive ratio of BALANCE is 1–1/e = 

approx. 0.63

� Interestingly, no online algorithm has a better � Interestingly, no online algorithm has a better 

competitive ratio!
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Customer X � Customer Y� Customer X

� Buys Metallica CD

� Customer Y

� Does search on Metallica

Recommender system 
� Buys Metallica CD

� Buys Megadeth CD � Recommender system 
suggests Megadeth from 
data collected about data collected about 
customer X
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Examples:Examples:

Search Recommendations

Items Products, web sites, 

blogs, news items, …blogs, news items, …
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� Shelf space is a scarce commodity for � Shelf space is a scarce commodity for 
traditional retailers 

� Also: TV networks, movie theaters,…

Web enables near-zero-cost dissemination � Web enables near-zero-cost dissemination 
of information about productsof information about products

� From scarcity to abundance

� More choice necessitates better filters

� Recommendation engines� Recommendation engines

� How Into Thin Air made Touching the Void
a bestseller: a bestseller: http://www.wired.com/wired/archive/12.10/tail.html
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Source: Chris Anderson (2004)
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� Editorial and hand curated� Editorial and hand curated

� List of favorites� List of favorites

� Lists of “essential” items

� Simple aggregates

Top 10, Most Popular, Recent Uploads� Top 10, Most Popular, Recent Uploads

Tailored to individual users� Tailored to individual users

� Amazon, Netflix, …� Amazon, Netflix, …
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� X = set of Customers� X = set of Customers

� S = set of Items� S = set of Items

� Utility function u: X × S � R� Utility function u: X × S � R

� R = set of ratings� R = set of ratings

� R is a totally ordered setR is a totally ordered set

� e.g., 0-5 stars, real number in [0,1]
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AvatarAvatar LOTRLOTR MatrixMatrix PiratesPirates

0.21

AvatarAvatar LOTRLOTR MatrixMatrix PiratesPirates

0.21AliceAlice

0.30.5
BobBob

10.2CarolCarol

0.4

10.2

DavidDavid 0.4
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� (1) Gathering “known” ratings for matrix� (1) Gathering “known” ratings for matrix

� How to collect the data in the utility matrixHow to collect the data in the utility matrix

� (2) Extrapolate unknown ratings from the 
known onesknown ones

� Mainly interested in high unknown ratings� Mainly interested in high unknown ratings

� We are not interested in knowing what you don’t like 
but what you likebut what you like

� (3) Evaluating extrapolation methods� (3) Evaluating extrapolation methods

� How to measure success/performance of
recommendation methodsrecommendation methods
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� Explicit� Explicit

� Ask people to rate items� Ask people to rate items

� Doesn’t work well in practice – people 

can’t be botheredcan’t be bothered

� Implicit� Implicit

� Learn ratings from user actions� Learn ratings from user actions

� E.g., purchase implies high rating

� What about low ratings?� What about low ratings?
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� Key problem: Utility matrix U is sparse� Key problem: Utility matrix U is sparse

� Most people have not rated most items� Most people have not rated most items

� Cold start: 

� New items have no ratings� New items have no ratings

� New users have no history

� Three approaches to recommender systems:Three approaches to recommender systems:

� 1) Content-based

� 2) Collaborative� 2) Collaborative

� 3) Latent factor based� 3) Latent factor based
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� Main idea: Recommend items to customer x� Main idea: Recommend items to customer x

similar to previous items rated highly by xsimilar to previous items rated highly by x

Example:Example:

� Movie recommendationsMovie recommendations

� Recommend movies with same actor(s), 

director, genre, …director, genre, …

� Websites, blogs, news

� Recommend other sites with “similar” content
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Item profiles

likes

Item profiles

recommend
build

recommend
build

Red
Circles

match
Circles
Triangles

User profileUser profile
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Harnessing quality judgments of other usersHarnessing quality judgments of other users



� Consider user x� Consider user x

Find set N of other � Find set N of other 

users whose ratings 
x

users whose ratings 

are “similar” to 

x’s ratings Nx’s ratings

Estimate x’s ratings 

N

� Estimate x’s ratings 

based on ratings based on ratings 

of users in N

48Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212)


