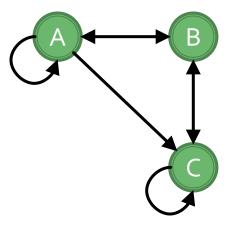
SOLUTIONS

Exercises on Block3: Link Analysis – PageRank Advertising Recommender Systems

Advanced Search Techniques for Large Scale Data Analytics
Pavel Zezula and Jan Sedmidubsky
Masaryk University
http://disa.fi.muni.cz

PageRank (1) – Assignment

For the following graph



Compute the PageRank of each page, assuming no taxation

PageRank (1) – Recap

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links,
 each link gets r_i / n votes
- Page j's own importance is the sum of the votes on its in-links

$$r_{j} = r_{i}/3 + r_{k}/4$$
 $r_{j}/3 + r_{k}/4$

PageRank (1) – Recap

- Rank vector r: vector with an entry per page
 - $lacktriangleq r_i$ is the importance score of page i
- Equations
 - Let page i has d_i out-links
- Stochastic adjacency matrix M
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix: Columns sum to 1
- Power iteration principle:

$$r = M \cdot r$$

PageRank (1) – Recap

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,....,1/N]^T$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$

d_i out-degree of node i

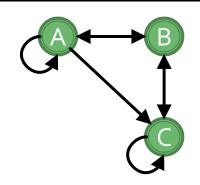
• Stop when $|\mathbf{r}^{(t+1)} - \mathbf{r}^{(t)}|_1 < \varepsilon$

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$ is the **L**₁ norm Can use any other vector norm, e.g., Euclidean

PageRank (1) – Solution

The transition matrix for the graph is:

$$M = \begin{pmatrix} 1/3 & 1/2 & 0 \\ 1/3 & 0 & 1/2 \\ 1/3 & 1/2 & 1/2 \end{pmatrix}$$



By equation method, we get the result:

$$A = \frac{1}{3}A + \frac{1}{2}B$$

$$B = \frac{1}{3}A + \frac{1}{2}C$$

$$C = \frac{1}{3}A + \frac{1}{2}B + \frac{1}{2}C$$

$$A = \frac{3}{13}$$

$$C = \frac{1}{3}A + \frac{1}{2}B + \frac{1}{2}C$$

$$A + B + C = 1$$

$$C = \frac{6}{13}$$

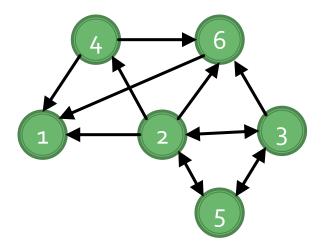
$$C = \frac{6}{13}$$

By power-iteration method, we get the following list:

$$\begin{pmatrix} 0.3333 \\ 0.3333 \\ 0.3333 \end{pmatrix}, \begin{pmatrix} 0.2777 \\ 0.2777 \\ 0.4444 \end{pmatrix}, \begin{pmatrix} 0.2314 \\ 0.3148 \\ 0.4537 \end{pmatrix}, \begin{pmatrix} 0.2345 \\ 0.3040 \\ 0.4614 \end{pmatrix}, \begin{pmatrix} 0.2301 \\ 0.3088 \\ 0.4609 \end{pmatrix}, ..., \begin{pmatrix} 0.2307 \\ 0.3076 \\ 0.4615 \end{pmatrix}$$

PageRank (2) – Assignment

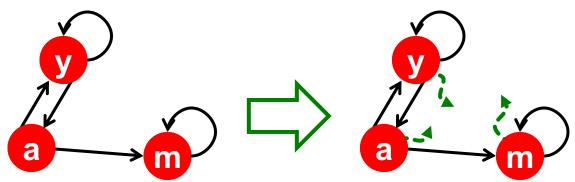
For the following graph



- 1) Set up the PageRank equations, assuming $\beta = 0.8$
- 2) Order nodes by PageRank from highest to lowest

PageRank (2) – Recap

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps



PageRank (2) – Recap

- Google's solution that does it all: At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i o i} eta \, rac{r_i}{d_i} + (1 - eta) rac{1}{N}$$
 d_i... out-degree of node i

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

of node i

PageRank (2) – Recap

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix A:

[1/N]_{NxN}...N by N matrix where all entries are 1/N

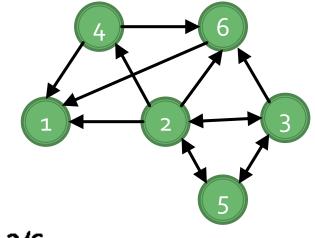
$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem: $r = A \cdot r$ And the Power method still works!
- What is β?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

PageRank (2) – Solution

Equations:

- $r_1 = 0.8 \cdot (1/6 \cdot r_1 + 1/2 \cdot r_4 + r_6 + 1/5 \cdot r_2) + 0.2/6$
- $r_2 = 0.8 \cdot (1/6 \cdot r_1 + 1/3 \cdot r_3 + 1/2 \cdot r_5) + 0.2/6$
- $r_3 = 0.8 \cdot (1/6 \cdot r_1 + 1/5 \cdot r_2 + 1/2 \cdot r_5) + 0.2/6$
- $r_4 = 0.8 \cdot (1/6 \cdot r_1 + 1/5 \cdot r_2) + 0.2/6$
- $r_5 = 0.8 \cdot (1/6 \cdot r_1 + 1/5 \cdot r_2 + 1/3 \cdot r_3) + 0.2/6$
- $r_6 = 0.8 \cdot (1/6 \cdot r_1 + 1/5 \cdot r_2 + 1/3 \cdot r_3 + 1/2 \cdot r_4) + 0.2/6$



 Without the need of computing the actual importance from the above stated equations, we can derive order between the following pairs of nodes:

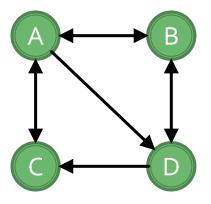
$$r_1 > r_6$$
 $r_4 < r_5 < r_6$ $r_2 > r_3$ $r_3 > r_5$ $r_6 > r_2$

This implies final order:

$$r_1 > r_6 > r_2 > r_3 > r_5 > r_4$$

PageRank (3) – Assignment

For the following graph



- Assuming β = 0.8, compute the topic-sensitive PageRank for the following teleport sets:
 - 1) {A}
 - 2) {A, C}

PageRank (3) – Recap

- Random walker has a small probability of teleporting at any step
- Teleport can go to:
 - Standard PageRank: Any page with equal probability
 - To avoid dead-end and spider-trap problems
 - Topic Specific PageRank: A topic-specific set of "relevant" pages (teleport set)
- Idea: Bias the random walk
 - When walker teleports, she pick a page from a set S
 - S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic/query
 - For each teleport set S, we get a different vector r_S

PageRank (3) – Recap

To make this work all we need is to update the teleportation part of the PageRank formulation:

$$A_{ij} = \left\{ eta M_{ij} + (1 - eta)/|S| & \text{if } i \in S \\ eta M_{ij} + 0 & \text{otherwise} \end{array} \right.$$

- A is stochastic!
- We weighted all pages in the teleport set S equally
 - Could also assign different weights to pages!
- Power iteration:
 - Multiply r by M, then add a vector t
 - $t = (x_1, ..., x_N), x_i = (1 \beta)/|S|$ if $i \in S$; 0 otherwise
 - $r = \beta M \cdot r + t$

PageRank (3) – Solution 1/4

The transition matrix for the graph is:

$$M = \begin{pmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{pmatrix} \beta \cdot M = \begin{pmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{pmatrix} \beta = 0.8 = 4/5$$

1) Computing PageRank for teleport set {A} using equations:

$$(1-\beta) \cdot \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1/5\\0\\0\\0 \end{pmatrix} \implies A = \frac{2}{5}B + \frac{4}{5}C + \frac{1}{5}$$

$$B = \frac{4}{15}A + \frac{2}{5}D$$

$$C = \frac{4}{15}A + \frac{2}{5}D \implies r = \left(\frac{3}{7} \quad \frac{4}{21} \quad \frac{4}{21}\right)^{T}$$

$$D = \frac{4}{15}A + \frac{2}{5}B$$

$$A + B + C + D = 1$$

PageRank (3) - Solution 2/4

The transition matrix for the graph is:

$$M = \begin{pmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{pmatrix} \qquad \beta \cdot M = \begin{pmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{pmatrix}$$

1) Computing PageRank for teleport set {A} using iterations:

$$(1 - \beta) \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/5 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow r^{(1)} = \beta \cdot M \cdot r^{(0)} + \begin{pmatrix} 1/5 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

• We can initialize vector r in different ways; however, the sum of values must equal to 1, e.g., $r^{(0)} = (1 \ 0 \ 0 \ 0)^T$

$$\Rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0.2 \\ 0.2666 \\ 0.2666 \\ 0.2666 \end{pmatrix}, \begin{pmatrix} 0.52 \\ 0.16 \\ 0.16 \\ 0.16 \end{pmatrix}, \dots, \begin{pmatrix} 0.4285 \\ 0.1904 \\ 0.1904 \\ 0.1904 \end{pmatrix}$$

PageRank (3) - Solution 3/4

The transition matrix for the graph is:

$$M = \begin{pmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{pmatrix} \qquad \beta \cdot M = \begin{pmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{pmatrix}$$

2) Computing PageRank for teleport set {A,C} using equations:

$$(1-\beta) \cdot \begin{pmatrix} 1/2 \\ 0 \\ 1/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/10 \\ 0 \\ 1/10 \\ 0 \end{pmatrix} \Rightarrow A = \frac{2}{5}B + \frac{4}{5}C + \frac{1}{10}$$

$$B = \frac{4}{15}A + \frac{2}{5}D$$

$$C = \frac{4}{15}A + \frac{2}{5}D + \frac{1}{10} \Rightarrow r = \begin{pmatrix} \frac{27}{70} & \frac{6}{35} & \frac{19}{70} & \frac{6}{35} \end{pmatrix}^{T}$$

$$D = \frac{4}{15}A + \frac{2}{5}B$$

$$A + B + C + D = 1$$

PageRank (3) - Solution 4/4

The transition matrix for the graph is:

$$M = \begin{pmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{pmatrix} \qquad \beta \cdot M = \begin{pmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{pmatrix}$$

2) Computing PageRank for teleport set {A,C} using iterations:

$$(1 - \beta) \cdot \begin{pmatrix} 1/2 \\ 0 \\ 1/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/10 \\ 0 \\ 1/10 \\ 0 \end{pmatrix} \Rightarrow r^{(1)} = \beta \cdot M \cdot r^{(0)} + \begin{pmatrix} 1/10 \\ 0 \\ 1/10 \\ 0 \end{pmatrix}$$

• We can initialize vector r in different ways; however, the sum of values must equal to 1, e.g., $r^{(0)} = (1 \ 0 \ 0 \ 0)^T$

$$\Rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0.1 \\ 0.2666 \\ 0.3666 \\ 0.2666 \end{pmatrix}, \begin{pmatrix} 0.5 \\ 0.1333 \\ 0.2333 \\ 0.1333 \end{pmatrix}, \dots, \begin{pmatrix} 0.3857 \\ 0.1714 \\ 0.2714 \\ 0.1714 \end{pmatrix}$$

Advertising (1) – Assignment

- Suppose the BALANCE algorithm with bids of 0 or 1 only, to a situation where advertiser
 - A bids on query words x and y
 - B bids on query words x and z
 - Both have a budget of \$2. Decide whether the following sequences of queries are certainly handled optimally by the algorithm:
 - 1) yzyy
 - 2) xyyz
 - 3) xyzx

Advertising (1) – Recap

- BALANCE Algorithm by Mehta, Saberi,
 Vazirani, and Vazirani
 - For each query, pick the advertiser with the largest unspent budget
 - Break ties arbitrarily (but in a deterministic way)

Advertising (1) – Recap

- Two advertisers A and B
 - A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: x x x x y y y y
- BALANCE choice: A B A B B B _ _
 - Optimal: A A A A B B B B
- In general: For BALANCE on 2 advertisers
 Competitive ratio = ¾

Advertising (1) – Solution

A bids on x and y B bids on x and z budget: \$2

- 1) Input sequence: yzyy
 - Balance choice: yzy (\$3) Optimal: yzy (\$3) ⇒ Yes
- 2) Input sequence: xyyz
 - If the x is assigned to A, then the second y cannot be satisfied, while the optimum assigns all four queries
 - Balance choice: xyz (\$3) Optimal: xyyz (\$4) \Rightarrow **No**
- 3) Input sequence: xyzx
 - Whichever advertiser is assigned the first x, the other will be assigned the second x, thus using all four queries
 - Balance choice: xyzx (\$4) Optimal: xyzx (\$4) ⇒ Yes

Recomm. Systems (1) – Assignment

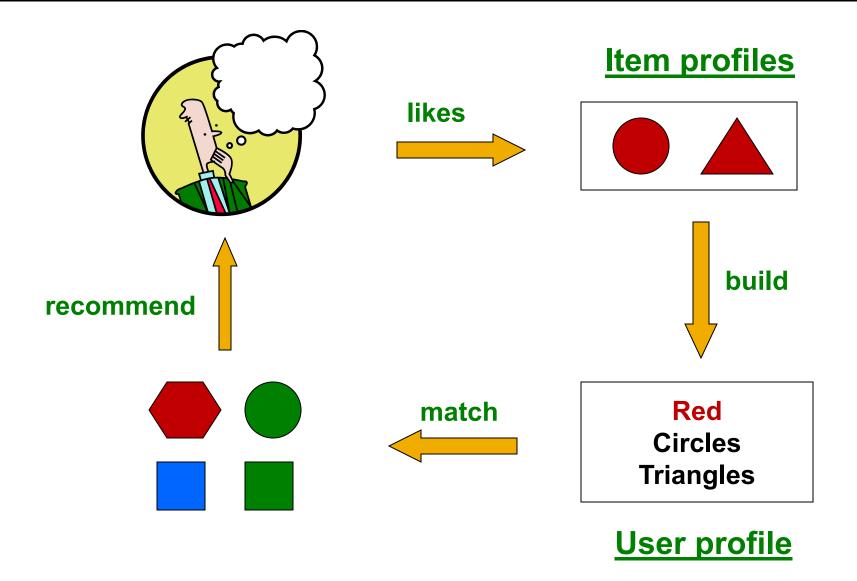
- Bookstore has enough ratings to use a more advanced recommendation system
 - Suppose the mean rating of books is 3.4 stars
 - Alice has rated 350 books and her average rating is
 0.4 stars higher than average users' ratings
 - Animals Farm, is a book title in the bookstore with 250,000 ratings whose average rating is 0.7 higher than global average
 - What is a baseline estimate of Alice's rating for Animals Farms?

Recomm. Systems (1) - Solution

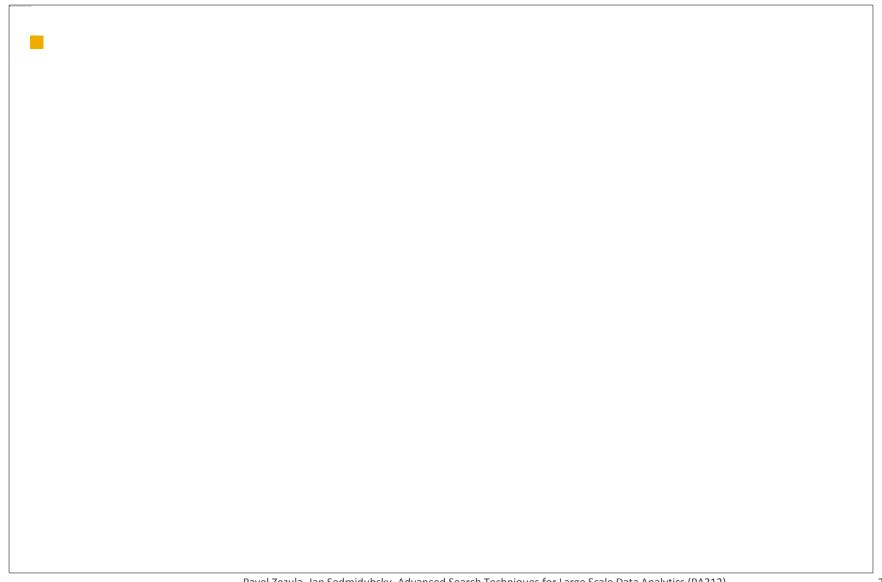
Baseline estimate of Alice's rating for Animals Farms:

$$r = 3.4 + 0.7 + 0.4 = 4.5$$

Recomm. Systems (2) – Recap



Recomm. Systems (2) – Recap



Recomm. Systems (2) – Assignment

Computers A, B and C have the following features:

Feature	Α	В	C
Processor speed	3.06	2.68	2.92
Disk size	500	320	640
Main-memory size	6	4	6

- Assuming features as a vector for each computer, e.g., A's vector is [3.06, 500, 6], we can compute the cosine distance between any two vectors
- Scaling dimensions can prefer some components
- Assume 1 as the scale factor for processor speed, α for the disk size, and β for the main memory size and compute:
 - The cosines of angles between pairs of vectors (in terms of α and β)

Recomm. Systems (2) – Solution

 Feature
 A
 B
 C

 Processor speed
 3.06
 2.68
 2.92

 Disk size
 500
 320
 640

 Main-memory size
 6
 4
 6

 The cosines of angles between pairs of vectors (in terms of α and β)

$$\cos(A,B) = \frac{8.2008 + 160000\alpha^2 + 24\beta^2}{\sqrt{9.3636 + 250000\alpha^2 + 36\beta^2} \cdot \sqrt{7.1824 + 102400\alpha^2 + 16\beta^2}}$$

$$\cos(B,C) = \frac{7.8256 + 204800\alpha^2 + 24\beta^2}{\sqrt{7.1824 + 102400\alpha^2 + 16\beta^2} \cdot \sqrt{8.5264 + 409600\alpha^2 + 36\beta^2}}$$

$$\cos(A,C) = \frac{8.9352 + 320000\alpha^2 + 36\beta^2}{\sqrt{9.3636 + 250000\alpha^2 + 36\beta^2} \cdot \sqrt{8.5264 + 409600\alpha^2 + 36\beta^2}}$$

Recomm. Systems (3) – Assignment

- A user has rated the three computers as follows:
 - A: 4 stars, B: 2 stars, C: 5 stars
- Tasks:
 - 1) Normalize the ratings for this user
 - Compute a user profile for the user, with the following features

Feature	Α	В	C
Processor speed	3.06	2.68	2.92
Disk size	500	320	640
Main-memory size	6	4	6

Recomm. Systems (3) - Solution

A: 4, B: 2, C: 5 stars

Feature	Α	В	C
Processor speed	3.06	2.68	2.92
Disk size	500	320	640
Main-memory size	6	4	6

1) Normalized ratings:

- avg(4+2+5)/3=11/3
- A: 4-11/3=1/3
- B: 2-11/3=-5/3
- C: 5-11/3=4/3

2) Computed user profile:

- Processor speed: 3.06 · 1/3-2.68 · 5/3 + 2.92 · 4/3=0.4467
- Disk size: 500 · 1/3-320 · 5/3 + 640 · 4/3=486.6667
- Main-memory size: 6 · 1/3-4 · 5/3 + 6 · 4/3=3.3333