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Introduction & Reminder

Plan for Today

1 Finishing the previous lecture... 5-10min.

2

3 I will also show Differential Fault Analysis + Example
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Introduction & Reminder

Known challenge: embedded crypto devices
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Introduction & Reminder

Relevance

November 13, 2019

May 28, 2020

SCA Titan: January 7, 2021

October 3, 2019

December 12, 2019
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Introduction & Reminder

Timing side-channel: PIN verification

Software for PIN code verification
Input: 4-digit PIN code
Output: PIN verified or rejected
Process CheckPIN (pin[4])
int pin_ok=0;
if (pin[0]==5)

if (pin[1]==9)
if (pin[2]==0)

if (pin[3]==2)
pin_ok=1;

end
end

end
end
return pin_ok;
EndProcess
What are the execution times of the process for PIN inputs
[0,1,2,3], [5,3,0,2], [5,9,0,0]
The execution time increases as we get closer to
[5,9,0,2]
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Introduction & Reminder

Power side channel: CMOS leakage

Complementary Metal-Oxide-Semiconductor (CMOS) is the most popular
technology and the CMOS circuits exhibit several types of leakage
The most relevant for side-channel attacks is the charge and discharge of the
CMOS load capacitance a.k.a dynamic power consumption
Power analysis attack exploits the fact that the dynamic power consumption
depends on the data and instructions being processed
Dynamic power consumption (Pdyn) is produced by CMOS transitions from state 0
to 1 and from state 1 to 0
Pdyn = CV 2

DDP0→1f ,
where C the transistor capacitance, VDD the power supply voltage,
f the frequency and P0→1 the probability of a 0→ 1 transition
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Introduction & Reminder

Power side channel: Modeling the leakage

Starting point: we use the number of transitions to model the leakage

The Hamming distance model counts the number of 0→ 1 and 1→ 0 transitions

Example 1: A register R is storing the result of an AES round and initial value v0

gets overwritten with v1

The power consumption because of the register transition v0 → v1 is related to the
number of bit flips that occurred

Thus it can be modeled as HammingDistance(v0, v1) = HammingWeight(v0 ⊕ v1)

Common leakage model for hardware implementations (FPGA, ASIC)
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Introduction & Reminder

Power side channel: Modeling the leakage

Example 2: In a microcontroller, a register A contains value v0 and an assembly
instruction moves the content of register A to B

mov rB, rA

This instruction transfers v0 from A to B via the CPU, using the bus

Typically the bus is precharged at all bits being zeros or one (busInitialValue)

The power consumption of the instruction can be modeled as
HammingDistance(busInitialValue,v0) = HammingWeight(v0 ⊕ 0) = HW(v0)

Common leakage model for software implementations (AVR/ARM)
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Introduction & Reminder

Measurement setup schematics

Usually power measurements requires physical proximity to the device and
customized measurement equipment (resistor, oscilloscope)
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Introduction & Reminder

Actual setups

DPA setup with ARM
CortexM4

FA setup

Current Probe

Target XY-Table

EM-FI
Transient Probe

VC Glitcher

Picoscope

Tempest

FPGA board for SCA
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Introduction & Reminder

Analysis capabilities

Simple Power Analysis (SPA): one or a few measurements - visual inspection or
some simple signal processing

Differential attacks (DPA): multiple measurements - use of statistics, signal
processing, etc.

Higher order attacks: Univariate vs multivariate

Profiled attacks: Template and Deep Learning attacks

Combining two or more side-channels

Combining side-channel attack with theoretical cryptanalysis
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Introduction & Reminder

Simple Power Analysis (SPA)

Based on one or a few measurements

Mostly discovery of data-(in)dependent but instruction-dependent properties e.g.
Symmetric:

Number of rounds (resp. key length)
Memory accesses (usually higher power consumption)

Asymmetric:
The key (if badly implemented, e.g. RSA / ECC)
Key length
Implementation details: for example RSA w/wo CRT
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Introduction & Reminder

Reminder: DPA, main concepts

The DPA assumption: the attack is possible assuming the existence of a sensitive
variable (for which exhaustive key search is possible) that depends on something we
know (msg) and something we want to learn (key).

Main steps
1 Choose your sensitive variable
2 Collect measurements, known plaintext/ciphertext, sub-key guesses
3 Predict (hypothetical) intermediate values
4 Decide on the leakage model
5 Recover the key by statistical means, using partition or comparison method as the

side-channel distinguisher
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Introduction & Reminder

DPA with Distance of Means (DoM) as distinguisher

Classical	1-bit	DPA	on	AES	using	DoM	

LSB = 0 
Collect measurements 

Compute Mean0 

Obtain n measurements: e.g. 1000 
plaintext xi ,  power trace pi(t)   

S-box	

8 bits of plaintext 

8 bits of key 

8 output bits 

AES impl. 

LSB 

LSB(SBox(xi⊗ k j )Focus: 

k j ∈ 0,…,255{ }For each key guess: 

LSB(SBox(xi⊗ k j )Calculate: 

LSB = 1 
Collect measurements 

Compute Mean1 

1000 measurements *  
time window t * 
256 key guesses 

Mean0 – Mean1 

Maximum difference = best key guess! 
[Kocher et al.] 
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Introduction & Reminder

Power analysis notes and literature

Very powerful attacks that require contact with the target

Countermeasures on different layers required i.e. algorithm, implementation,
transistor

P. Kocher, J. Jaffe, B. Jun. “Differential Power Analysis”, CRYPTO 1999.

T. Eisenbarth et al. “On the Power of Power Analysis in the Real World: A
Complete Break of the KeeLoqCode Hopping Scheme”, CRYPTO 2008.

Mangard et al. Power Analysis Attacks, Springer, 2006.

T. Kasper et al. “All You Can Eat or Breaking a Real-World Contactless Payment
System”, Financial Cryptography 2010.

J. Balasch et al. “Power Analysis of Atmel CryptoMemory - Recovering Keys from
Secure EEPROMs”, CT-RSA 2012.

N. Samwel et al. “Breaking Ed25519 in WolfSSL.”, CT-RSA 2018.
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EM & other side channels

Electromagnetic side channel
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EM & other side channels

EM side channel: Probing

Observing a power signal in more complex systems can be messy

Complicated SoCs with multiple peripherals

Countermeasures trying to flatten the power consumption signal

Use an electromagnetic probe instead

A probe is used to access the power consumption with less board modifications

Smaller probes can focus on interesting locations and ignore interference from
unrelated el. components
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EM & other side channels

EM side channel: Decapsulation and Microprobing

To improve spatial resolution of analysis use a micrometer-sized antenna

To exploit more leakage decapsulate the chip using chemicals
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EM & other side channels

EM side channel: Decapsulation and Microprobing

Left: close inspection of decapsulated ARM processor using a microscope

Right: EM emission heat-map of the same chip
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EM & other side channels

EM side channel: notes and literature

EM enables side-channel attacks both in high proximity scenarios and distance
scenarios

Main side channel for SoCs, FPGAs, contactless cards due to their complexity and
communication methods

TEMPEST-like attacks are also targeting private data and authentication methods
such as code etc.

Gandolfi et al.: Electromagnetic Analysis: Concrete Results, CHES 1999.

Andrikos et al.: Location, location, location: Revisiting modeling and exploitation
for location-based side channel leakages, ASIACRYPT2019
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EM & other side channels

Exotic side channels

Exotic side channels
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EM & other side channels

Optical Emission

Accessing the chip SRAM cells emits photons that can be detected by a
high-resolution camera

Visual inspection can reveal the memory location accessed

The memory location maps to a specific value (e.g. in the AES LUT), i.e. it maps
directly to Sbox(in ⊕ key)

Since the input in is known, knowledge of the memory location reveals the key

Schlösser et al.: Simple Photonic Emission Analysis of AES, CHES 2012.
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EM & other side channels

Out-of-order and speculative execution

Meltdown and Spectre Attacks

Kernel addresses were access unintentionally due to out-of-order execution

Taking all possible branches may also cause issues

Foreshadow as a variant of Meltdown on SGX

Recent ones: RIDL, ZombieLoad, ...
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CPA

Correlation Power Analysis (CPA)
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CPA

CPA: the main principle

Brier et al.: Correlation Power Analysis with a Leakage Model, CHES 2004

Chapter 6 in the blue book
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CPA

CPA Step 1: Choose intermediate value and decide on the leakage
model

+ Sbox ...

update

in y

k

Assume a software AES implementation e.g. for AVR microcontrollers (8-bit arch.)
Step 1: Choose an intermediate value v of the AES cipher to attack
The value v must be a function of the input and the key, i.e. v = f (in, k)
A common choice for v is the Sbox output, i.e. v = y = Sbox(in ⊕ k)
Throughout the attack the key k must remain constant
Throughout the attack the input in is random
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CPA

CPA Step 2: Measure the power consumption

In Step 2 we record power consumption traces for multiple random inputs

Generate randomly n 8-bit inputs. Typically n is large (thousands to millions!)

Store the inputs in vector in = [in1in2in3 . . . inn]
ᵀ
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CPA

CPA Step 2: Measure the power consumption

For every generated 8-bit input we measure the power consumption of the AES
implementation over time

For every input inj , j = 1, . . . , n we capture a digitized trace over time

We denote the trace related to input inj as tj = [t1
j t2

j . . . t
m
j ]ᵀ. It contains m points in

time (a.k.a. samples)
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CPA

CPA Step 2: Measure the power consumption

Capturing 6 power traces with m time points (samples) results in the following
measurement matrix

Note that the power traces originate from the device, i.e. they are related to the
secret key stored inside the device

We will refer to the unknown key that is stored in the device as kdev
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CPA

CPA Step 3: Predict (hypothetical) intermediate values

In our device y = Sbox(in ⊕ kdev ), but kdev is unknown!

For a given input in we can compute the value y for all possible keys
k ∈ {0, 1, . . . , 255}
ForAll in ∈ in

ForAll k ∈ {0, 1, . . . , 255}
Compute y(in, k) = Sbox(in ⊕ k)

One of the columns of this value-prediction matrix is the correct one!

Divide and Conquer strategy
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CPA

CPA Step 4: Leakage model

We map the hypothetical intermediate values to hypothetical power consumption
values, producing the power-prediction matrix

A common choice is Hamming weight but keep in mind that other models may be
applicable
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CPA

CPA Step 5: Comparison

Compare the hypothetical power consumption values with the real measurements
using Pearson correlation

ForAll columns of measurement matrix
ForAll columns of power prediction matrix

Compute the correlation between columns

The highest correlation value reveals the key

Pearson correlation coefficient ρk (L,HW (Vg)) for leakage L, Hamming weight of the
intermediate value computed HW (V ) and key guess Kg :

ρk (L,HW (Vg)) =
cov [L,HW (Vg)]√

Var [L] · Var [HW (Vg)]
(1)
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CPA

CPA Step 5: Comparison
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CPA

Countermeasures

Masking and hiding
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CPA

The idea

Purpose: break the link between the actual data and power consumption
Masking: power consumption remains dependent on the data on which
computation is performed but not the actual data

A random mask concealing every intermediate value
Can be on different levels (arithmetic→ gate level)

Hiding: power consumption is independent of the intermediate values and of the
operations

Special logic styles like WDDL, MDPL etc.
Randomizing in time domain
Lowering SNR ratio
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CPA

Software countermeasures

Time randomization:
Operations are randomly shifted in time
Use of NOP operations
Add random delays
Use of dummy variables and instructions (sequence scrambling)

Register renaming and nondeterministic processor
Idea is to exploit ILP within an instruction stream
Processor selects an instruction and a memory access randomly

Permuted execution
rearranged instructions e.g. S-boxes

Masking techniques
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CPA

Hardware countermeasures

Noise generation:
Hardware noise generator from e.g. RNG
Total power is increased

Desynchronization:
Introducing some fake clock cycles during the computation or using a weak jitter

Power signal filtering:
ex.: RLC filter (R-resistor, C-capacitor, L-inductor) smoothing the pow. cons. signal by
removing high frequency components
Using active comp. (transistors) in order to keep pow. cons. relatively constant

Novel circuit designs e.g. special logic styles
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Differential Fault Analysis (DFA)

DFA

Bellcore attack in 1995
Differential faults on RSA-CRT signatures
Requires 1 correct and 1 wrong signature

Attack on DES in 1997 by Biham and Shamir

Special attacks on AES, ECC etc.
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Differential Fault Analysis (DFA)

DFA on symmetric-key ciphers

Basic DFA scenario:
adversary obtains a pair of ciphertexts that are derived by encrypting the same plaintext
(one is correct value and the other is faulty)
two encryptions are identical up to the point where the fault occurred
→ two ciphertexts can be regarded as the outputs of a reduced-round iterated block
cipher where the inputs are unknown but show a small (and possibly known) differential

DFA on DES
the original attack of Biham and Shamir exploits computational errors occurring in the
final rounds of the cipher
assumes that one bit of the right half of the DES internal state is flipped at a random
position
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Differential Fault Analysis (DFA)

Countermeasures

Generic approaches

Correctness check: encrypt twice

Random delays: limits the precision

Masking: secret sharing complicates probing wires of the device

Hardware countermeasures:

light detectors, supply voltage, frequency detectors

active shields

redundancy: duplication of hardware blocks

dual rail implementations
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Differential Fault Analysis (DFA)

Symmetric-key countermeasures

Introducing redundancy is harder than for PKC

Multiple execution is expensive

Using the inverse
Loop invariant:

2nd variable counting in the opposite way prevents tampering the counter of a loop
add a signature that is updated in every run of the loop (checksum)

To ensure the integrity of the stored data, Cyclic Redundancy Check (CRC) can be
added
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DFA of RSA

RSA cryptosystem

Key generation:
e and the length of n are given
Generate “large” prime numbers p, q such that gcd(p − 1, e) = 1, gcd(q − 1, e) = 1;
Compute n = p · q and ϕ(n) = (p − 1)(q − 1);
Compute d satisfying ed ≡ 1 (mod ϕ(n))
Public key: pk = (n, e); private key: sk = (n, d).

Public-key op. c ← Enc(pk ,m): c := me (mod n).

Secret-key op. m← Dec(sk , c): m := cd (mod n).

There are further limitations to the choice of p, q.

e is typically fixed in advance (e.g., 65537 = 216 + 1).

CRT
Find dp = d (mod p − 1), computed as dp = e−1 (mod p − 1)
Find dq = d (mod q − 1)
Compute U = p−1 (mod q)
cp = c (mod p), cq = c (mod q)
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DFA of RSA

RSA with CRT

Optimisation of computing a signature giving about 4-fold speedup:
n = p · q Signature: s = md mod n

Precomputed values dp := d mod (p − 1) dq := d mod (q − 1)
iq := q−1 mod p

sp := mdp mod p sq := mdq mod q

Garner’s method (1965) to recombine sp and sq :
s = sq + q · (iq(sp − sq) mod p)
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DFA of RSA

Injecting fault in branch sp

Assume that an adversary can inject a fault in the computation of sp, resulting in
ŝp.

Moreover, an invalid signature ŝ.

The adversary can make a correct and an incorrect signatures:
s = sq + q · (iq(sp − sq) mod p)
ŝ = sq + q · (iq(ŝp − sq) mod p)
s − ŝ = q ·

(
(iq(sp − sq) mod p)− (iq(ŝp − sq) mod p)

)
.

Then the adversary can recover q as follows: q = gcd(n, s − ŝ)
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DFA of RSA

Injecting fault in branch sq

Assume that an adversary can inject a fault in the computation of sq , resulting in
ŝq .

The adversary can make a correct and an incorrect signatures:
s = sq + q · (iq(sp − sq) mod p)
ŝ = ŝq + q · (iq(sp − ŝq) mod p)

Subtracting the 2 signatures:

s − ŝ ≡ (sq − ŝq) + q · (iq(sp − sq) mod p)

−q · (iq(sp − ŝq) mod p)

≡ (sq − ŝq) + (q · iq mod p)(sp − sp mod p)

− (q · iq mod p)︸ ︷︷ ︸
≡1 (mod p)

(sq − ŝq mod p)

≡ 0 (mod p). =⇒ p = gcd(n, s − ŝ)
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DFA of RSA

Countermeasure for RSA

Compute a signature twice and compare the two results

Verify the signature with the public exponent e, but in some applications (Java
card), one does not have access to the public exponent e during signature
generation

Shamir: random r is first chosen and then modular exp. is computed based on r · n

Find s∗ = md (mod r · n)
Find Z = md (mod r)

If s∗ = Z (mod r)

Output s = s∗ (mod n)
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Conclusions

Conclusions

The goal of this lecture is to go more into detail of Side-Channel and Fault
Injection Analyses by presenting in detail the two most powerful techniques
against cryptographic implementations.

What are the assumptions of CPA?
What are the assumptions of DFA on RSA?

Provide more background on Side-Channel Attacks

Thank you for the attendance :-)
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Conclusions

Questions

?
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Extra

Masking

Principle: randomizing intermediate values with a secret sharing scheme so DPA fails

Boolean masking: a d th-order secure Boolean masking scheme splits a sensitive value
x into d + 1 shares (x0, x1, ..., xd), as follows:

x = x0 ⊕ x1 ⊕ · · · ⊕ xd

The number of traces required for a successful attack grows exponentially w.r.t. the
security order d .

Probing-secure scheme. We refer to a scheme that uses certain families of shares as
t−probing-secure iff any set of at most t intermediate variables is independent from the
sensitive values.
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Extra

Masking with 2 shares

X = X1 ⊕ X2

The leakage L(X ) = HW (X1,X2) depends on two variables.

It does not reveal any information on the value of X when a DPA is performed
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