
 https://crocs.fi.muni.cz @CRoCS_MUNI

PV204 Security technologies

JavaCard optimizations, Secure Multiparty Computation

Petr Švenda svenda@fi.muni.cz @rngsec

Centre for Research on Cryptography and Security, Masaryk University

(part of MPC slides done by Antonín Dufka)

Please comment on slides with anything unclear, incorrect or suggestions for improvement

https://drive.google.com/file/d/1vj_FtJG97gixLgQYuBR2NDNvg2LRMdro/view?usp=sharing

https://drive.google.com/file/d/1vj_FtJG97gixLgQYuBR2NDNvg2LRMdro/view?usp=sharing

 https://crocs.fi.muni.cz @CRoCS_MUNI

BEST PRACTICES (FOR APPLET

DEVELOPERS)

PV204 | Secure Multiparty Computation 2

 https://crocs.fi.muni.cz @CRoCS_MUNI

Quiz

1. Expect that your device is leaking in time/power channel.

Which option will you use?

– AES from hw coprocessor or software re-implementation?

– Short-term sensitive data stored in EEPROM or RAM?

– Persistent sensitive data in EEPROM or encrypted object?

– Conditional jumps on sensitive value?

2. Expect that attacker can successfully induct faults (random

change of bit(s) in device memory).

– Suggest defensive options for applet’s source code

– Change in RAM, EEPROM, instruction pointer, CPU flags…

3 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (1)

• Use algorithms/modes from JC API rather than your own implementation

– JC API algorithms fast and protected in cryptographic hardware

– general-purpose processor leaks more information (side-channels)

• Store session data in RAM

– faster and more secure against power analysis

– EEPROM has limited number of rewrites (10^5 – 10^6 writes)

• Never store keys, PINs or sensitive data in primitive arrays

– use specialized objects like OwnerPIN and Key

– better protected against power, fault and memory read-out attacks

– If not possible, generate random key in Key object, encrypt large data with this key and store only

encrypted data

• Make checksum on stored sensitive data (=> detect faults)

– check during applet selection (do not continue if data are corrupted)

– possibly check also before sensitive operation with the data (but performance penalty)

 4 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (2)

• Erase unused keys and sensitive arrays

– use specialized method if exists (Key.clearKey())

– or overwrite with random data (Random.generate())

– Perform always before and after start of new session (new select, new device…)

• Use transactions to ensure atomic operations

– power supply can be interrupted inside code execution

– be aware of attacks by interrupted transactions - rollback attack

• Do not use conditional jumps with sensitive data

– branching after condition is recognizable with power analysis => timing/power

leakage

PV204 | Secure Multiparty Computation 5

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (3)

• Allocate all necessary resources in constructor

– applet installation usually in trusted environment

– prevents attacks based on limited available resources later during applet use

• Don’t use static attributes (except constants)

– Static attribute is shared between multiple instances of applet (bypasses applet firewall)

– Static pointer to array/engine filled by dynamic allocation cannot be removed until package

is removed from card (memory “leak”)

• Use automata-based programming model

– well defined states (e.g., user PIN verified)

– well defined transitions and allowed method calls

PV204 | Secure Multiparty Computation 6

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (4)

• Treat exceptions properly

– Do not let uncaught native exceptions to propagate away from the card

• 0x6f00 emitted – unclear what caused it from the terminal side

• Your applet is unaware of the exception (fault induction attack in progress?)

– Do not let your code to cause basic exceptions like OutOfBoundsException or

NullPointerExceptions…

• Slow handling of exceptions in general

• Code shall not depend on triggering lower-layer defense (like memory

protection)

7 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints: fault induction (1)

• Cryptographic algorithms are sensitive to fault induction

– Single signature with fault from RSA-CRT may leak the private key

– Perform operation twice and compare results

– Perform reverse operation and compare (e.g., verify after sign)

• Use constants with large hamming distance

– Induced fault in variable will likely cause unknown value

– Use 0xA5 and 0x5A instead of 0 and 1 (correspondingly for more)

– Don’t use values 0x00 and 0xff (easier to force all bits to 0 or 1)

• Check that all sub-functions were executed [Fault.Flow]

– Fault may force program stack or stack to skip some code

– Idea: Add defined value to flow counter inside target sub-function, check later for expected

sum. Add also in branches.

8 PV204 | Secure Multiparty Computation

Secure Application Programming in the presence of Side Channel Attacks, Riscure

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints: fault induction (2)

• Replace single condition check by complementary check

– conditionalValue is sensitive value

– Do not use boolean values for sensitive decisions

• Verify number of actually performed loop iterations

PV204 | Secure Multiparty Computation 9

Secure Application Programming in the presence of Side Channel Attacks, Riscure

if (conditionalValue == 0x3CA5965A) { // enter critical path

 // . . .

 if (~conditionalValue != 0xC35A69A5) {
 faultDetect(); // fail if complement not equal to 0xC35A69A5

 }
 // . . .

}

int i;
for (i = 0; i < n; i++) { // important loop that must be completed
//. . .

}
if (i != n) { // loop not completed

 faultDetect();
}

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints: fault induction (3)

• Insert random delays around sensitive operations

– Randomization makes targeted faults more difficult

– for loop with random number of iterations (for every run)

• Monitor and respond to detected induced faults

– If fault is detected (using previous methods), increase fault counter.

– Erase keys / lock card after reaching some threshold (~10)

• Natural causes may occasionally cause fault => > 1

10 PV204 | Secure Multiparty Computation

Secure Application Programming in the presence of Side Channel Attacks, Riscure

 https://crocs.fi.muni.cz @CRoCS_MUNI

How and when to apply protections

11 PV204 | Secure Multiparty Computation

Riscure

More in PV286:

“Programming in the

presence of side-channels /

faults"

 https://crocs.fi.muni.cz @CRoCS_MUNI

Execution speed hints (1)

• Big difference between RAM and EEPROM memory

– new allocates in EEPROM (persistent, but slow)

• do not use EEPROM for temporary data

• do not use for sensitive data (keys)

– JCSystem.getTransientByteArray() for RAM buffer

– local variables automatically in RAM

• Use algorithms from JavaCard API and utility methods

– much faster, cryptographic co-processor

• Allocate all necessary resources in constructor

– executed during installation (only once)

– either you get everything you want or not install at all

PV204 | Secure Multiparty Computation 12

 https://crocs.fi.muni.cz @CRoCS_MUNI

Execution speed hints (2)

• Garbage collection limited or not available

– do not use new except in constructor

• Use copy-free style of methods

– foo(byte[] buffer, short start_offset, short length)

• Do not use recursion or frequent function calls

– slow, function context overhead

• Do not use OO design extensively (slow)

• Keep Cipher or Signature objects initialized

– if possible (e.g., fixed master key for subsequent derivation)

– initialization with key takes non-trivial time

 PV204 | Secure Multiparty Computation 13

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCPROFILERNEXT – PERFORMANCE

PROFILING, NON-CONSTANT TIME

DETECTION

14 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext: on-card performance profiler

• Open-source on-card performance profiler (L. Zaoral)

– https://github.com/lzaoral/JCProfilerNext

• Automatically instrumentation of provided JavaCard code

– Conditional exception emitted on defined line of code

– Spoon tool used https://spoon.gforge.inria.fr/

• Measures time to reach specific line (measured on client-side)

• Fully automatic, no need for special setup (only JavaCard + reader)

• Goals:

– Help developer to identify parts for performance optimizations

– Help to detect (significant) timing leakages

– Insert “triggers” visible on side-channel analysis

– Insert conditional breakpoints…
15 PV204 | Secure Multiparty Computation

https://github.com/lzaoral/JCProfilerNext
https://spoon.gforge.inria.fr/

 https://crocs.fi.muni.cz @CRoCS_MUNI

Instrumented code (Spoon)

16

private void example(APDU apdu) {

 short count = Util.getShort(apdu.getBuffer(), ISO7816.OFFSET_CDATA);

 for (short i = 0; i < count; i++) {

 short tmp = 0;

 for (short k = 0; k < 50; k++) {

 tmp++;

 }

 }

}

PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_1);

PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_2);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_3);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_4);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_5);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_6);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_7);

PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_8);

// if m_perfStop equals to stopCondition, exception is thrown (trap hit)

public static void check(short stopCondition) {
 if (PM.m_perfStop == stopCondition) {
 ISOException.throwIt(stopCondition);
 }
}

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext – timing profile of target line of code

17 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext – memory consumption

18 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Checking for non-constant time execution

19 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

22 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

SECURE MULTIPARTY COMPUTATION

23 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

SECURE MULTIPARTY COMPUTATION

(TO REMOVE SINGLE POINT OF FAILURE)

24 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Possibly heard of ROCA vulnerability CVE-2017-15361

25 PV204 | Secure Multiparty Computation

https://roca.crocs.fi.muni.cz

Austria, Estonia,

Slovakia, Spain…

25-30% TPMs worldwide,

BitLocker, ChromeOS…

Firmware update available

Commit signing,

Application signing

GitHub, Maven…

Gemalto .NET

Yubikey 4…
Yubikey 4…

Very few keys, but all tied

to SCADA management

Single point of failure:

Prime generation of RSA

keygen in widely used

chip (1-2 billion chips)

 https://crocs.fi.muni.cz @CRoCS_MUNI

Single point of failure

• We already try to avoid single point of failure at many places
– Personal: dual control, people from different backgrounds…

– Technical: Load-balancing web servers, RAID, periodic backups…

– Supply chain: no reliance on single supplier…

• Problems: Appropriate trade-off between security, cost and usability

• Systems without single point of failure tend to be:
– More complex

– More expensive

– Less performant

– Backward incompatible

– (not really without single point of failure)

PV204 | Secure Multiparty Computation

z
e
ro

d
a

y
c
lo

th
in

g
.c

o
m

26

 https://crocs.fi.muni.cz @CRoCS_MUNI

REMOVING SINGLE POINT OF FAILURE

IN CRYPTOGRAPHIC SIGNATURES

27 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Single signature

28 PV204 | Secure Multiparty Computation

Signature Signature Signature Signature

Multiple signatures

MPC signature

Signature

Analogically for decryption

(single person decrypts,

multiple people, k-of-n)

Shamir TSS

Share 3

Share 2

Share 1

 https://crocs.fi.muni.cz @CRoCS_MUNI

Option: Cryptographic “garden”

• Electronic signature == sign_RSA(SHA256(message))
– Failure in RSA or SHA256 algorithm or its implementation => forgery of

signatures

• Signature using cryptographic “garden”
– Differently computed (algorithm) signatures over same message

– Signature = sign_RSA+ sign_ECC + sign_PostQuantumAlg

– Mitigate design problems of particular algorithm

• Disadvantages: backward (in-)compatibility, larger storage space…

PV204 | Secure Multiparty Computation

Signature

ECC PQC

Signature

RSA

RSA

29

 https://crocs.fi.muni.cz @CRoCS_MUNI

Secure Multi-Party Computation

• “Offload heavy computation to untrusted party while not leaking info”

• “Distribute critical cryptographic operation among N parties”

30 PV204 | Secure Multiparty Computation

Example:

• Amazon evaluates trained neural network on medical image (on behalf of user)

• Amazon learns neither the trained NN, nor the processed image

• Technology: Homomorphic encryption, garbled circuits (slow, but getting better)

Example:

• 3 devices collaboratively compute digital ECC signature

• Private key never at single place, secure unless all devices are compromised

• Technology: purpose tailored schemes (efficient, provably secure) F
o
c
u
s
 o

f
th

is
 l
e
c
tu

re

 https://crocs.fi.muni.cz @CRoCS_MUNI

Threshold cryptography

• Proposed already in 1987 by Y. Desmedt

• Principle

– Private key split into multiple parts (“shares”)

– Shares used (independently) by separate parties during a protocol to perform

desired cryptographic operation

– If enough shares are available, operation is finished successfully

• Properties

– Better protection of private key (single point of failure removed)

– Key shares can be distributed to multiple parties (independent usage condition)

– Resulting signature may be indistinguishable from a standard one (e.g., ECDSA)

• Significant research progress made in the cryptocurrency context

 31

PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Threshold cryptography protocols

• Typically, distributed key generation is also included

– Private key is not generated on a single device

• Output signatures can be indistinguishable from single party signatures

– ECDSA ([GGN16], [LN18], [GG18], [GG20], [Can+20], …)

– Schnorr (MuSig, MuSig2, FROST…)

– RSA ([DF91], [Gen+97], [DK01], Smart-ID…)

• Various designs with different properties

– Supported setups (n-of-n / t-of-n)

– Number of communication rounds

– Computation complexity

– Security assumptions…

http://progress_bar_id/

 https://crocs.fi.muni.cz @CRoCS_MUNI

PRACTICAL EXAMPLES OF MPC

33 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Smart-ID signature system

• Banks in Baltic states, >4M users

– Qualified Signature Creation Device (QSCD)!

• Collaborative computation of signature using:

1. User’s mobile device (3072b RSA)

2. Smart-ID service provider (3072b RSA)

• Two-party RSA signatures, threshold signature scheme

– Whole signature key never present at a single place

– Smart-ID service provider cannot alone compute valid signature

• Final signature is 6144b RSA => compatible with existing systems

– Assumed security level is equivalent to 3072b RSA (as if one party compromised)

PV204 | Secure Multiparty Computation

6k RSA

Signature

Sign 3k RSA Sign 3k RSA

34

 https://crocs.fi.muni.cz @CRoCS_MUNI

MPC wallets (software, hardware)

• Number of cryptocurrencies uses ECDSA/EdDSA/Schnorr algorithm to authorize TX

– Funds are lost if private key is stolen/lost

• Multiple separate signatures by separate private keys possible (so called multisignature)

– More costly (more onchain space => higher fee)

– Privacy leaking (structure of approval)

– Not always (directly) supported (Bitcoin has IP_CHECKMULTISIG, Ethereum needs special contract)

• MPC to compute threshold multiparty signature

– Interaction between multiple entities, single signature as a result

– Not recognizable from standard transactions on-chain

• ECDSA

– Several end-user wallets like ZenGo, Binance, Coinbase… as well as institutional custodians

– Usually one share by user, second by server

• Schnorr-based signatures easier to compute (e.g., Musig-2, FROST)

– Available in Bitcoin after Taproot

35 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

True2F FIDO U2F token

• Yubikey 4 has single master key

– To efficiently derive keypairs for separate Relying parties (Google, GitHub…)

– Inserted during manufacturing phase (what if compromised?)

• Additional SMPC protocols (as protection against backdoored token)

– Verifiable insertion of browser randomness into final keypairs

– Prevention of private key leakage via ECDSA padding

• Backward-compatible (Relying party, HW)

• Efficient: 57ms vs. 23ms to authenticate

36 PV204 | Secure Multiparty Computation

https://arxiv.org/pdf/1810.04660.pdf

 https://crocs.fi.muni.cz @CRoCS_MUNI

Cryptography as a Service (CaaS)

WS API: JSON

Hardware Security

Module (HSM)

PV204 | Secure Multiparty Computation 37

• CaaS creates single point of

failure (SPoF)

– More risk to server

• Typically solved by HSM

• HSM becomes SPoF!

 https://crocs.fi.muni.cz @CRoCS_MUNI

38 PV204 | Secure Multiparty Computation

https://crocs.fi.muni.cz/papers/space2015

First prototype:

12+2 configuration

1U prototype:

43+2 configuration

Dedicated board:

110+10 cards configuration

Performance:

~600 RSA-1024 signs/sec

~1200 HMAC/sec

CryptoHive

 https://crocs.fi.muni.cz @CRoCS_MUNI

Problem: buggy or subverted chip

39 PV204 | Secure Multiparty Computation

https://crocs.fi.muni.cz/papers/mpc_ccs17

https://crocs.fi.muni.cz/papers/mpc_ccs17

• Prevention of supply chain compromise or buggy chip

• Suite of ECC-based multi-party protocols proposed

– Distributed key generation, ElGamal decryption, Schnorr signing

• Efficient implementation on JavaCards + high-speed box

• Combination with non-smartcard devices possible

 https://crocs.fi.muni.cz @CRoCS_MUNI

SmartHSM for multiparty (120 smartcards, 3 cards/quorum)

PV204 | Secure Multiparty Computation

https://crocs.fi.muni.cz/papers/mpc_ccs17

…

120 cards => 40 quorums

=> 300+ decrypt / second

=> 80+ signatures / second

40

 https://crocs.fi.muni.cz @CRoCS_MUNI

How to run MPC on JavaCards

• Myst MPC applet: https://github.com/OpenCryptoProject/Myst

• Schnorr-based MPC protocols requires low-level curve operations

– Supported by card, but not exposed by standard JavaCard API

• JCMathLib https://github.com/OpenCryptoProject/JCMathLib

– Adds support for low-level classes/methods like ECPoint and Integer

• Which are otherwise not supported by public JavaCard API

• (available via proprietary extensions, but requires NDA)

– Main goals

1. Expose helpful functions for research/FOSS usage (e.g., Schnorr MPC sigs)

2. Allow for publication of functional applets originally based on proprietary API

– Low-level methods build (mis)using existing JC API

• E.g., ECPoint.multiply() using ECDH KeyAgreement + additional computation

– Optimized for low RAM memory footprint and performance

 41 PV204 | Secure Multiparty Computation

https://github.com/OpenCryptoProject/JCMathLib

https://github.com/OpenCryptoProject/Myst
https://github.com/OpenCryptoProject/JCMathLib
https://github.com/OpenCryptoProject/JCMathLib

 https://crocs.fi.muni.cz @CRoCS_MUNI

SHINE: Interoperability of MPC signatures

• Idea: make existing Schnorr-based MPC protocols interoperable via

untrusted mediator

– NE-based schemes (CoSi, Myst)

– NC-based schemes (MuSig, MSDL)

– Half-ND-based schemes (MuSig2, SpeedyMuSig)

• Additional multi-signature protocol optimized for smartcards (SHINE)

– JCMathLib used

SHINE: Resilience via Practical Interoperability of Multi-party Schnorr Signature Schemes,

Antonin Dufka, Vladimir Sedlacek, Petr Svenda, SECRYPT , 2022.

PV204 | Secure Multiparty Computation 42

 https://crocs.fi.muni.cz @CRoCS_MUNI

USE-CASE SCENARIOS

45 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

High-level usage scenarios

1. Digital signature

2. User authentication

3. Data decryption

4. Key / randomness generation

46 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Multiparty signatures – configurations and use-cases

• 2-out-of-2 (two signers, both required)

– One share on mobile phone, second on server (Smart-ID, eIDAS compliant)

– One share on US smartcard, second on Chinese smartcard (backdoor resistance)

• 2-out-of-3 (three signers total, at least two required)

– Two shares user, one share backup server (backup if user lose one share)

– One share lender, one share lendee, one share arbiter (for disputes)

• 1-out-of-3 (very robust backup against key loss)

• 3-out-of-5 (shares distribution voting)

– CEO has 2 shares, all other have only single one

• 11-out-of-15 (Liquid consortium signing blocks on Liquid sidechain)

47 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Multiparty signatures with additional policy

• Signers can also enforce specific signing policy

– Only during certain time, documents, type of operations, certain amount…

• 2-out-of-2 with policy

– One person, second automatic signer only during office hours

• 2-out-of-3 with policy (two people, one automated device with policy)

– Two people together can always sign/transfer, one person alone only up to limit)

• 3-out-of-3 (two people, one automated device with policy)

– Automated device signs only when previous two already signed and additionally

impose 1-month delay (timelock)

48 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

MPC for authentication – configurations

• 2-of-2: one user, two devices

– (higher security against device compromise)

• 2-of-2: one user, one server-side automatic process

– (check time interval when authentication is allowed)

• 2-of-2: two users (user, approving controller)

– (access must be approved by controller)

• 2-of-3: three users (user, redundant approvers)

– (one user, two controllers – one approval is enough)

• Bonus: Independent log of authentication attempt

49 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Multiparty decryption and Shamir threshold scheme

• Combination of MPC and Shamir

– 2-of-2 multiparty decryption for every person to decrypt Shamir share

– Shamir shares combined later (standard procedure)

– Usable to enable easy removal of person from share (by deletion of second key

for 2-of-2)

50 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Threshold crypto protocols – tradeoffs and limitations

• Security vs. usability

• More difficult to finalize signature (more parties)

• More complex software (bugs)

• Number of rounds

• Amount of data exchanged

• Active research field => possibility for new attacks against whole

schemes

51 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Summary

• JavaCard programming

– Optimizations need to consider underlaying hardware (RAM, co-processors…)

– Programs shall anticipate faults during computation (injected by an attacker)

• Secure Multiparty Computation

– Exciting domain, active research, many practical uses

– Collaborative computation of signatures, decryption, keygen…

– Can be backward compatible (k-ECDSA, k-RSA, k-Schnorr…)

– Usually more computational demanding (common CPU is enough)

– Some protocols efficient enough to run on smartcards (Schnorr-based sigs…)

• Split to multiple parties provides:

– Better protection of private key against bugs and compromise

– Possibility of additional policy before party participation

52 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

53 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Additional slides for generic multiparty computation and

whitebox cryptography construction (for interested, not

mandatory part of PV204 course)

54 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

HOW TO PROTECT

Protections Against Reverse Engineering

PV204 | Secure Multiparty Computation 56

 https://crocs.fi.muni.cz @CRoCS_MUNI

Standard vs. whitebox attacker model

(symmetric crypto example)

PV204 | Secure Multiparty Computation 57

 https://crocs.fi.muni.cz @CRoCS_MUNI

Classical obfuscation and its limits

• Provides only time-limited protection

• Obfuscation is mostly based on obscurity

– add bogus jumps

– reorder related memory blocks

– transform code into equivalent one, but less readable

– pack binary into randomized virtual machine...

• Barak’s (im)possibility result (2001)

– family of functions that will always leak some information

– but practical implementation may exist for others

• Cannetti et. al. positive results for point functions

• Goldwasser et. al. negative result for auxiliary inputs

PV204 | Secure Multiparty Computation 59

 https://crocs.fi.muni.cz @CRoCS_MUNI

CEF&CED

Computation with Encrypted Data and Encrypted Function

PV204 | Secure Multiparty Computation 60

 https://crocs.fi.muni.cz @CRoCS_MUNI

CEF

• Computation with Encrypted Function (CEF)

– A provides function F in form of P(F)

– P(F) can be executed on B’s machine with B’s data D

– B will not learn function F during its computation (except Di to F(Di) mapping)

62 PV204 | Secure Multiparty Computation

A B

 https://crocs.fi.muni.cz @CRoCS_MUNI

CED

• Computation with Encrypted Data (CED)

– B provides encrypted data D as E(D) to A

– A is able to compute its F as F(E(D)) to produce E(F(D))

• result of F over D, but encrypted

– A will not learn data D

– E(F(D)) is returned back to B and decrypted

63 PV204 | Secure Multiparty Computation

A B

 https://crocs.fi.muni.cz @CRoCS_MUNI

CED via homomorphism

1. Convert your function into Boolean circuit with additions (xor) and

multiplications (and)

2. Compute addition and/or multiplication “securely”

– an attacker can compute E(D1+D2) = E(D1)+E(D2)

– but can learn neither D1 nor D2

3. Execute whole circuit over encrypted data

PV204 | Secure Multiparty Computation 64

 https://crocs.fi.muni.cz @CRoCS_MUNI

Types of homomorphic schemes

• Partial homomorphic scheme

– either addition or multiplication is possible, but not both; any number of times

• Somewhat homomorphic scheme

– Both operations possible, but only limited number of times

• Fully homomorphic scheme

– both addition and multiplication; unlimited number of times (any computable function)

PV204 | Secure Multiparty Computation 65

 https://crocs.fi.muni.cz @CRoCS_MUNI

Partial homomorphic schemes

• Example with RSA (multiplication)

– E(d1).E(d2) = d1
e . d2

e mod m = (d1d2)
e mod m = E(d1d2)

• Example Goldwasser-Micali (addition)

– E(d1).E(d2) = xd1r1
2 . Xd2r2

2 = xd1+d2(r1r2)
2 = E(d1 d2)

• Limited to polynomial and rational functions

• Limited to only one type of operation (mult or add)

– or one type and very limited number of other type

• Slow – based on modular mult or exponentiation

– every operation equivalent to whole RSA operation

PV204 | Secure Multiparty Computation 66

 https://crocs.fi.muni.cz @CRoCS_MUNI

Somewhat Homomorphic Encryption

• Both operations (mult and add) possible, but only limited number of

times

• BGV (Barrat, Gentry and Vaikuntanathan) scheme

• GSW (Gentry-Sahai-Waters) scheme

67 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Fully homomorphic scheme (FHE)

• Holy grail - idea proposed in 1978 (Rivest et al.)

– both addition and multiplication securely

• But no scheme until 2009 (Gentry)!

• Fully homomorphic encryption

– based on lattices over integers

– noisy somewhat homomorphic encryption usable only for few operations

– combined with repair operation (enable to use it for more operations again)

68 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

Fully homomorphic scheme - usages

• Outsourced cloud computing and storage

– FHE search, Private Database Queries

– protection of the query content

• Secure voting protocols

– yes/no vote, resulting decision

• Protection of proprietary info - MRI machines

– expensive algorithm analyzing MR data, HW protected

– central processing restricted due to private patient’s data

• …

 PV204 | Secure Multiparty Computation 69

 https://crocs.fi.muni.cz @CRoCS_MUNI

Fully homomorphic scheme - practicality

• Not very practical (yet ) (Gentry, 2009)

– 2.7GB key & 2h computation for every repair operation

– repair needed every ~10 multiplication

• FHE-AES implementation (Gentry, 2012)

– standard PC 37 minutes/block (but 256GB RAM)

• Gentry-Halevi FHE accelerated in HW (2014)

– GPU / ASICS, many blocks in parallel => 5 minutes/block

• Replacing AES with other cipher (Simon) (2014)

– 2 seconds/block

• Very active research area!

PV204 | Secure Multiparty Computation 70

 https://crocs.fi.muni.cz @CRoCS_MUNI

Partial/Fully Homomorphic Encryption libraries

• Homomorphic encryption libraries: HElib, FV-NFLlib, SEAL

• Comparison of features and performance

– https://arxiv.org/pdf/1812.02428v1.pdf

– https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32

71 PV204 | Secure Multiparty Computation

https://arxiv.org/pdf/1812.02428v1.pdf
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32

 https://crocs.fi.muni.cz @CRoCS_MUNI

WHITEBOX CRYPTOGRAPHY

72 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

White-box attack resistant cryptography

• How to protect symmetric cryptography cipher?

– protects used cryptographic key (and data)

• Special implementation fully compatible with standard AES/DES…

2002 (Chow et al.)

– series of lookups into pre-computed tables

• Implementation of AES which takes only data

– key is already embedded inside

– hard for an attacker to extract embedded key

– Distinction between key and implementation of algorithm (AES) is removed

PV204 | Secure Multiparty Computation 73

 https://crocs.fi.muni.cz @CRoCS_MUNI PV204 | Secure Multiparty Computation

Whitebox transform

74

 https://crocs.fi.muni.cz @CRoCS_MUNI

PV204 | Secure Multiparty Computation

makeTable()

precompTable

data encrypted data

encrypt(data)

AES key

Environment under control

of an attacker

Environment outside control

of an attacker

80

 https://crocs.fi.muni.cz @CRoCS_MUNI

WBACR Ciphers - pros

• Practically usable (size/speed)

– implementation size ~800KB (WBACR AES tables)

– speed ~MBs/sec (WBACRAES ~6.5MB/s vs. 220MB/s)

• Hard to extract embedded key

– Complexity semi-formally guaranteed (if scheme is secure)

– AES shown unsuitable (all WBARC AESes are broken)

• One can simulate asymmetric cryptography!

– implementation contains only encryption part of cipher

– until attacker extracts key, decryption is not possible

84 PV204 | Secure Multiparty Computation

 https://crocs.fi.muni.cz @CRoCS_MUNI

WBACR Ciphers - cons

• Implementation can be used as oracle (black box)

– attacker can supply inputs and obtain outputs

– even if she cannot extract the key

– (can be partially solved by I/O encodings)

• Problem of secure input/output

– protected is only cipher (e.g., AES), not code around

• Key is fixed and cannot be easily changed

• Successful cryptanalysis for several schemes 

– several former schemes broken

– new techniques being proposed

PV204 | Secure Multiparty Computation 85

 https://crocs.fi.muni.cz @CRoCS_MUNI

Space-Hard Ciphers

• Space-hard notion of WBACR ciphers

– How much can be fnc compressed after key extraction?

• WBACR AES=>16B key=>extreme compression (bad)

– Amount of code to extract to maintain functionality

• SPACE suite of space-hard ciphers

– Combination of l-line target heavy Feistel network and precomputed lookup

tables (e.g., by AES)

– Variable code size to exec time tradeoffs

PV204 | Secure Multiparty Computation 86

 https://crocs.fi.muni.cz @CRoCS_MUNI

Whitebox transform IS used in the wild

• Proprietary DRM systems

– details are usually not published

– AES-based functions, keyed hash functions, RSA, ECC...

– interconnection with surrounding code

• Chow at al. (2002) proposal made at Cloakware

– firmware protection solution

• Apple’s FairPlay & Brahms attack

• http://whiteboxcrypto.com/files/2012_MISC_DRM.pdf

• ...

PV204 | Secure Multiparty Computation 91

http://whiteboxcrypto.com/files/2012_MISC_DRM.pdf

