Please comment on slides with anything unclear, incorrect or suggestions for improvement
https://drive.google.com/file/d/1vj FtJG97gixLgQYuBR2NDNvg2LRMdro/view?usp=sharing

PV204 Security technologies

JavaCard optimizations, Secure Multiparty Computation

Petr Svenda @ svenda@fi.muni.cz E@rngsec C R ': C S
Centre for Research on Cryptography and Security, Masaryk University */

Centre for Research on

Cryptography and Security

(part of MPC slides done by Antonin Dufka)

www.fi.muni.cz/crocs

https://drive.google.com/file/d/1vj_FtJG97gixLgQYuBR2NDNvg2LRMdro/view?usp=sharing

BEST PRACTICES (FOR APPLET
DEVELOPERS)

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Quiz

1. Expect that your device is leaking in time/power channel.
Which option will you use?
— AES from hw coprocessor or software re-implementation?
— Short-term sensitive data stored in EEPROM or RAM?
— Persistent sensitive data in EEPROM or encrypted object?
— Conditional jumps on sensitive value?

2. Expect that attacker can successfully induct faults (random
change of bit(s) in device memory).

— Suggest defensive options for applet’s source code
— Change in RAM, EEPROM, instruction pointer, CPU flags...

3 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS ‘
@

Security hints (1)

« Use algorithms/modes from JC API rather than your own implementation
— JC API algorithms fast and protected in cryptographic hardware
— general-purpose processor leaks more information (side-channels)
« Store session data in RAM
— faster and more secure against power analysis
— EEPROM has limited number of rewrites (10*5 — 10”6 writes)
* Never store keys, PINs or sensitive data in primitive arrays
— use specialized objects like OwnerPIN and Key
— better protected against power, fault and memory read-out attacks

— If not possible, generate random key in Key object, encrypt large data with this key and store only
encrypted data

« Make checksum on stored sensitive data (=> detect faults)
— check during applet selection (do not continue if data are corrupted)
— possibly check also before sensitive operation with the data (but performance penalty)

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS ‘
@

Security hints (2)

* Erase unused keys and sensitive arrays
— use specialized method if exists (Key.clearKey())
— or overwrite with random data (Random.generate())
— Perform always before and after start of new session (new select, new device...)

» Use transactions to ensure atomic operations

— power supply can be interrupted inside code execution

— be aware of attacks by interrupted transactions - rollback attack
* Do not use conditional jumps with sensitive data

— branching after condition is recognizable with power analysis => timing/power
leakage

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (3)

* Allocate all necessary resources in constructor
— applet installation usually in trusted environment
— prevents attacks based on limited available resources later during applet use

* Don’t use static attributes (except constants)
— Static attribute is shared between multiple instances of applet (bypasses applet firewall)

— Static pointer to array/engine filled by dynamic allocation cannot be removed until package
is removed from card (memory “leak”)

» Use automata-based programming model
— well defined states (e.g., user PIN verified)
— well defined transitions and allowed method calls

6 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (4)

* Treat exceptions properly
— Do not let uncaught native exceptions to propagate away from the card
* 0x6f00 emitted — unclear what caused it from the terminal side
* Your applet is unaware of the exception (fault induction attack in progress?)

— Do not let your code to cause basic exceptions like OutOfBoundsException or
NullPointerExceptions...

» Slow handling of exceptions in general

« Code shall not depend on triggering lower-layer defense (like memory
protection)

7 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Security hints: fault induction (1)

Cryptographic algorithms are sensitive to fault induction

— Single signature with fault from RSA-CRT may leak the private key
— Perform operation twice and compare results

— Perform reverse operation and compare (e.g., verify after sign)

Use constants with large hamming distance

— Induced fault in variable will likely cause unknown value

— Use 0xA5 and 0x5A instead of 0 and 1 (correspondingly for more)
— Don’t use values 0x00 and Oxff (easier to force all bits to 0 or 1)

Check that all sub-functions were executed [Fault.Flow]
— Fault may force program stack or stack to skip some code

— |dea: Add defined value to flow counter inside target sub-function, check later for expected
sum. Add also in branches.

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

t\

Security hints: fault induction (2)

» Replace single condition check by complementary check
— conditionalValue is sensitive value
— Do not use boolean values for sensitive decisions

if (conditionalValue == 0x3CA5965A) { // enter critical path

/...
if (~conditionalValue = OxC35A69A5) {

faultDetect(); // fail if complement not equal to OXC35A69A5

}
// ...
}
* Verify number of actually performed loop iterations
int i;
for (i =0;i<n;i++) { //important loop that must be completed
//. ..
>
if (i '=n) { // loop not completed
faultDetect();

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Security hints: fault induction (3)

 Insert random delays around sensitive operations
— Randomization makes targeted faults more difficult
— for loop with random number of iterations (for every run)

* Monitor and respond to detected induced faults
— If fault is detected (using previous methods), increase fault counter.

— Erase keys / lock card after reaching some threshold (~10)
» Natural causes may occasionally cause fault => > 1

10 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

How and when to apply protections

Does the device need protection?
Understand the resistance of the hardware
|dentify potential weakness in design
Select patterns to use

Understand your compiler

o More in PVV286:
Test the resistance of the device “F)rOg ramm | ng in the
presence of side-channels /
faults"

SN R U NS SR RN

11 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

o

Execution speed hints (1)

 Big difference between RAM and EEPROM memory
— new allocates in EEPROM (persistent, but slow)
« do not use EEPROM for temporary data
« do not use for sensitive data (keys)
— JCSystem.getTransientByteArray() for RAM buffer
— local variables automatically in RAM

* Use algorithms from JavaCard API and utility methods
— much faster, cryptographic co-processor

* Allocate all necessary resources in constructor
— executed during installation (only once)
— either you get everything you want or not install at all

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS o

Execution speed hints (2)

» Garbage collection limited or not available
— do not use new except in constructor

« Use copy-free style of methods
— foo(byte[] buffer, short start_offset, short length)

* Do not use recursion or frequent function calls
— slow, function context overhead

* Do not use OO design extensively (slow)

« Keep Cipher or Signature objects initialized

— if possible (e.g., fixed master key for subsequent derivation)
— Initialization with key takes non-trivial time

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

JCPROFILERNEXT — PERFORMANCE
PROFILING, NON-CONSTANT TIME
DETECTION

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

JCProfilerNext: on-card performance profiler

* QOpen-source on-card performance profiler (L. Zaoral)
— https://qgithub.com/Izaoral/JCProfilerNext

» Automatically instrumentation of provided JavaCard code
— Conditional exception emitted on defined line of code
— Spoon tool used https://spoon.gforge.inria.fr/
« Measures time to reach specific line (measured on client-side)
» Fully automatic, no need for special setup (only JavaCard + reader)

* Goals:
— Help developer to identify parts for performance optimizations
— Help to detect (significant) timing leakages
— Insert “triggers” visible on side-channel analysis
— Insert conditional breakpoints...

15 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

https://github.com/lzaoral/JCProfilerNext
https://spoon.gforge.inria.fr/

_/

/ if m_perfStop equals to stopCondition, exception is thrown (trap hit)
public static void check(short stopCondition) {
if (PM.m_perfStop == stopCondition) {

| nstru mented code (S poon) ISOException.throwlt(stopCondition);
>
by

private void example(APDU apdu) {
short count = Util.getShort(apdu.getBuffer(), ISO7816.0FFSET_CDATA);
for (shorti = 0; i < count; i++) {
short tmp = 0;
for (short k = 0; k < 50; k++) {

tmp++;

https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

JCProfilerNext — timing profile of target line of code

example.Example.example2(javacard.framework.APDU)

TRAP example Example example2 argb javacard framework APDU_arge 12

Card ATR: 3BFA 180000813 1FE454A434F5033315632333298
Number of rounds: 1000 Click on a bin to get a list of corresponding inputs.
APDU header: 80010000

Input regex: 00[0-9A-F]{2}
Elapsed time: 0 days 00:00:02.814

Source measurements: measurements.csv [Show explicit traps with outliers
B without outliers
Avg ps A
1 private void example2(APDU apdu) {
2 byte[] apdubuf = apdu.getBuffer();
3 short datalen = apdu.setIncomingAndReceive();
4 // SET KEY VALUE >
5 - rr!iaislfy._sftl{f):r(ap_c_iub%.lf} E[SD?SlG.OFFSETﬁCDATA); 5
6 /7 INIT CIPHERS WITH NEW KEY S
7 m_encryptCipher.init(m_aeskey, Cipher.MODE_ENCRYPT); g
2 m_decryptCipher.init(m_aesKey, Cipher.MODE_DECRYPT); w
9 m_encryptCipher.doFinal (apdubuf, IS07816.0FFSET_CDATA, ((short) (@x1@)), m_ramArray, ((short) (2)));
10 m_decryptCipher.doFinal (apdubuf, IS07816.0FFSET_CDATA, ((short) (@x1@)), m_ramArray, ((short) (2)));
n m_hash. doF1 ;l(apdubuf, IS07816.0FFSET_CDATA, datalen, m_ramarray, ((short) (2)));
12 - F DATA - B
13 ndom. generateData(apdubuf, IS07816.0FFSET_CDATA, ((short) (2x18)));
« Il -
15 h = m_sign.sign(apdubuf, I507816.0FFSET_CDATA, ((byte) (datalen)), m_ramfrray, ((byte) (@))); 0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000
16 - ke) on-card
17 m_keyPair.genkeyPair(); Time in ps
18 m_publicKey = m_keyPair.getPublic();
19 m_privatek m_keyPair.getPrivate();
20 E: WITH PRIVATE KEY 20M
21 m_sign.init(m_privateKey, Signature.MODE_SIGN);
}
By | v
23
< > 15M
wn
=
Colour explanation E
@ 10M
E
- =
Currently selected trap Trap was never reached Trap was reached only sometimes
5M
o]
200 400 600 800 1.000

17 PV204 | Secure Multiparty Computation

CR®CS

JCProfilerNext — memory consumption

opencrypto.jcmathlib.OCUnitTests()

TRAP opencrypto_jecmathlib OCUnitTests_argb arge 6

Mode: memory
Card ATR: 3B80800101

APDU header: measured during installation . .
] . N > 2 600 transient deselect
Input: measured during installation] .
" transient reset
Elapsed time: 0 days 00:00:00.294 .
.. 2,400 —e&— persistent
Source measurements: measurements.csv [J Show explicit traps m
c
. >, 2,200
Diff in B A 2
1 public OCUnitTests() { E 2000
2 OperationSupport.getInstance().setCard(OperationSupport.SIMULATOR);// Tt =
3 m_memoryInfo = new short[((short) (7 * 3))]1;// Contains RAM and EEPROM i Y 1 800
4 m_memoryInfoOffset = snapshotAvailableMemory(((short) (1)), m_memoryInfc E’_'
5 if (bTEST_256b_CURVE) { .
6 N m_ecc = new ECConfig(((short) (256))); 1.600 \\m
7 }
s if (bTEST_512b_CURVE) { 1,400
m_ecc = new ECConfi short 512 H
13 } - g((() (M) 0 10 20 30 40
1 m_memoryInfoOffset = snapshotAvailableMemory(((short) (2)), m_memoryInfc
12 // Pre-allocate test objects (no new allocation for every tested operat: Trap ID
13 if (bTEST_256b_CURVE) {
14 m_testCurve = new ECCurve(false, SecP256rl.p, SecP256rl.a, SecP256r:
15 m_memoryInfoOffset = snapshotAvailableMemory(((short) (3)), m_memor) 32768
16 // m_testCurveCustom and m_testPointCustom will have G occasionally !
17 m_customG = new byte[((short) (SecP256rl.G.length))];
18 Util.arrayCopyNonAtomic(SecP256r1.G, ((short) (8)), m_customG, ((shc
19 m_testCurveCustom = new ECCurve(false, SecP256rl.p, SecP256rl.a, Set 32768
m 32
20 } c
o if (bTEST_512b_CURVE) { =

18 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS _

CR&,CS

Checking for non-constant time execution

opencrypto.jcmathlib.OCUnitTests#test BN _MOD(javacard.framework. APDU,short)
TRAP opencrypto_jcmathlib_OCTUnitTests_hash_test BN_MOD _argb_javacard_framework APDU__ short_arge 10

Mode: time
Card ATR: 3B80800101 Click on a graph item to get a list of corresponding inputs.

Number of rounds: 1000
APDU header: B0252100
Input regex: 00[0-0A-F]{64}[4-T][0-9A-F1{63}
Elapsed time: 0 days 00:58:39.803
Source measurements: measurements.csv ~| Show explicit traps 400 B low effectiveBitLength
B high effectiveBitLength
Ave s A
void test BMN_MOD(APDU apdu, short datalen) {
byte[] apdubuf = apdu.getBuffer();
short pl = ((short) (apdubuf[ISO7816.0FFSET_P1] & @xFf));
Bignat num = m_testBNI1;
num.set_size(pl);
Bignat mod = m_testBENZ;
mod.set_size(((short) (datalLen - pl)));
num.from_byte_array(pl, ((short) (@)), apdubuf, ISO7816.0FFSET_CDATA);
mod. from_byte_array(((short) (dataLen - pl)), ((short) (2)), apdubuf, 100

g

Frequency
=
[=]

L= BN I« RV IR SN RV S

9
10 num.mod (mod) ;
short len = num.copy_to_buffer(apdubuf, ((short) (2)));
1;_ apdu.setOutgoingindSend(((short) (@)), len);
H 0
3 v 5,000 10,000 15,000 20,000
< > Time in ps
Colour explanation 20K
Currently selected trap Trap was never reached Trap was reached only sometimes
15k
n
a
£
2 10k
b=
5k

200 400 500 200 1,000
Round

19 .muni.cz

22 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

SECURE MULTIPARTY COMPUTATION

https://crocs.fi.muni.cz @CRoCS_MUNI

SECURE MULTIPARTY COMPUTATION
(TO REMOVE SINGLE POINT OF FAILURE)

https://crocs.fi.muni.cz @CRoCS_MUNI

https://roca.crocs.fi.muni.cz

Possibly heard of ROCA vulnerability CVE-2017-15361

M. Nemec, M. Sys, P. Svenda, D. Klinec, V. Matyas: The Return of Coppersmith’s Attack..., ACM CCS 2017

The usage domains affected by the vulnerable library | /=m0

Austria. Estonia Identity documents Trusted Platform Modules BitLocker, ChromeQOS...
Slovakié Spain : (elD, eHealth cards) (Data encryption, Platform integrity) Firmware update available
o= g
0,;(,‘7‘?7
Secure browsing
Software signing (TLS/HTTPS*)
— RSA lerary -— —
Commit signing, : - 7][] Very few keys, but all tied
Application signing - - 2 w® to SCADA management
GitHub, Maven... —_— Affected chip |
L P bl tca . . .
Authentication tokens Message protection rogrammable smartc Slngle p0|nt Of fallure:
R SAE/PeR [ﬁa] Prime generation of RSA
emaito . - .
=) keygen in widely used

Yubikey 4...

YUbIkey 4 a small number of vulnerable ke Chip (1'2 bi"ion ChipS)

25 PV204 | Secure Multiparty Computation TILLNI ./ / CTULIGTLITTUTITL Ve (W LWL vivivd

CR®CS

Single point of failure

26

We already try to avoid single point of failure at many places
— Personal: dual control, people from different backgrounds...

— Technical: Load-balancing web servers, RAID, periodic backups...

— Supply chain: no reliance on single supplier...

Problems: Appropriate trade-off between security, cost and usability

Systems without single point of failure tend to be:
— More complex

— More expensive

— Less performant FEAR
— Backward incompatible L
— (not really without single point of failure)

SINGLE POINT OF FALURE

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

REMOVING SINGLE POINT OF FAILURE
IN CRYPTOGRAPHIC SIGNATURES

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

)(et S~ L

|~
Yosemite Faculty Agfociation Student Senate

(E
#«Mf(r_ (3-1,/—\ :%_)«ifu ,J/léu'f' (—
ﬁ(&% WoFeam Advisory Counch A

. ?\{\3
' A gﬂkﬂ =
\\/)c ollege Council Academic Senate
| MPC signature
Single signature @ Multiple signatures r“ | '
. —
- Shamir TSS _ .
i‘\ Share 1 . | /
‘ ? / Q/ II“IIII
l -« Share 2 o Yinin
_.,\
Signature S Signature || Signature || Signature .ignature

28 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

Option: Cryptographic “garde

29

7.

Electronic signature == sigh_ RSA(Srinzouvynessayg))
— Failure in RSA or SHA256 algorithm or its implementation => forgery of
signatures

RSA ECC PQC

Signhature using cryptographic “garden”
— Differently computed (algorithm) signatures over same message
— Signature = sign_ RSA+ sign_ ECC + sign_PostQuantumAlg

— Mitigate design problems of particular algorithm

Disadvantages: backward (in-)compatibility, larger storage space...

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Secure Multi-Party Computation

« “Offload heavy computation to untrusted party while not leaking info”

(Example: h

 Amazon evaluates trained neural network on medical image (on behalf of user)
 Amazon learns neither the trained NN, nor the processed image
\’ Technology: Homomorphic encryption, garbled circuits (slow, but getting better))

« “Distribute critical cryptographic operation among N parties”
g Example: A

« 3 devices collaboratively compute digital ECC signature
* Private key never at single place, secure unless all devices are compromised
. » Technology: purpose tailored schemes (efficient, provably secure))

30 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

Focus of this lecture

P

~ 19 /

TIIRETID

Threshold cryptography

Proposed already in 1987 by Y. Desmedt

Principle
— Private key split into multiple parts (“shares”)

- Shares used (independently) by separate parties during a protocol to perform
desired cryptographic operation

- If enough shares are available, operation is finished successfully
Properties
- Better protection of private key (single point of failure removed)
- Key shares can be distributed to multiple parties (independent usage condition)
- Resulting signature may be indistinguishable from a standard one (e.g., ECDSA)

Significant research progress made in the cryptocurrency context

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Threshold cryptography protocols

Typically, distributed key generation is also included
- Private key is not generated on a single device

Output signatures can be indistinguishable from single party signatures
— ECDSA ([GGN16], [LN18], [GG18], [G20], [Can+20], ...)
- Schnorr (MuSig, MuSig2, FROST...)
_ RSA ([DF91], [Gen+97], [DKO1], Smart-ID...)

Various designs with different properties = : re
_ Supported setups (n-of-n / t-of-n) Q/? |— || ?
— Number of communication rounds *\ §€ / 2
-~ Computation complexity i

- Security assumptions...

https://crocs.fi.muni.cz @CRoCS_MUNI

http://progress_bar_id/

PRACTICAL EXAMPLES OF MPC

33 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

Server-Supported RSA Signatures

for Mobile Devices

S m a rt-l D s i g n atu re sySte m Ahto Buldas'*™) | Ajvo Kalu', Peeter Laud!. and Mart Oruaas!

' Cyvbernetica AS. Tallinn, Estonia
ahto.buldas@cyber.ee

1 Banks in BaltiC States, >4M users * Tallinn University of Technology, Tallinn, Estonia

— Qualified Signature Creation Device (QSCD)!
Sign 3k RSA Sign 3k RSA

« Collaborative computation of signature using:
1. User’s mobile device (3072b RSA) . -H»S
2. Smart-ID service provider (3072b RSA)

« Two-party RSA signatures, threshold signature scheme

— Whole signature key never present at a single place []
— Smart-ID service provider cannot alone compute valid signature

* Final signature is 6144b RSA => compatible with existing systems
— Assumed security level is equivalent to 3072b RSA (as if one party compromised)

34 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

MPC wallets (software, hardware)

* Number of cryptocurrencies uses ECDSA/EADSA/Schnorr algorithm to authorize TX
— Funds are lost if private key is stolen/lost

« Multiple separate signatures by separate private keys possible (so called multisignature)

— More costly (more onchain space => higher fee)

— Privacy leaking (structure of approval)

— Not always (directly) supported (Bitcoin has IP_ CHECKMULTISIG, Ethereum needs special contract)
« MPC to compute threshold multiparty signature

— Interaction between multiple entities, single signature as a result
— Not recognizable from standard transactions on-chain

« ECDSA
— Several end-user wallets like ZenGo, Binance, Coinbase... as well as institutional custodians
— Usually one share by user, second by server

« Schnorr-based signatures easier to compute (e.g., Musig-2, FROST)
— Auvailable in Bitcoin after Taproot

35 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

https://arxiv.org/pdf/1810.04660.pdf

PY :hallenge, app ID, origin pr— - challenge, app ID il
True2F FIDO U2F tok o i
ru e o e n ; counter
§ounter - // > : >
IIII signature _/'/ signature _
Token Browser

Relying Party

* Yubikey 4 has single master key
— To efficiently derive keypairs for separate Relying parties (Google, GitHub...)
— Inserted during manufacturing phase (what if compromised?)

 Additional SMPC protocols (as protection against backdoored token)
— Verifiable insertion of browser randomness into final keypairs
— Prevention of private key leakage via ECDSA padding

- Backward-compatible (Relying party, HW) N e
- Efficient: 57ms vs. 23ms to authenticate T

Figure 1: Development board used
to evaluate our True2F prototype
(at left) and a production USB to-
ken that runs True2F (above).

36 PV204 | Secure Multiparty Computation L

CR®CS

WS API: JSON

« CaasS creates single point of
failure (SPoF)

— More risk to server
* Typically solved by HSM
« HSM becomes SPoF!

https://crocs.fi.muni.cz @CRoCS_MUNI

CR&CS https://crocs.fi.muni. cz/papers/space2015

1U prototype:

First prototype:
Y 43+2 configuration

12+2 configuration

CryptoHive

Controller

by 7557 AR
NN
P, e

Performance:
~600 RSA-1024 signs/sec
~1200 HMAC/sec

B

38 PV204 | Secure Multiparty Computation https:/ /crocs.fl.munl.cz @CRoCS_MUNI

https://crocs.fi.muni.cz/papers/mpc_ccs17

Problem: buggy or subverted chip “UCL a} lw
\

s

- Prevention of supply chain compromise or buggy chip

« Suite of ECC-based multi-party protocols proposed
— Distributed key generation, EIGamal decryption, Schnorr signing

 Efficient implementation on JavaCards + high-speed box
« Combination with non-smartcard devices possible

39 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

https://crocs.fi.muni.cz/papers/mpc_ccs17

SmartHSM for multlparty (120 smartcards, 3 cards/quorum)

40

faTe]] PH) »] ICE] [4C5) CICE) 2 [F]
v 2 NRETTE @

HEl Decryption
300+ ### Signing

2504
200

150 4

50 A
- S I . A A | ya g A A
1 5 10 15 20 25 30 35 40

Quorums

Operations / Second

o
I

Figure 10: The average system throughput in relation to the
number of quorums (k = 3) that serve requests simultane-
ously. The higher is better.

PV204 | Secure Multiparty Computation

120 cards => 40 quorums
=> 300+ decrypt / second Ao
=> 80+ S|gnatures [second |y

_Hﬂﬂl!lﬂlﬂﬁ.l ‘IHIH”JEBP“

A Touch of Evil: High-Assurance Cryptographic

Hardware from Untrusted Components
Vasilios Mavroudis Andrea Cerulli Petr Svenda
University College London University College London Masaryk University
. v.mavroudis(@cs.ucl.ac.uk andrea.cerulli.13@uclac.uk svenda@fi.muni.cz
Dan Cvrcek Dusan Klinec George Danezis
EnigmaBridge EnigmaBridge University College London

dan@enigmabridge.com dusan@enigmabridge.com g.danezis@ucl.ac.uk

CR®CS

How to run MPC on JavaCards ~
JCMathLib

« Myst MPC applet: https://github.com/OpenCryptoProject/Myst

« Schnorr-based MPC protocols requires low-level curve operations
— Supported by card, but not exposed by standard JavaCard API

« JCMathLib https://github.com/OpenCryptoProject/JCMathLib
— Adds support for low-level classes/methods like ECPoint and Integer
* Which are otherwise not supported by public JavaCard API
« (available via proprietary extensions, but requires NDA)
— Main goals
1. Expose helpful functions for research/FOSS usage (e.g., Schnorr MPC sigs)
2. Allow for publication of functional applets originally based on proprietary API
— Low-level methods build (mis)using existing JC API
« E.g., ECPoint.multiply() using ECDH KeyAgreement + additional computation
— Optimized for low RAM memory footprint and performance

41 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

https://github.com/OpenCryptoProject/Myst
https://github.com/OpenCryptoProject/JCMathLib
https://github.com/OpenCryptoProject/JCMathLib

SHINE: Resilience via Practical Interoperability of Multi-party Schnorr Signature Schemes,

CR&CS Antonin Dufka, Vladimir Sedlacek, Petr Svenda, SECRYPT , 2022.

SHINE: Interoperability of MPC signatures

42

|dea: make existing Schnorr-based MPC protocols interoperable via
untrusted mediator

— NE-based schemes (CoSi, Myst)

— NC-based schemes (MuSig, MSDL)

— Half-ND-based schemes (MuSig2, SpeedyMuSig)

Additional multi-signature protocol optimized for smartcards (SHINE)

— JCMathLib used NC achme NE scbems AN scbme NE accas
(MuSig, MSDL) untrusted {CoSi, SHINE} {MuSig2, SpeedyMuSig) untrusted (CaSi, SHINE)
mediator mediator
2 m
3. COITI(Rl) 1 R2 2. B 1,R1 3 1. Ra
—,- " 1 a 1 N
e —— €
- 4. Com{Rz) s Am 4. Ryy, Ryz,m 5. R,m
B] M i B EE— ——
—_— 1 1
5. Ry 0 5 _';r 6. 81 7. 8 -l.'-l'
——- . ———. B]
I -— 7. R2 A —
3. rap + Zg3Ra o = 122G
8. & 6. R=R+ R, R=¢(R1a,...,m)
= Rigy...,m
1L s— 514+ Ba,2 = ¢z,2(A11)
8. a=81+8+ Poaraa

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

USE-CASE SCENARIOS

45 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

High-level usage scenarios

Digital signature

User authentication

Data decryption

Key / randomness generation

s b=

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Multiparty signatures — configurations and use-cases

« 2-out-of-2 (two signers, both required)
— One share on mobile phone, second on server (Smart-ID, eIDAS compliant)
— One share on US smartcard, second on Chinese smartcard (backdoor resistance)

« 2-out-of-3 (three signers total, at least two required)
— Two shares user, one share backup server (backup if user lose one share)
— One share lender, one share lendee, one share arbiter (for disputes)

* 1-out-of-3 (very robust backup against key loss)

 3-out-of-5 (shares distribution voting)
— CEO has 2 shares, all other have only single one

* 11-out-of-15 (Liquid consortium signing blocks on Liquid sidechain)

47 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

vy

N

Multiparty signatures with additional policy /,,7%
7’/""";////
» Signers can also enforce specific signing policy Y

— Only during certain time, documents, type of operations, certain amount...

« 2-out-of-2 with policy
— One person, second automatic signer only during office hours

« 2-out-of-3 with policy (two people, one automated device with policy)
— Two people together can always sign/transfer, one person alone only up to limit)

« 3-out-of-3 (two people, one automated device with policy)

— Automated device signs only when previous two already signed and additionally
impose 1-month delay (timelock)

48 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

MPC for authentication — configurations

(&1 M —
« 2-of-2: one user, two devices "E!_,ﬁ @ v :

— (higher security against device compromise) — - =

2-of-2: one user, one server-side automatic process ,@ 7 .ﬁ |
I
I

— (check time interval when authentication is allowed) _——— 7

2-0f-2: two users (user, approving controller) (g ~ (5 ~'
£ L

— (access must be approved by controller) :
2-0f-3: three users (user, redundant approvers)

-_—_—-~N -2
— (one user, two controllers — one approval is enough) I(@ “ﬁ?\ | : o |

. . I — -

- Bonus: Independent log of authentication attempt '™~ =3, f ‘ﬁ
& L

49 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Multiparty decryption and Shamir threshold scheme

 Combination of MPC and Shamir

— 2-of-2 multiparty decryption for every person to decrypt Shamir share
— Shamir shares combined later (standard procedure)

— Usable to enable easy removal of person from share (by deletion of second key
for 2-of-2)

50 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Threshold crypto protocols — tradeoffs and limitations

« Security vs. usabillity

« More difficult to finalize signature (more parties)
* More complex software (bugs)

* Number of rounds

« Amount of data exchanged

 Active research field => possibility for new attacks against whole
schemes

51 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Summary

- JavaCard programming
— Optimizations need to consider underlaying hardware (RAM, co-processors...)
— Programs shall anticipate faults during computation (injected by an attacker)

* Secure Multiparty Computation
— Exciting domain, active research, many practical uses
— Collaborative computation of signatures, decryption, keygen...
— Can be backward compatible (k-ECDSA, k-RSA, k-Schnorr...)
— Usually more computational demanding (common CPU is enough)
— Some protocols efficient enough to run on smartcards (Schnorr-based sigs...)

« Split to multiple parties provides:
— Better protection of private key against bugs and compromise
— Possibility of additional policy before party participation

52 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

53 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Additional slides for generic multiparty computation and
whitebox cryptography construction (for interested, not
mandatory part of PV204 course)

54 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

Protections Against Reverse Engineering

HOW TO PROTECT

56 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Standard vs. whitebox attacker model
(symmetric crypto example)

57 PV204 | Secure Multiparty Computation

CR®CS

Classical obfuscation and its limits

* Provides only time-limited protection
» Obfuscation is mostly based on obscurity
— add bogus jumps
— reorder related memory blocks
— transform code into equivalent one, but less readable
— pack binary into randomized virtual machine...
» Barak’s (im)possibility result (2001)
— family of functions that will always leak some information
— but practical implementation may exist for others
« Cannetti et. al. positive results for point functions

» Goldwasser et. al. negative result for auxiliary inputs

59 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

Computation with Encrypted Data and Encrypted Function

CEF&CED

60 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

CEF

« Computation with Encrypted Function (CEF)
— A provides function F in form of P(F)
— P(F) can be executed on B’s machine with B's data D
— B will not learn function F during its computation (except D, to F(D;) mapping)

A B
(%) 7 &

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

CED

« Computation with Encrypted Data (CED)
— B provides encrypted data D as E(D) to A
— Ais able to compute its F as F(E(D)) to produce E(F(D))
* result of F over D, but encrypted
— A will not learn data D

— E(F(D)) is returned back to B and decrypted

A

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

CED via homomorphism

1. Convert your function into Boolean circuit with additions (xor) and
multiplications (and)

2. Compute addition and/or multiplication “securely”
— an attacker can compute E(D1+D2) = E(D1)+E(D2)
— but can learn neither D1 nor D2

3. Execute whole circuit over encrypted data

64 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Types of homomorphic schemes

« Partial homomorphic scheme
— either addition or multiplication is possible, but not both; any number of times

« Somewhat homomorphic scheme
— Both operations possible, but only limited number of times

* Fully homomorphic scheme
— both addition and muiltiplication; unlimited number of times (any computable function)

65 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Partial homomorphic schemes

« Example with RSA (multiplication)

— E(d,).E(d,) = d,¢. d,® mod m = (d,d,)® mod m = E(d,d,)
« Example Goldwasser-Micali (addition)

— E(dy).E(dy) = x97ry2 - X%r,2 = x31%92(r,r,)> = E(d,©d,)
 Limited to polynomial and rational functions
 Limited to only one type of operation (mult or add)

— or one type and very limited number of other type

« Slow — based on modular mult or exponentiation
— every operation equivalent to whole RSA operation

66 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Somewhat Homomorphic Encryption

« Both operations (mult and add) possible, but only limited number of
times

 BGV (Barrat, Gentry and Vaikuntanathan) scheme
« GSW (Gentry-Sahai-\Waters) scheme

67 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Fully homomorphic scheme (FHE)

* Holy grall - idea proposed in 1978 (Rivest et al.)

— both addition and multiplication securely
« But no scheme until 2009 (Gentry)!

* Fully homomorphic encryption
— based on lattices over integers
— noisy somewhat homomorphic encryption usable only for few operations
— combined with repair operation (enable to use it for more operations again)

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Fully homomorphic scheme - usages

* Qutsourced cloud computing and storage
— FHE search, Private Database Queries
— protection of the query content

e Secure voting protocols
— yes/no vote, resulting decision

* Protection of proprietary info - MRI machines
— expensive algorithm analyzing MR data, HW protected
— central processing restricted due to private patient’'s data

69 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Fully homomorphic scheme - practicality

* Not very practical (yet ©) (Gentry, 2009)
— 2.7GB key & 2h computation for every repair operation
— repair needed every ~10 multiplication

 FHE-AES implementation (Gentry, 2012)
— standard PC = 37 minutes/block (but 256GB RAM)

» Gentry-Halevi FHE accelerated in HW (2014)
— GPU /ASICS, many blocks in parallel => 5 minutes/block

* Replacing AES with other cipher (Simon) (2014)

— 2 seconds/block
* Very active research area!

70 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Partial/Fully Homomorphic Encryption libraries

 Homomorphic encryption libraries: HEIib, FV-NFLIib, SEAL

« Comparison of features and performance
— https://arxiv.org/pdf/1812.02428v1.pdf
— https://link.springer.com/chapter/10.1007/978-3-030-12942-2 32

71 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

https://arxiv.org/pdf/1812.02428v1.pdf
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32

WHITEBOX CRYPTOGRAPHY

72 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

White-box attack resistant cryptography

* How to protect symmetric cryptography cipher?
— protects used cryptographic key (and data)

« Special implementation fully compatible with standard AES/DES...
2002 (Chow et al.)

— series of lookups into pre-computed tables

* Implementation of AES which takes only data
— key is already embedded inside
— hard for an attacker to extract embedded key
— Distinction between key and implementation of algorithm (AES) is removed

73 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

80

AES key

&)

L makeTabIe()

precompTable

Environment outside control
of an attacker

4

S ——
encrypt(data)

Environment under control
of an attacker
pr ey

encrypted data

g

PV204 | Secure Multiparty Computation

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

WBACR Ciphers - pros

* Practically usable (size/speed)
— implementation size ~800KB (WBACR AES tables)
— speed ~MBs/sec (WBACRAES ~6.5MB/s vs. 220MB/s)

« Hard to extract embedded key
— Complexity semi-formally guaranteed (if scheme is secure)
— AES shown unsuitable (all WBARC AESes are broken)

* One can simulate asymmetric cryptography!

— implementation contains only encryption part of cipher
— until attacker extracts key, decryption is not possible

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

WBACR Ciphers - cons

* Implementation can be used as oracle (black box)
— attacker can supply inputs and obtain outputs
— even if she cannot extract the key
— (can be partially solved by I/O encodings)

* Problem of secure input/output
— protected is only cipher (e.g., AES), not code around
+ Key is fixed and cannot be easily changed

« Successful cryptanalysis for several schemes ®
— several former schemes broken
— new techniques being proposed

85 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Space-Hard Ciphers

« Space-hard notion of WBACR ciphers

— How much can be fnc compressed after key extraction?
« WBACR AES=>16B key=>extreme compression (bad)
— Amount of code to extract to maintain functionality
« SPACE suite of space-hard ciphers

— Combination of I-line target heavy Feistel network and precomputed lookup
tables (e.g., by AES)

— Variable code size to exec time tradeoffs

86 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Whitebox transform IS used in the wild

* Proprietary DRM systems

— details are usually not published
— AES-based functions, keyed hash functions, RSA, ECC...
— interconnection with surrounding code

« Chow at al. (2002) proposal made at Cloakware
— firmware protection solution

* Apple’s FairPlay & Brahms attack
 http://whiteboxcrypto.com/files/2012 MISC DRM.pdf

91 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

http://whiteboxcrypto.com/files/2012_MISC_DRM.pdf

