PV079: Cryptographic smartcards and their applications

Cryptographic secure hardware

Petr Švenda Svenda@fi.muni.cz Security, Masaryk University

Centre for Research on Cryptography and Security

CROCS

www.fi.muni.cz/crocs

Overview

- Smartcards introduction
- Applications where to use?
- Smartcard programming
- Side-channel attacks
 - power analysis
 - reverse engineering
 - timing attacks

INTRO TO SMART CARDS

PV079 - Cryptographic smartcards

Basic types of (smart) cards

- 1. Contactless "barcode"
 - Fixed identification string (RFID, < 5 cents)
- 2. Simple memory cards (magnetic stripe, RFID)
 - Small write memory (< 1KB) for data, (~10 cents)
- 3. Memory cards with PIN protection
 - Memory (< 5KB), simple protection logic (<\$1)

Basic types of (smart) cards (2)

- 4. Cryptographic smart cards
 - Support for (real) cryptographic algorithms
 - Mifare Classic (\$1), Mifare DESFire (\$3)
- 5. User-programmable cryptographic smart cards
 - JavaCard, .NET card, MULTOS cards (\$2-\$30)
 - Chip manufacturers: NXP, Infineon, Gemalto, G&D, Oberthur, STM, Atmel, Samsung...
- 6. Secure environment (enclave) inside more complex CPUs
 - ARM TrustZone, Intel SGX...

Cryptographic smart cards

- SC is quite powerful device
 - 8-32 bit processor @ 5-50MHz
 - persistent memory 32-200+kB (EEPROM)
 - volatile fast RAM, usually <<10kB
 - truly random generator
 - cryptographic coprocessor (3DES,AES,RSA-2048,ECC...)
- ~10 billion units shipped in 2019 (EUROSMART)
 - mostly smart cards, telco, payment and loyalty...
 - ~1.5 billion contactless (EUROSMART)
- For environments where attacker have physical access
 - NIST FIPS140-2 standard, security Level 4
 - Common Criteria EAL4+/5+

htt

894412 10906

Primary markets for smartcards

Secure Elements Shipments From 2010 To 2019

https://www.eurosmart.com/eurosmarts-secure-elements-market-analysis-and-forecasts/

CRତCS

Smart cards forms

- Many possible forms
 - ISO 7816 standard
 - SIM size, USB dongles, Java rings...
- Contact(-less), hybrid/dual interface
 - contact physical interface
 - contact-less interface (NFC phone can communicate!)
 - hybrid card separate logics on single card
 - dual interface same chip accessible contact & c-less
- Card emulation (contactless)
 - 1. Card emulation mode (physical in-phone secure element)
 - 2. Host-based card emulation (without physical element)
 - Apple Pay, Google Pay

http://simcardsize.com/sim-card-sizes/ https://shop.cobo.com/products/cobo-vaultessential https://www.infineon.com/ https://yubico.com

PV079 - Cryptographic smartcards

Contact vs. contactless, powerless vs. battery-powered

- Contact cards (ISO7816-2)
 - I/O data line, voltage and GND line
 - clock line, reset lines
- Contactless cards
 - ISO/IEC 14443 type A/B, radio at 13.56 MHz (NFC)
 - Chip powered by current induced on antenna by reader
 - Reader \rightarrow chip communication relatively easy
 - Chip \rightarrow reader dedicated circuits are charged, more power consumed, fluctuation detected by reader
 - Multiple cards per single reader possible
- Additional battery possible
 - Higher cost, need to charge, but longer distance and faster communication (Bluetooth LE)

Smart card is highly protected device

- Intended for physically unprotected environment
 - NIST FIPS140-2 standard, security Level 4
 - Common Criteria EAL5+/6+...
- Tamper protection
 - Tamper-evidence (visible if physically manipulated)
 - Tamper-resistance (can withstand physical attack)
 - Tamper-response (erase keys...)
- Protection against side-channel attacks (timing, power, EM)
- Periodic tests of TRNG functionality
- Approved crypto algorithms and key management
- Limited interface, smaller trusted computing base (than usual)
 - <u>http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm</u>
- Designed for security and certified != secure

What the smartcards can be used for?

PV079 - Cryptographic smartcards

CRତCS

What problem is cryptographic smartcard solving?

- What problem is cryptographic smartcard solving?
 - Secure storage (keys and sensitive data)
 - Protected secrets even if physically attacked (tamper resistant)
 - Secure (cryptographic) computational device (signature, authentication)
 - Hardware root of trust (initial check of boot sequence)
 - Unspoofable logging
 - Enforcement of specific policy (PIN before sign, four eyes policy)
 - Easy to carry, easy to embed into another device, low battery usage
- Which of these can't be solved with laptop or mobile phone?

Applications

- SIM modules
 - key storage, session key derivation
 - GSM banking
 - PIN protection
- Bank payment card
 - cryptographic checksum on payment bill
 - offline PIN verification
 - contactless small payments
- Secure system authentication
 - Windows credential provider, Linux PAM modules
 - password storage only, challenge-response protocols
 - door access cards mostly memory cards only

Application (cont.)

- Electronic identity cards (ePassports, eIDs)
 - contactless cards with Machine Readable Zone (MRZ)
 - secure messaging between reader and passport
 - active authentication challenge-response with on-card key
- Multimedia distribution
 - Digital Rights Management (decryption keys, licenses)
 - pre-paid satellite TV (decryption keys)
- Secure storage and encryption/signing device
 - Cryptocurrency hardware wallets...

Application domains changes in time

- Cheap yet relatively hard to attack despite physical access
 - Sensitive data can be stored and used yet carried in pocket
 - Protection against the end-user (SIM, satellite decoders...)
- But we now have smartphones!
 - Payments via Apple Pay, Google Pay without physical smartcard
 - Still uses VISA/Mastercard payment infrastructure
 - Smartphones can make smartcards obsolete in large portion of previous usage domains!
- But smartphones are also quite too complex (=> bugs)
 - Sensitive data / keys etc. on smartphone are more vulnerable
- New use-cases

CROCS

- Trusted Platform Module (smartcard on the motherboard)
- FIDO U2F tokens (improved authentication tokens)
- Cryptocurrency hardware wallets (smartcard with trusted display)

MODES OF USAGE

PV079 - Cryptographic smartcards

Smart card carries fixed information

- Fixed information ID transmitted, no secure channel
- Low-cost solution (nothing "smart" needed)
- Problem: Attacker can eavesdrop and clone chip

Smart card as a secure carrier

- Key(s) stored on a card, loaded to a PC before encryption/signing/authentication, then erased
- High speed usage of key possible (>>MB/sec)
 - Attacker with an access to PC during operation will obtain the key
 - key protected for transport, but not during the usage

CRତCS

Smart card as encryption/signing device

- PC just sends data for encryption/signing...
- Key never leaves the card
 - personalized in secure environment
 - protected during transport and usage
- Attacker must attack the smart card
 - or wait until card is inserted and PIN entered!
- Low speed encryption (~kB/sec)
 - low communication speed / limited card performance

Smart card as computational device

- PC just sends input for application on smart card
- Application code & keys never leave the card
 - card can perform complicated programmable actions
 - new code can be uploaded remotely
 - can open secure channels to other entity
 - secure server, trusted time service...
 - PC act as a transparent relay only (no access to data)
- Attacker must attack smart card or initial input

PV079 - Cryptographic smartcards

Smart card as root of trust (TPM)

- Secure boot process, remote attestation
- Smart card provides robust store with integrity
- Application can verify before pass control (measured boot)
- Computer can authenticate with remote entity...

TPM : provided security functions

- 1. "Measured" boot with remote attestation
 - Provide signed log of what executed on platform (PCR)
- 2. Storage of keys (disk encryption, private keys...)
 - Can be additionally password protected
- 3. Binding and Sealing of data
 - Encryption key wrapped by concrete TPM's public key
- 4. Platform integrity
 - Software will not start if current PCR value is not right

Myst: secure multiparty signatures [•]UCL (7)

SmartHSM for multiparty (120 smartcards, 3 cards/quorum)

120 cards => 40 quorums => 300+ decryptions / second => 80+ signatures / second

Figure 10: The average system throughput in relation to the number of quorums (k = 3) that serve requests simultaneously. The higher is better.

PV079 - Cryptographic smartcards

SMARTCARD ALGORITHMS AND PERFORMANCE

PV079 - Cryptographic smartcards

Common algorithms

- Basic cryptographic co-processor
 - Truly random data generator
 - 3DES, AES128/256, (national algorithms)
 - MD5, SHA1, SHA-2 256/512
 - RSA (up to 2048b common, 4096 possible)
 - ECC (up to 256b common, 521b possible)
 - Diffie-Hellman key exchange (DH/ECDSA)
- Custom code running in secure environment
 - E.g., HMAC, OTP code, re-encryption
 - Might be significantly slower (e.g., SW AES 50x slower)

Cryptographic operations

- Supported algorithms (JCAlgTester, 100+ cards)
 - <u>https://github.com/crocs-muni/JCAIgTest</u>
 - <u>https://www.fi.muni.cz/~xsvenda/jcsupport.html</u>

javacard.security.MessageDigest	introduced in JavaCard version	c0	c1	c2	c3	c4	c5	C6	c7	C8	C9	c10	c11	c12	c13
ALG_SHA	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
ALG_MD5	<=2.1	no	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	yes	yes	yes
ALG_RIPEMD160	<=2.1	no	no	no	yes	yes	yes	no							
ALG_SHA_256	2.2.2	yes	no	no	suspicious yes	yes	no	no	yes	no	no	no	no	no	no
ALG_SHA_384	2.2.2	no	no	no	no	no	no	no	yes	no	no	no	no	no	no
ALG_SHA_512	2.2.2	no	no	no	no	no	no	no	yes	no	no	no	no	no	no
ALG_SHA_224	3.0.1	no	-	-	-	no	no	no	no	-	-	-	-	-	-
javacard.security.RandomData	introduced in JavaCard version	c0	c1	c2	c3	c4	c5	C6	c7	C8	C9	c10	c11	c12	c13
ALG_PSEUDO_RANDOM	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no
ALG_SECURE_RANDOM	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
javacard.security.KeyBuilder	introduced in JavaCard version	c0	c1	c2	c3	c4	c5	C6	c7	C8	C9	c10	c11	c12	c13
TYPE_DES_TRANSIENT_RESET	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TYPE_DES_TRANSIENT_DESELECT	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TYPE_DES LENGTH_DES	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TYPE_DES LENGTH_DES3_2KEY	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TYPE_DES LENGTH_DES3_3KEY	<=2.1	yes	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TYPE_AES_TRANSIENT_RESET	2.2.0	yes	no	suspicious yes	yes	yes	no	yes	yes	yes	yes	no	no	no	no

PV079 - Cryptographic smartcards

CRତCS

What is the typical performance?

- Hardware differ significantly
 - Clock multiplier, memory speed, crypto coprocessor...
- Typical speed of operation is:
 - Milliseconds (RNG, symmetric crypto, hash)
 - Tens of milliseconds (transfer data in/out)
 - Hundreds of millisecond (asymmetric crypto)
 - Seconds (RSA keypair generation)
 - Operation may consists from multiple steps
 - Transmit data, prepare key, prepare engine, encrypt
 - \rightarrow additional performance penalty
 - Usability rule of thumb: operation shall finish in 1-1.5sec

PV079 - Cryptographic smartcards

Performance tables for common cards

Visit <u>http://www.fi.muni.cz/~xsvenda/jcalgtest/</u>

CARD/FUNCTION (ms/op)	SECURE RANDOM (256B)	SHA-1 hash (256B)	SHA2-256 hash (256B)	3DES encrypt (256B)	AES128 encrypt (256B)	AES256 encrypt (256B)	3DES setKey(192b)	AES setKey(128b)
Gemplus GXP R4 72K	2.45	3.69	-	53.71	26.05	31.52	9.4	9.28
NXP JCOP 31 V2.2 36K	6.92	19.84	-	7.27	-	-	26.1	-
NXP JCOP 21 V2.2 36K	7.28	20.91	-	7.68	-	-	25.84	-
NXP JCOP41 v2.2.1 72K	7.58	21.77	-	8.02	-	-	15.44	-
NXP J2D081 80K	10.4	11.73	21.18	7.1	6.73	7.66	20.12	16.31
NXP CJ3A081	13.8	11.45	21.05	12.8	10.33	11.35	11.04	10.9
NXP JCOP CJ2A081	14.14	11.9	22.46	13.3	10.78	11.81	5.39	5.22
NXP J2A080 80K	19.59	31.09	60.16	18.11	18.57	20.12	12.24	11.91
NXP JCOP31 v2.4.1 72K	20.97	34.1	66.02	19.95	20.44	22.24	6.7	6.38
NXP J3A080	21.64	35.78	69.32	20.92	21.41	23.2	15.48	12.28
Infineon CJTOP 80K INF SLJ 52GLA080AL M8.4	24.9	17.42	35.58	61.49	25.53	31.18	6.61	6.08
NXP JCOP21 v2.4.2R3	33.77	12.35	22.39	12.24	11.65	14.02	31.35	23.48
Oberthur ID-ONE Cosmo 64 RSA v5.4	52.49	23.53	-	16.05	-	-	25.31	-
G+D Smart Cafe Expert 4.x V2	322.91	33.66	-	37.19	-	-	3.59	-

Performance with variable data lengths

TYPE_DES LENGTH_DES ALG_DES_CBC_NOPAD Cipher_setKeyInitDoFinal()

TYPE_DES LENGTH_DES ALG_DES_CBC_ISO9797_M1 Cipher_setKeyInitDoFinal()

TYPE_DES LENGTH_DES ALG_DES_CBC_ISO9797_M2 Cipher_doFinal()

300

length of data (bytes)

PV079 - Cryptographic smartcards

https://crocs.fi.muni.cz @CRoCS_MUNI

TYPE_DES LENGTH_DES ALG_DES_CBC_ISO9797_M1 Cipher_doFinal()

Smartcards programming and use from programs

Big picture – terminal/reader and card

PV079 - Cryptographic smartcards

CRତCS

Big picture - components

- User application
 - Merchant terminal GUI
 - Banking transfer GUI
 - Browser TLS
 - ...
- Card application

PV079 - Cryptographic smartcards

- EMV applet for payments
- SIM applet for GSM
- OpenPGP applet for PGP
- U2F applet for FIDO authentication

How to develop on-card application? JavaCard development process

PV079 - Cryptographic smartcards

Pains for users/developers

- Closed-source, IP-heavy, NDA-based industry
- Primary users for manufactures/vendors are large customers
 - No interest in small / niche users (< 100k units)
 - Important API proprietary and/or not accessible (ARM TrustZone, proprietary JC packages, detailed specs...)
 - Supply chain issues (resellers, difficult to securely obtain card)
- What is open or available
 - Open API for applets (JavaCard API)
 - Open-source development toolchain for JavaCard
 - Common Criteria and FIPS140-2 certificates (but details omitted)
 - Results of reverse engineering

Payment

2019

Smartcard security

- Invasive attacks
- Semi-invasive attacks
- Side-channel attacks
- Logical attacks

CRତCS

Attacks against smartcards

- "Secure hardware" != absolutely unbreakable hardware
 - Always depends on attacker motivation, knowledge, resources...
- The goal of security design is to increase the difficulty of attack
 - Higher than the value of data protected
 - Some attack harder to perform than other (equipment, time, knowledge, physical vs. remote access...)
 - Security is process (design, test, fix, repeat)
- Invasive attacks physical dismantling of chip
 - E.g., read keys directly from physical memory
- Semi-invasive attacks partial dismantling, chip still works
 - E.g., expose communication bus, read data by microprobe
- Side-channel attacks unintended leakage of physical device
 - correlated with the secret data processed (keys)
 - E.g., power consumption analysis, timing attack
- Logical attacks exploits logical flaw in code running inside chip

PV079 - Cryptographic smartcards

https://crocs.fi.muni.cz @CRoCS_MUNI

Focus of this

lecture

Discussion – attacking smartcard-based solutions

- Scenario: attack Brno transport ticket card
 - Contactless communication, pre-registered EMV-based card
- Scenario: attack Bitcoin hardware wallet
 - Private key derived, then used to sign transaction (inputs, outputs, amounts)
- Scenario: attack contactless EMV payment card
 - Pay at merchant terminal

CRତCS

Application attacks

- Focus on logical attacks possible by "malware"
 - No physical access to target card is assumed, remote attacks
 - Man-in-the middle attacks
 - Redirection of traffic, remote smart card access
- Target applications
 - Banking app (login, transaction authorization)
 - Resources protected by two-factor authentication (VPNs...)
 - DRM applications (user is attacker)
 - Citizen ID cards (ID theft)

— ...

Where to log/manipulate communication?

Power analysis

- External power supply no battery on SC
- Power consumption depends on actual ops/data
- Voltage variation measured using digital oscilloscope and small resistor
- Real threat and not only for smart cards
 - Mifare DESfire
 - KeeLoq
 - Xilinx bitstream

Simple power analysis

- Direct processing of single power trace
 - operations => reverse engineering
 - data => additional information about secret keys
 - hamming weight of separate bytes of key $(2^{56} -> 2^{38})$
- Averaging over multiple traces to reduce noise
- Exact implementation must be known
 - position of instruction
 - obtained by reverse engineering

Reverse engineering – operation level

- Semi-automatic recognition of operations
 - from typical power consumption patterns
 - database of corresponding operation and pattern
- Often easier than obtain processed data

Timing (side-channel leakage) attack

PV079 - Cryptographic smartcards

Timing analysis

PV079 - Cryptographic smartcards

CRତCS

- Length of ECDSA nonce leaked
 - shorter nonce => shorter signature time
- Enough to extract whole ECC private key in 20-30 min
- Athena IDProtect smartcard (EAL 4+), Libgcrypt, SunEC/OpenJDK/Oracle JDK...

CRତCS

Differential power analysis

- Powerful attack on secret values
 - e.g. encryption keys
- Multiple power traces with key usage
 - -10^{3} -10⁵ traces with known I/O data
 - $\mathsf{KEY} \oplus \mathsf{KNOWN}_\mathsf{DATA}$
- Key is guessed byte-per-byte
 - correct guess reveals correlation with traces
 - all possible values of single byte tried (256)
 - traces divided into 2 groups
 - groups are averaged
 - averaged signals are compared
 - significant peaks if correct
- No need to know exact implementation
 - big advantage

PV079 - Cryptographic smartcards

Define: DPA Bias Signal = $T(n) = A_1(n) - A_0(n)$

Conclusions

- SC massively deployed (20*10⁹), mainly w.r.t. security
 - wide range of usage (banking, SIM, access control)
 - secure storage (encryption/signature keys)
 - on-card asymmetric key generation!
 - secure code execution
 - interesting protocols involving smart cards
- Limited memory (10² kB) and CPU power (8-32b,5-50MHz)
 - Low-cost small computer designed specifically for security
 - crypto operation accelerated by co-processors
- Still can be attacked
 - typically need for special knowledge and/or equipment
 - still far more secure than standard PC