
 https://crocs.fi.muni.cz @CRoCS_MUNI

PV204 Security technologies

JavaCard - programming secure elements

Petr Švenda svenda@fi.muni.cz @rngsec

Centre for Research on Cryptography and Security, Masaryk University

Please comment on slides with anything unclear, incorrect or suggestions for improvement

https://drive.google.com/file/d/1vHkqpJH3MU0zjJ3FQFuNiJbNUV_9VgHB/view?usp=sharing

https://drive.google.com/file/d/1vHkqpJH3MU0zjJ3FQFuNiJbNUV_9VgHB/view?usp=sharing

 https://crocs.fi.muni.cz @CRoCS_MUNI

Project (Tonda)

2 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

Prerequisites

• Knowledge of basic smartcards technology is assumed (PV079)

• If you are not familiar yet, please read slides

PV204_03___PV079_2021_smartcards.pdf from IS (uploaded for this

course)

3 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI 4 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

Motivation

• Usage security-relevant scenarios

– Subscriber modules (SIMs), merchant payments, hardware wallets,

authentication tokens, electronic IDs…

• Why not as another software application on your laptop?

– Laptop not well portable, large trusted code base, many other applications

(malware), lack of secure storage for cryptographic keys, user/attacker control

platform, expensive to own…

• Mobile phone fixes only some of these issues

– Is portable, some have better platform security (but not all!), still somewhat

expensive…

5 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

Properties of “Ideal” platform Technology

• Cheap, portable, no battery

• Good support from outer environment

• Fast enough for a task

• Easy to develop (securely)

• Apps portable between platform manufacturers

• Secure, even with physical access (keys extraction)

• Multiple apps from distrusting providers securely

• Secure remote management (new apps, update)

• …

6 | PV204 JavaCard - programming secure elements

crypto smartcards

PC/SC, phones with NFC

main CPU + crypto coprocessors

JavaCard API, tools, best practices

JavaCard bytecode, JCVM

tamper resistant, CC, FIPS140-2/3

Applet firewall, Security Domains

GlobalPlatform, SCP, DAP

 https://crocs.fi.muni.cz @CRoCS_MUNI

Primary markets for smartcards

| PV204 JavaCard - programming secure elements

https://www.eurosmart.com/eurosmarts-secure-elements-market-analysis-and-forecasts/

Telco

Payment

7

 https://crocs.fi.muni.cz @CRoCS_MUNI

Old vs. current multi-application smart cards

• One program only

• Stored persistently in ROM or

EEPROM

• Written in machine code

– Chip specific

• Multiple applications at the same time

• Stored in EEPROM

• Written in higher-level language

– Interpreted from bytecode

– Portable

• Application can be later managed

(remotely)

| PV204 JavaCard - programming secure elements 8

 https://crocs.fi.muni.cz @CRoCS_MUNI | PV204 JavaCard - programming secure

elements

Libraries

PKCS#11, OpenSC, JMRTD

Smartcard control language API

C/C# WinSCard.h, Java java.smartcardio.*, Python pyscard

System smartcard interface: Windows’s PC/SC, Linux’s PC/SC-lite

Manage readers and cards, Transmit ISO7816-4’s APDU

Custom app with

direct control

PC application via library:

browser TLS, PDF sign… PC application

with direct control:

GnuPG, GPShell

API: EMV, GSM, PIV, OpenPGP, ICAO 9303 (BAC/EAC/SAC)

OpenPlatform, ISO7816-4 cmds, custom APDU

SC app programming:

JavaCard, MultOS, .NET

Readers

Contact: ISO7816-2,3 (T=0/1)

Contactless: ISO 14443 (T=CL)

Card application 3
Card application 2

Card application 1

A
P

D
U

p
a

c
k
e

t

9

Our focus today

 https://crocs.fi.muni.cz @CRoCS_MUNI

APDU (Application Protocol Data Unit)

• APDU is basic logical communication datagram

– header (5 bytes) and up to ~256 bytes of user data

• Format specified in ISO7816-4

• Header/Data format

– CLA – instruction class

– INS – instruction number

– P1, P2 – optional data

– Lc – length of incoming data

– Data – user data

– Le – length of the expected output data

• Some values of CLA/INS/P1/P2 standardized (better interoperability)

– https://web.archive.org/web/20180721010834/http://techmeonline.com/most-used-smart-card-commands-apdu/

• Custom values used by application developer (your own API)

| PV204 JavaCard - programming secure elements 10

https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard basics

| PV204 JavaCard - programming secure elements 11

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard

• Maintained by Java Card Forum (since 1997)

• Cross-platform and cross-vendor applet interoperability

• Freely available specifications and development kits

– http://www.oracle.com/technetwork/java/javacard/index.html

• JavaCard applet is Java-like application

– uploaded to a smart card

– executed by the JCVM

| PV204 JavaCard - programming secure

elements
12

http://www.oracle.com/technetwork/java/javacard/index.html

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard 2.x is like Java but not supporting…

• No dynamic class loading

• No Security manager

• No Threads and synchronization

• No Object cloning, finalization

• No Large primitive data types

– float, double, long and char

– usually not even int (4 bytes) data type by default

• specialized package javacardx.framework.util.intx for support

• Most of std. classes missing

– most of java.lang, Object and Throwable in limited form

• Limited garbage collection

– Newer cards supports, but slow and not always unreliable

| PV204 JavaCard - programming secure

elements
15

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard 2.x supports

• Standard benefits of the Java language

– data encapsulation, safe memory management, packages, etc.

• Applet isolation based on the JavaCard firewall

– applets cannot directly communicate with each other

– special interface (Shareable) for cross applets interaction

• Atomic operations using transaction mode

• Transient data (buffer placed in RAM)

– fast and automatically cleared

• A rich cryptography API

– accelerated by cryptographic co-processor

• Secure (remote) communication with the terminal

– if GlobalPlatform compliant (secure messaging, security domains)
| PV204 JavaCard - programming secure

elements
16

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard 3.0.x (most recent 3.0.5 from 2015)

• Major release of JavaCard specification

– significant changes in development logic

– two separate branches – Classic and Connected edition

• JavaCard 3.x Classic Edition

– legacy version, extended JC 2.x

– APDU-oriented communication

• JavaCard 3.x Connected Edition

– smart card perceived as web server (Servlet API)

– TCP/IP network capability, HTTP(s), TLS

– supports Java 6 language features (generics, annotations…)

– move towards more powerful target devices

– focused on different segment then classic smart cards

| PV204 JavaCard - programming secure elements 17

Connected edition is not

used so far (likely dead)

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard 3.1 (2018)

• Focus on IoT

• Not much experience yet (no devices)

• Additional cryptographic algorithms, named curves…

| PV204 JavaCard - programming secure elements 18

 https://crocs.fi.muni.cz @CRoCS_MUNI

Version support

• Need to know supported version for your card

– convertor adds version identification of packages used to binary cap file

– If converted with unsupported version, upload to card fails

• Supported version can be (somewhat) obtained from card

– JCSystem.getVersion() [Major.Minor]

– https://github.com/petrs/jcAIDScan

– See https://www.fi.muni.cz/~xsvenda/jcsupport.html

• Available cards supports mostly 2.x specification or 3.0.x (newer

cards)

| PV204 JavaCard - programming secure

elements
19

https://github.com/petrs/jcAIDScan
https://www.fi.muni.cz/~xsvenda/jcsupport.html

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard applet firewall – runtime checks

20 | PV204 JavaCard - programming secure elements

A
p
p
le

t1

Inspired by http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf

SmartCard hardware

JavaCard runtime environment (JCRE)

JCRE = JCVM + API

A
p
p
le

t2

A
p
p
le

t3

APDU

• Access to other applet’s methods and

attributes prevented

– Even if public

• Applets can access specific JCRE objects

• JCRE can access all applets (no

restriction)

• Static attributes of package accessible by

all its applets!

Cap file 1

Static data

Cap file 2

http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf

 https://crocs.fi.muni.cz @CRoCS_MUNI

On-card, off-card code verification

• How to upload only “correct” applets?

• Off-card verification

– Basic JavaCard constraints

– Possibly additional checks (e.g., type consistency when using Shareable

interface)

– Full-blown static analysis possible

– Applet can be digitally signed (and enforced by DAP – shown later)

• On-card verification

– Limited resources available

– Proprietary checks by JC platform implementation

| PV204 JavaCard - programming secure elements 21

 https://crocs.fi.muni.cz @CRoCS_MUNI

DEVELOPING JAVACARD APPS

22 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

Desktop vs. smart card

• Following slides will be marked with icon based on where it

is executed

• Process executed on host (PC/NTB…)

• Process executed inside smart card

23 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI | PV204 JavaCard - programming secure elements

package example;
import javacard.framework.*;

public class HelloWorld extends Applet {
 protected HelloWorld() {
 register();
 }
 public static void install(byte[] bArray, short bOffset, byte bLength) {
 new HelloWorld();
 }
 public boolean select() {
 return true;
 }
 public void process(APDU apdu) {
 // get the APDU buffer
 byte[] apduBuffer = apdu.getBuffer();
 // ignore the applet select command dispached to the process
 if (selectingApplet()) return;
 // APDU instruction parser
 if (apduBuffer[ISO7816.OFFSET_CLA] == CLA_MYCLASS) &&
 apduBuffer[ISO7816.OFFSET_INS] == INS_MYINS)) {
 MyMethod(apdu);
 }
 else ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);
 }
 public void MyMethod(APDU apdu) { /* ... */ }

}

include packages from

javacard.*

extends Applet

Called only once, do

all allocations&init

HERE

Called repeatedly on

application select, do

all temporaries

preparation HERE

Called repeatedly for

every incoming APDU,

parse and call your

code HERE

24

 https://crocs.fi.muni.cz @CRoCS_MUNI

JC development process

25 | PV204 JavaCard - programming secure

elements

6. Write user Java app

(javax.smartcardio.*)

1. Extends

javacard.framework.Applet

2. Compile Java *.class

(Java 1.3 binary format)

3. Convert *.class *.jar/cap

(JavaCard Convertor)

4. Upload *.jar/cap

 smart card (GPPro/GPShell)

5. Install applet

(GPPro/GPShell)

7. Use applet on

smart card (APDU)

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard application running model

1. Uploaded package – application binary

2. Installed applet from package – running application

3. Applet is “running” until deleted from card

4. Applet is suspended when power is lost

– Transient data inside RAM are erased

– Persistent data inside EEPROM remain

– Currently executed method is interrupted

5. When power is resumed

– Unfinished transactions are rolled back

– Applet continues to run with the same persistent state

– Applet waits for new command (does not continue with interrupted method)

6. Applet is deleted by service command

26 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

GLOBALPLATFORM

Managing applets on card

| PV204 JavaCard - programming secure elements 27

 https://crocs.fi.muni.cz @CRoCS_MUNI

• Problem: how to remotely manage administrative access to token?

– Smartcards, TEE (TrustZone) - same basic issues, but also some specifics

• Local/remote upload, configuration and removal of applications

• Authentication of manager, online vs. offline operations

Motivation: Fix bug in electronic IDs for half of population

28 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

GlobalPlatform

• Specification of API for card administration

– Upload/install/delete applications

– Card lifecycle management

– Card security management

– Security mechanisms and protocols

• Newest is GlobalPlatform Card Specification v2.3.1

– March 2018

– Previous versions also frequently used

– http://www.globalplatform.org/specificationscard.asp

• Primary open API for Trusted Execution Environment (TEE)

– ARM TrustZone…

| PV204 JavaCard - programming secure elements 29

http://www.globalplatform.org/specificationscard.asp

 https://crocs.fi.muni.cz @CRoCS_MUNI

GlobalPlatform – main terms

• Smart card life cycle

– OP_READY, INITIALIZED (prepared for personalization)

– SECURED (issued to user, use phase)

– CARD_LOCKED (temporarily locked (attack), unlock to SECURED)

– TERMINATED (logically destroyed)

• Card Manager (CM)

– Special card component responsible for administration and card

system service functions (cannot be removed)

• Security Domain (SD)

– Logically separated area on card with own access control

– Enforced by different authentication keys

| PV204 JavaCard - programming secure elements

Security

Domain 1

Security

Domain 2

Card Manager

30

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security

Domain 1

Applet 2

Security

Domain 2

 Applet 1
Applet 3

Card Manager GlobalPlatform – main terms

• Card Content (apps,data) Management

– Content verification, loading, installation, removal

• Security Management

– Security Domain locking, Application locking

– Card locking, Card termination

– Application privilege usage, Security Domain privileges

– Tracing and event logging

• Command Dispatch

– Application selection

– (Optional) Logical channel management

| PV204 JavaCard - programming secure elements 31

 https://crocs.fi.muni.cz @CRoCS_MUNI

Smart card life cycles

• OP_READY – card is ready for uploading of key diversification data, any application and

issuer specific structures.

• INITIALIZED – card is fully prepared but not yet issued to card holder.

• SECURED – card is issued to card holder. Card management is possible only through

Security domain (installation of signed applets etc.).

• CARD_LOCKED – card is locked due to some security policy and no data management can

be performed. Card can be locked by Security domain and later unlocked as well (switch back

to SECURED state).

• TERMINATED – card is logically “destroyed“ due to card expiration or detection of the severe

security thread.

| PV204 JavaCard - programming secure elements 33

 https://crocs.fi.muni.cz @CRoCS_MUNI

Card Production Life Cycle (CPLC)

• Manufacturing metadata

• Dates (OS, chip)

• Circuit serial number

• (not mandatory)

• GlobalPlatform APDU

– 80 CA 9F 7F 00

– gppro --info

• ISO7816 APDU

– 00 CA 9F 7F 00

| PV204 JavaCard - programming secure elements 35

 https://crocs.fi.muni.cz @CRoCS_MUNI

Example CPLC results from several G&D cards

36 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

GlobalPlatform package/applet upload - SCP

A. Security domain selection

B. Secure channel establishment (SCP) – security domain

C. Package (cap file) upload

– Local upload in trusted environment

– Remote upload with relayed secure channel

D. Applet installation

– Separate instance from package binary with unique AID

– Applet privileges and other parameters passed

– Applet specific installation data passed

• gp --install file_with_applet.cap

| PV204 JavaCard - programming secure elements 37

 https://crocs.fi.muni.cz @CRoCS_MUNI

GlobalPlatform package/applet upload -

Data Authentication Pattern (DAP)

• Generate cap signing keypair (RSA, OpenSSL)

• Sign applet (file with cap, capfile tool)

• Create policy domain (SSD) with MandatedDAPVerification

• Set personalization keys for the SSD (secret symmetric crypto keys)

• Upload verification key for this domain (key version 0x73, public key

of your signing keypair)

• Verify that SSD is prepared (DOM, DAPVerification privilage)

• Upload signed applet (*.cap file)

• https://github.com/martinpaljak/GlobalPlatformPro/blob/next/tests/sce70.sh

38 | PV204 JavaCard - programming secure elements

https://github.com/martinpaljak/GlobalPlatformPro/blob/next/tests/sce70.sh

 https://crocs.fi.muni.cz @CRoCS_MUNI

DEBUGGING APPLET

| PV204 JavaCard - programming secure elements 53

 https://crocs.fi.muni.cz @CRoCS_MUNI 54 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

1. Debugging applets: simulator

• The smartcard is designed to protect application

– Debugger cannot be connected to running application

• Option 1: use card simulator (jcardsim.org)

– Simulation of JavaCard 2.2.2 (based on BouncyCastle)

– Very helpful, allows for direct debugging (labs)

– Catch of logical flaws etc.

– Allows to write automated unit and integration tests!

• Problem: Real limitations of cards are missing

– supported algorithms, memory, execution speed…

| PV204 JavaCard - programming secure elements 55

 https://crocs.fi.muni.cz @CRoCS_MUNI

2. Debugging applets: real cards

• Option 2: use real cards

– Cannot directly connect debugger, no logging strings…

• Debugging based on error messages

– Use multiple custom errors rather than ISO7816 errors

– Distinct errors tell you where problem (might) happened

• Problem: operation may end with unspecific 0x6f00

– Any uncaught exception on card (other than ISOException)

– Solution1: Capture on card, translate to ISOException

– Solution2: Locate problematic command by insertion of

ISOException.throwIt(0x666); and recompile

56 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

Possible causes for exception on card

• Writing behind allocated array

• Using Key that was Key.clear() before

• Insufficient memory to complete operation

• Cipher.init() with uninitialized Key

• Import of RSA key into real card generated by software outside card (e.g.,

getP() len == 64 vs. 65B for RSA1024)

• Storing reference of APDU object localAPDU = origAPDU;

• Decryption of value stored in byte[] array with raw RSA with most

significant bit == 1 (set first byte of array to 0xff to verify)

• Set CRT RSA key using invalid values for given part - e.g. setDP1()

• Too many nested calls, no free space on stack for arguments

• … and many more 

| PV204 JavaCard - programming secure elements 57

 https://crocs.fi.muni.cz @CRoCS_MUNI

Getting more than 0x6f00

58 | PV204 JavaCard - programming secure elements

 public void process(javacard.framework.APDU apdu) {
 // ignore the applet select command dispatched to the process
 if (selectingApplet()) return;
 try {
 //
 // … Standard APDU command dispatching...
 //
 } catch (ISOException e) {
 throw e; // Our exception from code, just re-emit
 } catch (ArrayIndexOutOfBoundsException e) {
 ISOException.throwIt(SW_ArrayIndexOutOfBoundsException);
 } catch (ArithmeticException e) {
 ISOException.throwIt(SW_ArithmeticException);
 } catch (ArrayStoreException e) {
 ISOException.throwIt(SW_ArrayStoreException);
 } catch (NullPointerException e) {
 ISOException.throwIt(SW_NullPointerException);
 } catch (NegativeArraySizeException e) {
 ISOException.throwIt(SW_NegativeArraySizeException);
 } catch (CryptoException e) {
 ISOException.throwIt((short) (SW_CryptoException_prefix | e.getReason()));
 } catch (SystemException e) {
 ISOException.throwIt((short) (SW_SystemException_prefix | e.getReason()));
 } catch (PINException e) {
 ISOException.throwIt((short) (SW_PINException_prefix | e.getReason()));
 } catch (TransactionException e) {
 ISOException.throwIt((short) (SW_TransactionException_prefix | e.getReason()));
 } catch (CardRuntimeException e) {
 ISOException.throwIt((short) (SW_CardRuntimeException_prefix | e.getReason()));
 } catch (Exception e) {
 ISOException.throwIt(Consts.SW_Exception);
 }
 }

final short SW_Exception = (short) 0xff01;
final short SW_ArrayIndexOutOfBoundsException = (short) 0xff02;
final short SW_ArithmeticException = (short) 0xff03;
final short SW_ArrayStoreException = (short) 0xff04;
final short SW_NullPointerException = (short) 0xff05;
final short SW_NegativeArraySizeException = (short) 0xff06;
final short SW_CryptoException_prefix = (short) 0xf100;
final short SW_SystemException_prefix = (short) 0xf200;
final short SW_PINException_prefix = (short) 0xf300;
final short SW_TransactionException_prefix = (short) 0xf400;
final short SW_CardRuntimeException_prefix = (short) 0xf500;

Some exceptions

provide additional

information (code).

Propagate it further

Our exception, just re-emit

 https://crocs.fi.muni.cz @CRoCS_MUNI

Debugging using custom commands

• Addition of custom commands to “dump” interesting parts of data

– Intermediate values of internal arrays, unwrapped keys…

• Should obey to Secure by default principle

– Debugging possibility should be enabled only on intention

– E.g., specific flag in installation data which cannot be enabled later (by an

attacker)

– Don’t let debugging code into release!

59 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

60 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

NEXT WEEK:

BEST PRACTICES FOR JAVACARD

(SECURE MULTIPARTY COMPUTATION)

| PV204 JavaCard - programming secure elements 61

 https://crocs.fi.muni.cz @CRoCS_MUNI

Summary

• Smart cards are programmable (JavaCard)

– reasonable cryptographic API

– coprocessor for fast cryptographic operations

– multiple applications coexist securely on single card

– Secure execution environment

• Standard Java 6 API for communication exists

• PKI applet can be developed with free tools

– PIN protection, on-card key generation, signature…

• JavaCard is not full Java – optimizations, security

| PV204 JavaCard - programming secure

elements
62

 https://crocs.fi.muni.cz @CRoCS_MUNI

BEST PRACTICES (FOR APPLET

DEVELOPERS)

| PV204 JavaCard - programming secure elements 63

 https://crocs.fi.muni.cz @CRoCS_MUNI

Quiz

1. Expect that your device is leaking in time/power channel.

Which option will you use?

– AES from hw coprocessor or software re-implementation?

– Short-term sensitive data stored in EEPROM or RAM?

– Persistent sensitive data in EEPROM or encrypted object?

– Conditional jumps on sensitive value?

2. Expect that attacker can successfully induct faults (random

change of bit(s) in device memory).

– Suggest defensive options for applet’s source code

– Change in RAM, EEPROM, instruction pointer, CPU flags…

64 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (1)

• Use API algorithms/modes rather than your own

– API algorithms fast and protected in cryptographic hardware

– general-purpose processor leaks more information (side-channels)

• Store session data in RAM

– faster and more secure against power analysis

– EEPROM has limited number of rewrites (105 - 106 writes)

• Never store keys, PINs or sensitive data in primitive arrays

– use specialized objects like OwnerPIN and Key

– better protected against power, fault and memory read-out attacks

– If not possible, generate random key in Key object, encrypt large data with this key

and store only encrypted data

• Make checksum on stored sensitive data (=> detect fault)

 | PV204 JavaCard - programming secure

elements
65

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (2)

• Erase unused keys and sensitive arrays

– use specialized method if exists (Key.clearKey())

– or overwrite with random data (Random.generate())

– Perform always before start of new session

• Use transactions to ensure atomic operations

– power supply can be interrupted inside code execution

– be aware of attacks by interrupted transactions - rollback attack

• Do not use conditional jumps with sensitive data

– branching after condition is recognizable with power analysis => timing/power

leakage

| PV204 JavaCard - programming secure

elements
66

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (3)

• Allocate all necessary resources in constructor

– applet installation usually in trusted environment

– prevent attacks based on limiting available resources

• Don’t use static attributes (except constants)

– Static attribute is shared between multiple instances of applet (bypass applet firewall)

– Static ptr to array/engine filled by dynamic allocation cannot be removed until package is

removed from card (memory “leak”)

• Use automata-based programming model

– well defined states (e.g., user PIN verified)

– well defined transitions and allowed method calls

| PV204 JavaCard - programming secure

elements
67

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (4)

• Treat exceptions properly

– Do not let uncaught native exceptions to propagate from the card

– Do not let your code to cause basic exceptions like OutOfBoundsException or

NullPointerExceptions…

68 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints: fault induction (1)

• Cryptographic algorithms are sensitive to fault induction

– Single signature with fault from RSA-CRT may leak the private key

– Perform operation twice and compare results

– Perform reverse operation and compare (e.g., verify after sign)

• Use constants with large hamming distance

– Induced fault in variable will likely cause unknown value

– Use 0xA5 and 0x5A instead of 0 and 1 (correspondingly for more)

– Don’t use values 0x00 and 0xff (easier to force all bits to 0 or 1)

• Check that all sub-functions were executed [Fault.Flow]

– Fault may force program stack or stack to skip some code

– Idea: Add defined value to flow counter inside target sub-function, check

later for expected sum. Add also in branches.

| PV204 JavaCard - programming secure

elements
69

Secure Application Programming in the presence of Side Channel Attacks, Riscure

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints: fault induction (2)

• Replace single condition check by complementary check

– conditionalValue is sensitive value

– Do not use boolean values for sensitive decisions

• Verify number of actually performed loop iterations

| PV204 JavaCard - programming secure

elements
70

Secure Application Programming in the presence of Side Channel Attacks, Riscure

if (conditionalValue == 0x3CA5965A) { // enter critical path

 // . . .

 if (~conditionalValue != 0xC35A69A5) {
 faultDetect(); // fail if complement not equal to 0xC35A69A5

 }
 // . . .

}

int i;
for (i = 0; i < n; i++) { // important loop that must be completed
//. . .

}
if (i != n) { // loop not completed

 faultDetect();
}

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints: fault induction (3)

• Insert random delays around sensitive operations

– Randomization makes targeted faults more difficult

– for loop with random number of iterations (for every run)

• Monitor and respond to detected induced faults

– If fault is detected (using previous methods), increase fault counter.

– Erase keys / lock card after reaching some threshold (~10)

• Natural causes may occasionally cause fault => > 1

71 | PV204 JavaCard - programming secure elements

Secure Application Programming in the presence of Side Channel Attacks, Riscure

 https://crocs.fi.muni.cz @CRoCS_MUNI

How and when to apply protections

72 | PV204 JavaCard - programming secure elements

Riscure

 https://crocs.fi.muni.cz @CRoCS_MUNI

Execution speed hints (1)

• Big difference between RAM and EEPROM memory

– new allocates in EEPROM (persistent, but slow)

• do not use EEPROM for temporary data

• do not use for sensitive data (keys)

– JCSystem.getTransientByteArray() for RAM buffer

– local variables automatically in RAM

• Use algorithms from JavaCard API and utility methods

– much faster, cryptographic co-processor

• Allocate all necessary resources in constructor

– executed during installation (only once)

– either you get everything you want or not install at all

| PV204 JavaCard - programming secure

elements
73

 https://crocs.fi.muni.cz @CRoCS_MUNI

Execution speed hints (2)

• Garbage collection limited or not available

– do not use new except in constructor

• Use copy-free style of methods

– foo(byte[] buffer, short start_offset, short length)

• Do not use recursion or frequent function calls

– slow, function context overhead

• Do not use OO design extensively (slow)

• Keep Cipher or Signature objects initialized

– if possible (e.g., fixed master key for subsequent derivation)

– initialization with key takes non-trivial time

 | PV204 JavaCard - programming secure

elements
74

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCPROFILERNEXT – PERFORMANCE

PROFILING, NON-CONSTANT TIME

DETECTION

75 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext: on-card performance profiler

• Open-source on-card performance profiler (L. Zaoral)

– https://github.com/lzaoral/JCProfilerNext

• Automatically instrumentation of provided JavaCard code

– Conditional exception emitted on defined line of code

– Spoon tool used https://spoon.gforge.inria.fr/

• Measures time to reach specific line (measured on client-side)

• Fully automatic, no need for special setup (only JavaCard + reader)

• Goals:

– Help developer to identify parts for performance optimizations

– Help to detect (significant) timing leakages

– Insert “triggers” visible on side-channel analysis

– Insert conditional breakpoints…
76 | PV204 JavaCard - programming secure elements

https://github.com/lzaoral/JCProfilerNext
https://spoon.gforge.inria.fr/

 https://crocs.fi.muni.cz @CRoCS_MUNI

Instrumented code (Spoon)

77

private void example(APDU apdu) {

 short count = Util.getShort(apdu.getBuffer(), ISO7816.OFFSET_CDATA);

 for (short i = 0; i < count; i++) {

 short tmp = 0;

 for (short k = 0; k < 50; k++) {

 tmp++;

 }

 }

}

PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_1);

PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_2);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_3);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_4);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_5);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_6);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_7);

PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_8);

// if m_perfStop equals to stopCondition, exception is thrown (trap hit)

public static void check(short stopCondition) {
 if (PM.m_perfStop == stopCondition) {
 ISOException.throwIt(stopCondition);
 }
}

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext – timing profile of target line of code

78 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext – memory consumption

79 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext – checking for non-constant behavior

80 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext – profiling via power measurement

• The default measurement option is host-based timer => imprecise

– Exception thrown after every line of code, measured with whole roundtrip

• Idea: insert distinct operation visible in powertrace after every line

– Original code is instrumented with 3xRNG.generateData() instead of exception

– Powertrace of whole method is captured

– RNG operations are detected and used as separators

– Precise timing of operation is obtained

– Visualization is performed using standard JCProfilerNext pipeline

• More elaborate setup (oscilloscope), but very precise measurement

– better detection of non-constant-time operations

81 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI | PV204 JavaCard - programming secure elements

JavaCard applet firewall issues

• Main defense for separation of multiple applets

• Platform implementations differ

– Usually due to the unclear and complex specification

• If problem exists then is out of developer’s control

• Firewall Tester project (W. Mostowski)

– Open and free, the goal is to test the platform

– http://www.sos.cs.ru.nl/applications/smartcards/firewalltester/

 short[] array1, array2; // persistent variables
short[] localArray = null; // local array
JCSystem.beginTransaction();
 array1 = new short[1];
 array2 = localArray = array1; // dangling reference!
JCSystem.abortTransaction();

82

http://www.sos.cs.ru.nl/applications/smartcards/firewalltester/

 https://crocs.fi.muni.cz @CRoCS_MUNI

Relevant open-source projects

• Easy building of applets

– https://github.com/martinpaljak/ant-javacard

– https://github.com/ph4r05/javacard-gradle-template

• AppletPlayground (ready to “fiddle” with applets)

– https://github.com/martinpaljak/AppletPlayground

• Card simulator https://jcardsim.org

• Profiling performance

– https://github.com/crocs-muni/JCAlgTest

– https://github.com/OpenCryptoProject/JCProfiler

• Curated list of JavaCard applets

– https://github.com/crocs-muni/javacard-curated-list

• Low-level ECPoint library

– https://github.com/OpenCryptoProject/JCMathLib

83 | PV204 JavaCard - programming secure elements

https://github.com/martinpaljak/ant-javacard
https://github.com/martinpaljak/ant-javacard
https://github.com/martinpaljak/ant-javacard
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/martinpaljak/AppletPlayground
https://jcardsim.org/
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/OpenCryptoProject/JCMathLib

 https://crocs.fi.muni.cz @CRoCS_MUNI

Mandatory reading

• Mandatory

– Secure Application Programming in the presence of Side Channel Attacks,

Riscure

• IS, Riscure_Whitepaper_Side_Channel_Patterns.pdf

• Optional

– Gemalto JavaCard developers guide

• IS, Gemalto_JavaCard_DevelGuide.pdf

– Java Card lecture, Erik Poll, Radboud Uni
• http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf

84 | PV204 JavaCard - programming secure elements

http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf

 https://crocs.fi.muni.cz @CRoCS_MUNI

Summary

• Smart cards are programmable (JavaCard)

– reasonable cryptographic API

– coprocessor for fast cryptographic operations

– multiple applications coexist securely on single card

– Secure execution environment

• Standard Java 6 API for communication exists

• PKI applet can be developed with free tools

– PIN protection, on-card key generation, signature…

• JavaCard is not full Java – optimizations, security

| PV204 JavaCard - programming secure

elements
85

 https://crocs.fi.muni.cz @CRoCS_MUNI

• Place/upvote questions in slido

while listening to lecture video

• We will together discuss these

during every week lecture Q&A

(every Monday, 17-18:00)

86 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

87 | PV204 JavaCard - programming secure elements

